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Luis M. Castro Pontificia Universidad Católica de Chile
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Jesús López-Fidalgo Universidad de Navarra, Spain
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UNCORRECTED PROOFS
Eleventh Volume – First Number

Editorial Paper

Starting a new decade of the Chilean Journal of

Statistics in COVID-19 pandemic times

with new editors-in-chief

Welcome to the first issue of the eleventh volume of the Chilean Journal of Statistics
(ChJS). Today, April 29, 2020, the ChJS celebrates eleven years of life in a historic period
marked by the uncertainty generated by the global pandemic due to COVID-19. Pandemics
like this have been in history, but it is the first time that we have lived in a status of global
quarantine. In these pandemic times, much of humanity is in isolation and social distancing.
We will certainly overcome this situation and one of the keys to do this is science and the
generation of accurate knowledge.
For this volume, the ChJS would be nothing without the valuable contributions of

renowned international researchers who have honored us by publishing their interesting
works in our journal; all of these papers are available for free at http://chjs.mat.utfsm.
cl/issues.html. We also thank all the anonymous reviewers who have contributed to
keeping the top quality standards of the ChJS.

Although the ChJS is published by the Chilean Statistical Society (www.soche.cl) and
belongs to the Chilean statistical community, our journal can be recognized as an interna-
tional publication since its editorial board is composed of colleagues from practically the
five continents. Our current Editorial Board, presented at http://chjs.mat.utfsm.cl/
board.html, is a mixture of experienced editors and talented young researchers, the latter
mainly from Chile and Brazil, who with great interest and enthusiasm have honored us
by accepting to be part of the ChJS. They are having their first editorial experiences, al-
though they all have extensive experience as researchers as well as reviewers for prestigious
international journals.

We would also like to thank the members of the Directory of the Chilean Statistical Soci-
ety (https://soche.cl/quienes-somos) headed by its President, Dr. Jorge Figueroa and
Directors Danilo Alvares, Eduardo Alarcón, Carolina Marchant, Yolanda Gómez, Soledad
Estrella, Tarik Faouzi and Guido del Pino for ratifying the former Editor-in-Chief of the
ChJS and also naming the new Editor-in-Chief. The current Editors-in-Chief will do our
best to bring ChJS to the highest standards of professionalism, fairness and quality that
all scientific journals must strive for.
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2 Leiva

After this presentation note, the first issue of the eleventh volume of the ChJS comprises
four papers authored by researchers from Brazil, Colombia, India, Kenya, Mexico, and US.
Our first paper is authored by Luz Milena Zea Fernández and Thiago A.N. de Andrade.
The authors derived new unconditioned and log-linear regression models based on the erf-
G family of distributions. The second paper is authored by Thodur Parthasarathy Sripriya,
Mamandur Rangaswamy Srinivasan, and Meenakshisundaram Subbiah, who presented a
methodology for detecting outliers in I⇥J contingency tables through the level of suscep-
tibility, a useful methodology for categorical data. In the third paper, Adolphus Wagala
introduced a likelihood ratio test for correlated paired multivariate samples. The fourth
paper is authored by Josmar Mazucheli, Sudeep R. Bapat, and André Felipe B. Menezes,
who developed a new one-parameter unit-Lindley distribution and its application.

Finally, we would like the Chilean statistical community, as well as the international
statistical community, our prestigious Editorial Board and past authors to champion ChJS
as an emerging international journal and to encourage others to submit new works to the
ChJS. Currently, we are indexed by several international systems, including the Institute
for Scientific Information (ISI) Web of Science in the Emerging Sources Citation Index. The
ChJS faces important challenges for the near future, such as reaching the Science Citation
Index and looking for partnerships with prestigious publishers, societies and associations.
However, just as with statistics itself, our success will depend on a team e↵ort. Each one
of us is important in meeting these challenges. We need you all.

Carolina Marchant and Vı́ctor Leiva
Editors-in-Chief
Chilean Journal of Statistics
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The erf-G family: new unconditioned and log-linear

regression models

Luz Milena Zea Fernández
1 and Thiago A. N. de Andrade

2,⇤

1Department of Statistics, Federal University of Rio Grande do Norte, Natal, Brazil,
2Department of Statistics, Federal University of Pernambuco, Recife, Brazil,

(Received: 08 March 2019 · Accepted in final form: 04 June 2019)

Abstract

In this paper, we propose a new generator of distributions called the erf-G family. Our
proposal provides special distributions without adding complexity to parametric spaces
of resulting models. We also furnish empirical evidence that the proposed family may
solve issues of flat or quasi-red likelihoods in some baselines. In particular, we detail
six special models from the erf-G family. We also derive a new log-linear regression
model considering a kind of censoring. We discuss censored and uncensored maximum
likelihood estimation methods for the proposed models. In order to study asymptotic
properties of considered estimators, we carry out a Monte Carlo simulation study. Fi-
nally, using applications to real data we illustrate that proposed models may outperform
classic lifetime models.

Keywords: Error function · Flat likelihood · Generalized distributions · Log-linear
regression models.

Mathematics Subject Classification: Primary 60E10 · Secondary 60E05.

1. Introduction

From both theoretical and applied perspectives, the proposal of new probability distri-
butions is crucial to describe natural phenomena. There are several ways to extend well-
known distributions. One of the most popular ways is to consider distribution generators.
Some of them are: Marshall-Olkin (Marshall and Olkin, 1997), beta (Eugene et al., 2002),
gamma (Zografos and Balakrishnan, 2009), (Ristic and Balakrishnan, 2012) and (Nadara-
jah et al., 2015), Kumaraswamy (Cordeiro and de Castro, 2011), exponentiated generalized
(Cordeiro et al., 2013), red odd exponentiated half-logistic (Afify et al., 2017) classes of
models, among others.
Several generators (beyond of these referred above) have provided models more flex-

ible than classic ones, used widely in applications into the lifetime context. However,
from a literature review, such generators have the disadvantage of adding complexity to

⇤
Corresponding author. Email: thiagoan.andrade@gmail.com
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4 Zea and de Andrade

the parametric space of resulting models. In this paper, we use the error function (erf)
as a way to outperform this issue. The erf (also known as Gauss error function) is an
important special function, that appear often as solutions from several mathematical and
physical problems. Its applications include probability theory, statistics, mass and momen-
tum transfer, branches of mathematical physics, partial di↵erential equations describing
di↵usion process, among others. For more details, we refer to Chevillard (2012).
We propose and study the erf-G family in details. Some of erf-G special cases are intro-

duced and discussed. We derive explicit expressions for some of its mathematical proper-
ties and also propose a log-linear regression (llr) model with log-erfG response variables.
A discussion about estimation and hypothesis inference is furnished for both proposed un-
conditioned and llr models. Simulations results and two applications to real data indicates
that our proposals may outperform well-defined lifetime models. We also highlight that
our study of the erf-G model has very clear and forceful motivations: (i) it does not im-
pose more complex parametric spaces to resulting models; (ii) it may provide concavity to
distributions with flat or quasi-flat likelihoods (details are explored in Section 3); and (iii)
it can generate bathtub failure rate functions. For the reasons listed above, we strongly
believe it is important to study in detail the erf-G distribution. We hope that this new
distribution is part of the arsenal of applied researchers and will be used in many practical
situations.
This paper is organized as follows. In Section 2, we define some erf-G special models.

Inferential tools, including: (i) linear representations for the erf-G probability density func-
tion (PDF) and cumulative distribution function (CDF), (ii) estimation and hypotheses
inference procedures and (iii) regression models, are provided in Section 3. Mathematical
properties of the new family are presented in Section 4. Simulations and applications to
real data are provided in Section 5. In Section 6, main conclusions are listed.

2. Genesis of the new model and some of its special models

In this Section, we present the design of the new model and some of its many special
models.

2.1 General context

First we consider the traditional error function given by

erf(z) =
1
p
⇡

Z z

�z
exp(�t2) dt =

2
p
⇡

Z z

0

exp(�t2) dt, z 2 R. (1)

From now on, we advocate that replacing z in (1) by G(x)/[1 � G(x)] for x 2 X ⇢ R
collapses a new and e�cient generator of distributions. Let G(x) be a cumulative distribu-
tion function (CDF). The following operator may be considered as the CDF of a potential
family of models:

F (x) = erf


G(x)

1�G(x)

�
, x 2 X . (2)

We denote this case as the erf-G family. A stochastic conception of this class which may
furnish insight about the relation between new erf-G models and their respective baselines
(with CDF G) is given by the following theorem.
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Theorem Let Z > 0 be a random variable with CDF given by FZ(z) = erf(z) I(0,1)(z).

Thus, X = G�1
⇥
Z (1 + Z)�1

⇤
is a stochastic transformation having CDF

FX(x) = erf


G(x)

1 � G(x)

�
,

where G(x) represents the CDF of a baseline distribution.

The proof of this theorem holds from the basic probability manipulations. It reveals that
distributions into the new family can understood as a quantile of Y ⇠ G associated with
a mapping X ! (0, 1).
Now, let X ⇠ erf-G(✓) for ✓ 2 ⇥ ✓ Rp, where ⇥ represents the parametric space. The

PDF of X and hazard rate function (HRF) are given respectively by

f(x) =

2g(x;✓) exp

"
�

✓
G(x;✓)

1�G(x;✓)

◆2
#

p
⇡(1�G(x;✓))2

, x 2 R. (3)

and

h(x) =

2g(x;✓) exp

"
�

✓
G(x;✓)

1�G(x;✓)

◆2
#

p
⇡(1�G(x;✓))2

n
1� erf

h
G(x;✓)

1�G(x;✓)

io , x 2 R.

2.2 Some special models

The erf-G model is completely new. There is, therefore, a great variety of new distributions,
based on (2), that can be explored by statisticians and applied researchers. In what follows,
we discuss some special models.

2.2.1 The erf-Gumbel model

The Gumbel distribution is a statistical model defined in real support widely used
in engineering problems (de Andrade et al., 2015). Its CDF is given by G(x;µ,�) =
exp {� exp [�(x� µ)/�]}, where �1 < µ < 1 and � > 0 are the location and scale
parameters, respectively. Applying its CDF and PDF in (2) and (3), we obtain the erf-
Gumbel (erfGum) model, having CDF and PDF given by

F (x) = erf

⇢
1

exp[z1(x)]� 1

�
, x 2 R,

and

f(x) =

2z1(x) exp

(
�z1(x)�


1

exp[z1(x)]� 1

�2)

p
⇡�{1� exp[z1(x)]}2

, x 2 R,

respectively, where z1(x) = exp [�(x� µ)/�] . Figure 1 presents erfGum PDF curves for
some selected parameters. The Gumbel distribution is asymmetric. As we can see in the
Figure 1, the erfGum model can accommodate asymmetric shapes.
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Figure 1. The PDF of the erfGumbel model for some � and µ parameter values.

2.2.2 The erf-normal model

Let � and � be the PDF and CDF of the standard normal model, respectively. Evaluating
these equation in (2) and (3), we obtain the erf-normal (erfN) model, with CDF and PDF
expressed by

F (x) = erf


�(z2(x))

�(�z2(x))

�
, x 2 R,

and

f(x) =

p
2 exp

�
� z2(x)2/2� [�(z2(x))/�(�z2(x))]2

 

⇡[�(�z2(x))]2
, x 2 R,

where z2(x) = (x�µ)/�. Plots for the erfN PDF at selected parameter values are displayed
in Figure 2. Based on Figure 2, likewise that the erfGum, the erfN distribution may present
asymmetrical behaviour in contrast with its baseline.

2.2.3 The erf-gamma model

As third special model, applying gamma model (having shape ↵ and scale �) CDF and
PDF in (2) and (3), we get the erf-gamma (erf�) model with CDF and PDF expressed as

F (x) = erf


�(↵,�x)

�(↵,�x)

�
, x > 0,

where �(s, x) =
R1
x ts�1 exp(�t) dt and �(s, x) =

R x
0
ts�1 exp(�t) dt are the upper and

lower incomplete gamma functions, and

f(x) =

2�↵�(↵)x↵�1 exp

"
�

✓
�(↵,�x)

�(↵,�x)

◆2

� �x

#

p
⇡ [�(↵,�x)]2

, x > 0,
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Figure 2. The PDF of the erfN model for some � and µ parameter values.

where � represents the gamma function. The HRF of the erf� model is defined by

h(x) =

2�↵�(↵)x↵�1 exp

"
�

✓
�(↵,�x)

�(↵,�x)

◆2

� �x

#

p
⇡ [�(↵,�x)]2

⇢
1� erf

✓
�(↵,�x)

�(↵,�x)

◆� , x > 0.

Plots of the erf� PDF and HRF for selected parameter values are presented in Figure
3. At least, the associated HRF can assume bathtub, increasing and decreasing shapes. In
contrast with the gamma model, which assumes only monotone HRF shapes.
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Figure 3. The PDF and HRF of the erf� model for some ↵ and � parameter values.

2.2.4 The erf-Weibull model

The Weibull distribution can be considered as a standard model for lifetime data and,
therefore, is interesting to study a special model generated from it. From evaluating Weibull
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CDF and PDF in (2) and (3), we obtain the erf-Weibull (erfW) model, characterized by
CDF and PDF given by

F (x) = erf
h
exp

⇣
↵x�

⌘
� 1
i
, x > 0,

and

f(x) = 2⇡�1/2 ↵� x��1 exp


↵x� �

⇣
exp(↵x�)� 1

⌘2�
, x > 0.

The erfW hazard can be expressed as

h(x) =
2↵� x��1 exp

h
↵x� �

�
exp(↵x�)� 1

�2i

p
⇡ {1� erf [exp(↵x�)� 1]}

, x > 0.

Plots of the erfW PDF for selected parameter values are displayed in Figure 4. This figure
provides possible shapes of the erfW HRF, which includes the bathtub shape. It represents
a gain on the Weibull model, which has constant and monotone shapes.
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Figure 4. The PDF and HRF of the erfW model for some ↵ and � parameter values.

2.2.5 The erf-log-logistic distribution

In the survival analysis context, the log-logistic distribution is one of the possible choices
when you want to model data with a unimodal failure rate. For x > 0, the CDF of the log-

logistic model is given by G(x;↵, �) = 1�
h
1 +

�
x
↵

��i�1

, where ↵ > 0 and � > 0 are shape

parameters. Thus, the CDF and PDF regard to the erf-log-logistic (erfLL) distribution are
given by

F (x) = erf

⇣x
↵

⌘��
, x > 0,
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and

f(x) =
2� x��1

p
⇡ ↵�

exp


�

⇣x
↵

⌘2��
, x > 0.

The HRF of the erfLL distribution is easily defined as

h(x) =
2� x��1 exp

h
�
�
x
↵

�2�i

p
⇡ ↵�

⇢
1� erf

⇣x
↵

⌘��� , x > 0.

Plots of the erfLL PDF for selected parameter values are displayed in Figure 5. Figure 5
also provides some possible shapes of the erfLL hazard function for appropriate parameter
values, including bathtub, increasing and decreasing shapes. These plots indicate that the
erfLL model is fairly flexible and can be used to fit several types of positive data.
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Figure 5. The PDF and HRF of the erfLL model for some ↵ and � parameter values.

2.2.6 The erf-Frechet distribution

The CDF of the Frechet model is given by G(x; �,�) = exp(���x��) for x > 0 and
�,� > 0. An important generalization based on this distribution was proposed by da Silva
et al. (2013). Considering G(x) as the Frechet CDF in equations (2) and (3), we get the
erf-Frechet (erfF) model with CDF and PDF expressed as

F (x) = erf

⇣
exp(��x��)� 1

⌘�1
�

and

f(x) =
2� �� x���1 exp

n
���x��

�
⇥
exp(��x��)� 1

⇤�2
o

p
⇡ [1� exp(���x��)]2

. (4)
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The risk function associated appears as

h(x) =
2� �� x���1 exp

n
���x��

�
⇥
exp(��x��)� 1

⇤�2
o

p
⇡ [1� exp(���x��)]2

n
1� erf

h
(exp(��x��)� 1)�1

io .

Some plots for the erfF PDF and HRF are provide in Figure 6. The erfF HRF covers the
inverted bathtub shape in contrast with the Frechet HRF, that assumes only monotone
behavior.
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Figure 6. The PDF and HRF of the erfF model for some � and � parameter values.

3. Miscellaneous

In this Section, we provide a complete background for inferential processes.

3.1 A linear expansion

General expressions for the PDF and CDF functions are highly appreciated by applied
researchers, as they allow approximate results to be obtained when analytical solutions
are not available. Here, we refer to some works that consider these expansions: Cordeiro
et al. (2015), Leao et al. (2013), de Andrade et al. (2016) and Afify et al. (2017). This
section aims to provide expansions for (2) and (3) in order to determine representations
for some erf-G mathematical properties, which do not present closed-forms. First, consider
the Maclaurin expansion for the erf function given by

erf(x) =
2
p
⇡

1X

k=0

(�1)kx2k+1

k!(2k + 1)
. (5)
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By applying (5) in (2), one has that

F (x) =
2
p
⇡

1X

k=0

(�1)k
h

G(x)
1�G(x)

i2k+1

k!(2k + 1)
. (6)

From the Taylor expansion, we have

x

1� x
=

1X

i=1

xi for |x| < 1, (7)

(7) applied in (6) collapses

F (x) =
2
p
⇡

1X

k=0

(�1)k

k!(2k + 1)

" 1X

i=1

G(x)i
#2k+1

. (8)

Setting ` as a positive integer number, we have

 1X

k=0

akx
k

!`

=
1X

m=0

c`,mxm, (9)

where

c`,0 = a`0, c`,m =
1

ma0

mX

j=1

(j`�m+ j)ajc`,m�j , m � 1.

From (9) in (8), we get

F (x) =
2
p
⇡

1X

k=0

1X

m=0

(�1)kd2k+1,m

k!(2k + 1)
G(x)m+2k+1 =

1X

k,m=0

bk,mG(x)m+2k+1, (10)

where d2k+1,0 = 1, d2k+1,m =
1

m

mX

j=1

⇥
2j(k + 1)�m

⇤
d2k+1,m�j ,m � 1 and

bk,m =
2 (�1)k d2k+1,m
p
⇡ k! (2k + 1)

.

By applying the derivate with respect to x in (10), erf-G PDF can be express as

f(x) =
1X

k,m=0

bk,m (m+ 2k + 1) g(x)G(x)m+2k =
1X

k,m=0

ak,m g(x)G(x)m+2k, (11)

where ak,m = bk,m (m + 2k + 1). Equations (10) and (11) indicate that erf-G random
variables can be represented as a linear combination of exp-G distributions (discussed in
detailed by Tahir and Nadarajah (2015)) having additional parameter m+ 1.
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3.2 Maximum likelihood estimation

Let x1, . . . , xn be a n-points observed sample obtained from X ⇠ erfG(✓). The log-
likelihood function for the vector of parameters ✓ 2 ⇥ ✓ Rp is expressed as

`(✓) = n log

✓
2
p
⇡

◆
+

nX

i=1

log [g(xi|✓)]� 2
nX

i=1

log [1�G(xi|✓)]�
nX

i=1

G(xi|✓)2

[1�G(xi|✓)]2
,

(12)

In this case, the jth element of the score vector, U(✓) = [U1(✓), . . . , Up(✓)]> =
@`(✓)

@✓1
, . . . ,

@`(✓)

@✓p

�>
, is given by

Uj(✓) =
nX

i=1

ġ(xi|✓)

g(xi|✓)
+ 2

nX

i=1

Ġ(xi|✓)

[1�G(xi|✓)]
� 2

nX

i=1

G(xi|✓)Ġ(xi|✓)[1�G(xi|✓)]2

[1�G(xi|✓)]4

� 2
nX

i=1

G(xi|✓)2Ġ(xi|✓)[1�G(xi|✓)]

[1�G(xi|✓)]4
,

where ġ(xi|✓) = @g(xi;✓)/@✓j and Ġ(xi|✓) = @G(xi;✓)/@✓j . Thus, the maximum likeli-
hood estimator (ML estimator) are given by

✓̂ = argmax✓2⇥{`(✓)}

or, equivalently, ✓̂ is a root of the non-linear equations system defined by U(✓̂) = 0.
To illustrate as the erf-G model can modify geometrically a G distribution log-likelihood,

we compare two pairs of distributions: (exponential (Exp), erf-exponential (erfExp)) and
(Maxwell (Max), erf-Maxwell (erfMax)). The erfExp log-likelihood function is given by

`(�) = n log

✓
2�
p
⇡

◆
+ �

nX

i=1

xi +
nX

i=1

(1� e�xi).

From Figure 7, it is noticeable that the erf-G structure may provide concavity to distri-
butions with flat or quasi-flat likelihoods. It advocates in favor of the proposed family.
Among other advantages, a greater concavity of likelihood provides better quality in the
estimation process. In the next section, we illustrate that the maximum likelihood esti-
mates (ML estimates) based on (12) may be more accurate than those obtained from the
corresponding baseline.

3.3 The log-erf-Frechet regression model

In several applications, lifetimes are related to exatory variables. Regression models are
sought for this end. Let T be a random variable with PDF (4), then Y = log(T ) has
the log-erf-Frechet (lerfF) distribution, denoted as Y ⇠ lerfF. Taking the parametrization
� = exp(µ) and � = 1/�, the PDF of Y can be written as
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Figure 7. The log-likelihood function for the Exp, erfExp, Max and erfMax distributions.

f(y, µ,�) =
2

p
⇡�

exp


�

✓
y � µ

�

◆�
exp

⇢
exp


�

✓
y � µ

�

◆��✓
exp

⇢
exp


�

✓
y � µ

�

◆��
� 1

◆�2

⇥ exp

"
�

✓
exp

⇢
exp


�

✓
y � µ

�

◆��
� 1

◆�2
#
,

(13)

for �1 < y < 1, �1 < µ < 1 and � > 0. Now, if T ⇠ erfF(�,�), then Y = log(T ) ⇠
lerfF(µ,�) with CDF

FY (y) = erf

"✓
exp

⇢
exp


�

✓
y � µ

�

◆��◆�1
#
,

and survival function (sf) given by

S(y;µ,�) = 1� erf

"✓
exp

⇢
exp


�

✓
y � µ

�

◆��◆�1
#
. (14)

Now, we are in position of defining the standardized random variable Z = (Y � µ)/�
with PDF

⇡(z) =
2
p
⇡
exp(�z) exp

⇥
exp(�z)

⇤�
exp[exp(�z)]� 1

 �2
exp

�
� {exp[exp(�z)]� 1}�2

�
.

(15)

Considering the substitution u =
�
exp[exp(�z)]�1

 �1
, the r-th moment of Z is given by

E(Zr) =
2
p
⇡

Z 1

0

�
� log[log(u�1 + 1)]

 r
exp(�u2)du.
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Using the Mathematica software, it is possible to verify that the second ordinary moment
of Z is finite:

E(Z2) =
2
p
⇡

Z 1

0

�
� log[log(u�1 + 1)]

 2
exp(�u2)du = 0.321075 < 1.

Let xi = (xi1, . . . , xip)> be the exatory variable vector associated with the ith response
variable Yi for i = 1, . . . , n.
Consider the sample (Y1,x1), . . . , (Yn,xn) of n independent variables, where each ran-

dom response is defined by Yi = min{log(Ti), log(ci)} and log(Ti) and log(ci) are the
log�lifetime and log�censoring, respectively. We consider non-informative censorship
such that the lifetimes and censorship times are independent.
The linear regression model for the lerfF response variable, Yi, is given by

Yi = x>
i � + �Zi, i = 1, 2, . . . , n. (16)

where Zi is a random variable with PDF (15), � = (�1, . . . ,�p)> and � > 0 are unknown
parameters, and xi is the ith explanatory random variables vector.
In this case, the location of (Y1, . . . , Yn)> is µ = (µ1, . . . , µn)> such that µi = x>

i � or,
in matrix terms, µ = X� with model matrix X = (x1, . . . , xn)>.
Let F and C be the sets of individuals for which yi is the log�lifetime or log�censoring,

respectively.
The total log-likelihood function for the parameters ✓ = (�,�>)> of model (16) has the

form

`(✓) =
X

i2F
`i(✓) +

X

i2C
`(c)i (✓),

where `i(✓) = log[f(yi)], `
(c)
i (✓) = log[S(yi)], f(yi) and S(yi) are given in equations (13)

and (14). Then, the log�likelihood function reduces to

`(✓) = q

✓
log(2)�

log(⇡)

2
� log(�)

◆
+
X

i2F

⇢
�

✓
yi � x>

i �

�

◆
+ exp


�

✓
yi � x>

i �

�

◆�

�2 log

✓
exp

⇢
exp


�

✓
yi � x>

i �

�

◆��
� 1

◆
�

✓
exp

⇢
exp


�

✓
yi � x>

i �

�

◆��
� 1

◆�2
)

+
X

i2C
log

(
1� erf

"✓
exp

⇢
exp


�

✓
yi � x>

i �

�

◆��◆�1
#)

,

(17)

where q is the observed number of failures. The ML estimator b✓ of ✓ can be obtained by
maximizing the Equation (17). Using the adjusted model (16), the sf of Yi can be estimated
by

bS(yi; b�, b�>) = 1� erf

2

4
 
exp

(
exp

"
�

 
yi � x>

i
b�

b�

!#)!�1
3

5 .

Under general regularity conditions, the asymptotic distribution of
p
n(b✓ � ✓) can be
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approximated by the multivariate normal Np+1(0, J(✓)�1), where J(✓) = @2 `(✓)/@✓>@✓
is the (p + 1) ⇥ (p + 1) observed information matrix. Statistical inference procedures for
the parameter vector ✓ can be made based on the asymptotic normality. In particular, an
100(1� ↵)% asymptotic confidence interval for each parameter ✓s is given by

ACIs = (✓s � z↵/2

p
bJs,s, ✓s + z↵/2

p
bJs,s),

where bJs,s denotes the sth diagonal element of the inverse of the estimated observed infor-
mation matrix J(b✓)�1 and z↵/2 is the quantile 1�↵/2 of the standard normal distribution.

4. Some mathematical properties

From now on, we present the process of obtaining the mathematical properties of the new
model.

4.1 Quantile function

The quantile function (qf) of the erf-G distribution is obtained in an explicit form by
inverting (2)

QF (u) = QG

 
��1(u+1

2
)

p
2 + ��1(u+1

2
)

!
, (18)

where QG is the baseline quantile function and ��1 is the standard normal quantile func-
tion. Beyond to allow defining important quantiles (e.g., the median), (18) may also be
used as a random variables generator, adopting uniform outcomes as inputs.

4.2 Ordinary and incomplete moments

Let X be a random variable following erf-G distribution. From Equation (11), the rth
moment of X may be written as

E(Xr) =
1X

k,m=0

am,k E(Y
r
m+2k+1

),

where Ym+2k+1 follows the exponentiated distribution at the power parameter m+2k+1.
Another way to represent the rth moment is through of the quantile function as follow:

E(Xr) =
1X

k,m=0

am,k

Z
1

0

h
QG
�
u

1
m+k+1

�ir
du.

The rth incomplete moment of X can be given as follow

Tr(z) =

Z z

�1
xrf(x)dx =

1X

k,m=0

am,k T
⇤
r(z),
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where T⇤
r(z) is the rth incomplete moment of the Ym+2k+1. A second manner to obtain

the rth incomplete moment of X is by using the quantile function, we have

Tr(z) =

Z z

�1
xrf(x)dx =

1X

m,k=0

am,k

Z
[G(z)]m+2k+1

0

h
QG
�
u

1
m+2k+1

�ir
du.

4.3 Moment generating function

By using the Equation (11), the mgf of X can be expressed as

M(t) =
1X

m,k=0

bm,k Mm+2k+1(t),

where Mm+2k+1(t) is the mgf of Ym+2k+1 given by

Mm+2k+1(t) =

Z 1

�1
exp(tx)(m+ 2k + 1)g(x)[G(x)]m+2kdx.

Another form to obtain an expansion of the mgf of X is by using the qf. We have

M(t) =
1X

m,k=0

(m+ 2k + 1) bm,k

Z
1

0

exp
⇥
tQG(u)

⇤
um+2kdu.

4.4 Entropy

Two well-known variability measures are the Shannon and Rényi entropies. Determining
their expressions consist an important task to quantify disorder in stochastic systems. In
what follows, we derive these measures for the erf-G family. First consider the expansion:
Assuming that |z| < 1 and ⇢ > 0,

(1� z)�⇢ =
1X

j=1

wjzj , wj =
�(⇢+ j)

j!�(⇢)
. (19)

Considering the Taylor expansion and (19) an expression to the erf-G Rényi entropy is
(for � > 0 and � 6= 1)

IR(�) =
1

1� �
log

✓Z 1

0

[f(x)]�dx

◆

=
1

1� �
log

2

4 2�

⇡�/2

1X

k=0

1X

j=1

(��)k wj

k!

Z 1

0

⇥
g(x)

⇤�⇥
G(x)

⇤2k+j
dx

3

5

=
1

1� �

8
<

:� log(2)�
�

2
log(⇡) + log

0

@
1X

k=0

1X

j=1

(��)k wj

k!

Z 1

0

⇥
g(x)

⇤�⇥
G(x)

⇤2k+j
dx

1

A

9
=

; ,

where wj =
�[2(� + 1) + j]

j!�[2(� + 1)]
.
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The Shannon entropy is defined as E{� log[f(X)]} and it can be obtained from the Rnyi
entropy doing � " 1. Note that

E
�
�log[f(X)]

 
= �2 log(2)+

1

2
log(⇡)�E

⇥
log(X)

⇤
+E

(
G(X)

1�G(X)

�2)
�2E

⇥
log(1�g(X))

⇤
.

After some algebraic manipulations, we obtain

E
⇥
log(X)

⇤
=

1X

m,k=0

bm,k(m+ 2k + 1)

Z
1

0

um+2k log
⇥
g(QG(u))

⇤
du,

E

(
G(X)

1�G(X)

�2)
=

Z 1

�1
E

(
G(X)2

[1�G(X)]2

�2)
f(x)dx

=
1X

m,k=0

bm,k(m+ 2k + 1)

Z
1

0

um+2k+2

(1� u)2
du

and

E
⇥
log(1� g(X))

⇤
= �

1X

i=0

1X

m,k=0

bm,k(m+ 2k + 1)

(i+ 1)(m+ 2k + i+ 2)
.

5. Numerical applications

In order to assess the performance of estimation procedures, we carry out a Monte Carlo
study and two real data set applications.

5.1 A Monte Carlo study

This section aims to quantify the performance of ML estimators for erf-G parameters
distribution. To that end, we consider the exponential (exp), Levy and Maxwell (Max)
models, after we specify the following baseline models: erf{Exp, Levy, Max} using equation
(3). The PDF’s of the Exp, Levy and Max distributions are given, respectively, by

f(x,�) = � exp(��x), x > 0, � > 0,

f(x,�) =

r
�

2⇡

exp(� a
2x)

x
3
2

, x > 0, � > 0

and

f(x; a) =

r
2

⇡
a

3
2x2 exp

✓
1

2
ay2
◆
, y > 0, a > 0.

We make a Monte Carlo study with 10, 000 replications such that, for several baseline
parameter values and sample sizes n 2 {50, 200}, two comparison criteria are quantified:
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biases and root mean squared error (RMSE). All computations are implemented using the
R programming language, which has numerous advantages, perhaps the main one being
the fact that it is distributed free of charge through the so-called GNU Public license. For
more information about R, visit the https://www.r-project.org website. To ensure the
reproducibility of this experiment, the following comments are needed: It was utilized the
maxLik(.) function of the R package maxLik . Specifically, the BFGS iterative method was
used in the optimization process.
Simulation results are presented in Figures 8, 9 and 10. Based on these plots, we conclude

that: (i) As expected, the biases and RMSE decreases as the sample size increases; (ii) The
erf-G models has superior performance when compared to their respective baseline models.
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Figure 8. RMSEs and biases of b� for the erfExp and Exp models.
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Figure 9. RMSEs and biases of b� for the erfLevy and Levy models.
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Figure 10. RMSEs and biases of b� for the erfMax and Max models.

5.2 Real data applications

Two applications to real data illustrate the performance of proposed models. First we
describe a set of lifetime data by means of some erf-G models comparatively to the corre-
sponding G distributions. Second the llr model performance is quantified and compared.

5.2.1 Unconditioned model

This section addresses an application to a real data set to illustrate the usefulness of the
proposed family.
To that end, we consider three baseline distributions: exponential (Exp), Kumaraswamy

(K) and Weibull (W). The main objective is to show that the distributions extended from
the erf-G family perform better when compared with their baseline distributions.
We use a data set obtained in Proschan (1963) and corresponds to the time of successive

failures of the air conditioning system of jet airplanes. These data were also studied by
Dahiya and Gurland (1972), Gleser (1989) and Kuş (2007), among others. The data are
194, 413, 90, 74, 55, 23, 97, 50, 359, 50, 130, 487, 102, 15, 14, 10, 57, 320, 261, 51, 44, 9 ,
254, 493, 18, 209, 41, 58, 60, 48, 56, 87, 11, 102, 12, 5, 100, 14, 29, 37, 186, 29, 104, 7, 4,
72, 270, 283, 7, 57, 33, 100, 61, 502, 220, 120, 141, 22, 603, 35, 98, 54, 181, 65, 49, 12, 239,
14, 18, 39, 3, 12, 5, 32, 9, 14, 70, 47, 62, 142, 3, 104, 85, 67, 169, 24, 21, 246, 47, 68, 15,
2, 91, 59, 447, 56, 29, 176, 225, 77, 197, 438, 43, 134, 184, 20, 386, 182, 71, 80, 188, 230,
152, 36, 79, 59, 33, 246, 1, 79, 3, 27, 201, 84, 27, 21, 16, 88, 130, 14, 118, 44, 15, 42, 106,
46, 230, 59, 153, 104, 20, 206, 5, 66, 34, 29, 26, 35, 5, 82, 5, 61, 31, 118, 326, 12, 54, 36,
34, 18, 25, 120, 31, 22, 18, 156, 11, 216, 139, 67, 310, 3, 46, 210, 57, 76, 14, 111, 97, 62,
26, 71, 39, 30, 7, 44, 11, 63, 23, 22, 23, 14, 18, 13, 34, 62, 11, 191, 14, 16, 18, 130, 90, 163,
208, 1, 24, 70, 16, 101, 52, 208, 95.

Some descriptive statistics for these data are given in Table 1. Note that the mean
is greater than the median and the asymmetry coe�cient is positive, i.e., the empirical
distribution from data is positively asymmetric. There is a lot of variability in the data
and they are overdispersed. Further, from the kurtosis coe�cient, the distribution of the
data is platykurtic.
Table 2 provides the ML estimates of considered model parameters (corresponding stan-

dard errors in parentheses) and the values of some goodness-of-fit measures: the Akaike
information criterion (AIC), Bayesian information criterion (BIC) and consistent Akaike
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information criterion (CAIC). In general, it is considered that the lower values (AIC, BIC
and CAIC) indicate better fits. In all the situations, the proposed models outperform the
corresponding baselines.

Table 1. Descriptive statistics for the air conditioning system of airplanes data.

Statistic
Mean 93.141
Median 57
Variance 11398.471
Minimum 1
Maximum 603
Skewness 2.322
Kurtosis 3.692

Table 2. The ML estimates (standard errors in parentheses) and the AIC, BIC and CAIC for the phos-
phorus concentration data.

Distribution b↵ b� b� b� b⌘ Cramr K-S AD AIC BIC CAIC

BGP 10.778 1.031 22.346 28.890 – 0.302 0.079 2.044 2386.988 2400.433 2387.180

(0.791) (0.356) (1.549) (0.872)

KumaBXII 16.190 6.810 5.761 0.057 0.100 0.215 0.069 1.487 2381.423 2398.230 2381.713

(3.375) (1.831) (2.008) (0.019) (0.059)

Gama-Gama 10.997 0.001 22.975 – – 0.851 0.122 5.085 2475.640 2485.724 2475.755

(0.227) (0.000) (0.002)

erf-We 0.043 0.524 – – – 0.475 0.109 2.857 2390.732 2397.455 2390.789

(0.006) (0.025)

As qualitative comparison sources, plots ofnthe empirical and estimated PDF and CDF
of the under discussion models are displayed in Figures 11. Results indicate the fitted
erfW, erfExp and erfK models are better than the associated baselines for phosphorus
concentration data. These are first practical evidences in favor of the use of the proposed
family.
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Figure 11. Plots of the fitted BGP, KumaBXII, Gamma-Gamma and erfW PDFs (left) and of the estimated CDFs

of the BGP, KumaBXII, gamma-gamma and erfW models (right)s.

.
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5.2.2 Regression model

Now, consider results obtained from a lifetime test experiment on 76 specimens of a
type of electrical insulating fluid subjected to constant voltage stress, say x, at seven
levels, x = 26, 28, 30, 32, 34, 36 and 38 kV. The time period until each sample has failed
(or ”broke”), say breaking time Y , was observed. Such study was firstly performed by
Nelson (1972) and Vanegas et al. (2012). Now, we aim to investigate how the voltage level
influences the failure time. Does the erfG structure present advantage in the regression
context likewise that for uncorrelated distributions?
To that end, we compare the lerfF and log-Frechet (L-F) regression models. Table 3

presents results for ML estimates of the adjusted models as well as their respective signif-
icance and standard error measures. We also provide values of the AIC, BIC and CAIC
statistics as comparison means. From results of individual confidence intervals for �i, one
has that both considered slopes (and, as a consequence, used predictive variables) are
meaningful at the level 5%, employing the asymptotic distribution of the t statistic for
H : �1 = 0. From comparison point-of-view, lerfF regression model outperforms L-F,
illustrating the importance of the erf-G family in the regression context.

Table 3. ML estimates of the parameters from some fitted regression models to the Minutes to breakdown
data set, the corresponding standard errors (in parentheses), p-value (in brackets) and the AIC, BIC and
CAIC measures.

Model �0 �1 � AIC BIC CAIC
lerfF 13.5272 -0.3329 3.1597 297.5957 304.5879 297.9290

(1.9256) (0.0586) (0.3053)
[<0.0001] [<0.0001] [<2e-16]

L-F 7.1364 -0.1790 1.7176 320,9327 327,9249 321,2660
(2.3629) (0.0697) (0.1601)
[0.0025] [0.0102] [<2e-16]

6. Conclusions and future works

In this paper, we propose and study a new class of distributions called efr-G family. This
family is based on the known error function and does not add parameters to its resulting
models regard to the baseline distribution. As other advantage, the erf-G family seems to
solve or at least to improve estimates based on flat likelihoods. We derive some of its math-
ematical properties, such as quantile function, ordinary and incomplete moments, moment
generating function and Shannon and Rényi entropy measures. A log-linear regression
model in the new family is also proposed. Simulation studies and real data applications
illustrate the usefulness of the our proposals. For future works, new regression models and
a complete study of residual analysis for the proposed models will be developed.
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Abstract

Detecting outliers in two-way contingency tables is an important and interesting sta-
tistical problem. There is no clear objective procedure available in literature to handle
outliers in categorical data unlike other data types. Therefore, this study envisages a
two-step procedure, to first indicate and then to identify outliers in two-dimensional con-
tingency tables. The approach deals with enhancing the summary measure to indicate
the presence of possible outlying cells followed by residual approaches supplemented
by boxplot in identifying the outliers. The fundamental definition of outlying cell as
“markedly deviant” cell is clearly exploited in this two-step procedure. A simulation
study has been carried out to examine the consistency of the proposed methods and
later applied to a large collection of real datasets from various applications of social
sciences.

Keywords: Boxplot · Contingency tables · Outlying cells · Residuals · Summary
measures.
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1. Introduction

The phenomenal growth of availability of data, in recent years, has drawn the attention
of researchers in the identification of unusual observations (outliers) in data for its own
significance and its impact on the data analysis. Outliers may be errors, or else accurate
but unexpected observations, which could shed new light on the phenomenon under study
(Barnett and Lewis (1978)). On the other hand, it is possible that an outlier is simply a
manifestation of the inherent variability of the data.
Unlike in metric case, there exists no clarity in the definition of outliers for categorical

data, as the cells are purely frequencies or counts of a contingency table. Hence, the
problem is to first identify a pivotal element and then markedly deviated cells are detected
as outliers. In continuous data, mean or quartiles are considered as pivot and the metric
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such as Q3± 1.5Q1, µ±K�, etc., are used to identify the outliers (Park et al., 2019; Kim,
2015). However, it is challenging to establish exact criteria for deciding on an observation
to be unusual, denoted as an outlier, in contingency tables. Hence, an attempt has been
made to provide a set of statistical rules enabling the experimenter to look closely for
causes of an outlier to really exist, and then to decide on its plausible acceptability.
The existence of one or two outliers in a sample can badly distort the summary indica-

tions and analyses of data. In the detection of outliers in contingency tables, residual based
approach has been widely used (Haberman, 1973; Brown, 1974; Simono↵, 1988; Fuchs and
Kenett, 1980; Bradu and Hawkins, 1982; Yick and Lee, 1998).
The use of residual approach may cause masking and swamping and a method resistant

to it has been studied by Kotze and Hawkins (1984) and Lee and Yick (1999). But, residuals
play an important role in detecting outliers in two-way contingency tables, and an extensive
review is presented in Kateri (2014). Graphical display of contingency table can be made
with plots such as association plot, sieve plot, and mosaic plot (Friendly (2000)) which
are based on independence of the row and column variables. Velez and Marmolejo-Ramos
(2017) proposed an extension of a graphical diagnostic test for contingency tables using
polygraph. Kuhnt (2004) described a procedure to identify outliers based on the tails of
the Poisson distribution and declared a cell as outlier if the actual count falls in the tails
of the distribution.
Rapallo (2012) studied the pattern of outliers by fitting log-linear model and tests the

goodness of fit to specify the notion of outlier with the use of algebraic statistics. Sripriya
and Srinivasan (2018a) and Sripriya and Srinivasan (2018b) have suggested a new approach
in the detection of outliers in categorical tables of order I ⇥J , based on Poisson log-linear
model. Kuhnt et al. (2014) detected outliers through subsets of cell counts called minimal
patterns for the independence model.
The principal interest in the analysis of I ⇥ J contingency tables is to test the inde-

pendence between the two categories. The Pearson chi-square and the log-likelihood ratio
statistics (Agresti (2002)) are the long standing techniques in testing independence under
multinomial set up. Literature is abundant to show that the residual test statistic con-
verges approximately to the chi-square distribution (Song, 2007; McCullagh and Nelder,
1989). Following Agresti (2002) and Sangeetha et al. (2014) proposed the reversal pattern
of association (RAP) to understand deeply the association between attributes in high di-
mensional tables. Sripriya and Srinivasan (2018a), Sripriya and Srinivasan (2018b) adapted
the RAP to detect the outliers based on chi-square statistic through an iterative algorithm.
Indeed, there are many procedures like residuals based approach, pattern based approach,
and test based approach which are more heuristic in nature as pointed by Simono↵ (2003)
leading us to the present study based on the characteristics of the contingency table.
In this paper, an attempt has been made to explain the fundamental meaning of

“markedly deviant” by answering; which cell, from where and, by how much. To real-
ize the definition, there is a need for a measure which captures the deviation from the
pivotal element. Thus, a measure based on the generic characteristics of the table has
been considered as a pivotal element for detection of outliers.
The purpose of the present study is to detect possible outliers for a two-way contingency

table in a more generic way by a two-step procedure, firstly through an indicator followed
by an exact identifier. The first step involves the enhancement of summary measures for
categorical data, and a methodical way to indicate susceptibility to outliers by explaining
the characterization of contingency tables through three di↵erent methods. In step two,
potential outliers are detected by using theoretical approach of residuals supported by the
boxplot in explaining the deviation of residuals. Lastly, a simulation study has been carried
out by contaminating the cell values to determine the stability of the results for detecting
outliers through the proposed method.
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The paper is organized as follows. In Section 2, we define our two-step procedure and
discuss the classification of level of susceptibility. The results of simulation study in Sec-
tion 3 reveals that the two-step approach performs well in detecting outliers. Section 4
presents few applications to real data in detecting the outliers in two-way contingency
tables. Finally, some concluding remarks are given in Section 5.

2. Two-Step Procedure

Let X and Y denote two categorical response variables, X with I categories R1, . . . , RI

and Y with J categories C1, . . . , CJ leading to IJ possible combinations. When the cells
contain frequency (nij) of outcomes from a sample, the table is called a contingency table,
or cross-classification table.
Sparseness in contingency tables often occurs in practice and detecting outliers in the

sparse data is a challenging one. The remedial actions for sparseness in categorical data
such as collapsibility of cells with small frequencies, or dropping the tables altogether lead
to loss of information (Baglivo et al. (1988)). However, this study considers the detection
of outlier in I⇥J contingency tables without considering the sparseness index but in terms
of polarization and its underlying issues.
Further, polarization of cell counts is one of the major problem when it comes to outlier

detection. Polarization is basically a highly uneven distribution of counts in I ⇥ J tables.
Polarization in contingency tables involves presence of counts/frequencies of disparate in
nature, such as zero counts, low counts, high counts, and extreme values, etc. Suppose a
table consists of more number of zero counts and very few high counts forming unusual
clusters which could a↵ect the inference of I⇥J tables, in addition to detection of outliers.
Thus, the structure and nature of cell counts in a contingency table play an important
role in the data analysis with the cell counts ranging from zero to very high frequencies
(Sangeetha et al. (2014)). The relevance of sparseness on summary measure and the sen-
sitivity of analysis in 2⇥ 2 tables have been discussed by Subbiah and Srinivasan (2008).
The prevailing researches on the characteristics of I⇥J tables are: Order of k, numerical

issues (aberration/zero width intervals ZWI), polarization of cell counts, low cell count,
sparseness and computational complexity. However, the present study is concerned with
the detection of unusual observations or outliers in contingency table. The two step process
considered in this study as follows:

Step 1: Indicator – Identify whether the table contains outlier cells through the level of
susceptibility
Step 2: Identifier – Detect the exact outlying cells using boxplot of residuals

The detailed two step procedure is as follows:
Step I: Contingency tables are often summarized by its size I⇥J (= k) and total frequency
N =

P
i

P
j
nij (Agresti and Yang (1987)). However, there can be other characteristics

of contingency table which can be captured and included in the summary measures, such as
ZC : Number of zero counts in a I ⇥ J table
PZ : Proportion of zero counts in a table = ZC/k

LC : Number of low counts in a table
PL: Proportion of low counts in a table = LC/k

HC : Number of high counts in a table
PH : Proportion of high counts in a table = HC/k

R: Range of the cell counts
T : T = N/k

Q: Q = Range/k



28 Sripriya et al.

The three defined measures T , Q and P (PZ , PL, PH) can be considered as an enhancement
of the summary measures apart from k and N and could constitute an important component
of contingency tables and in particular to indicate the presence of outliers in a table. In
an ideal table, all the observations are expected to be closer to the pivot element and
thereby expected values are closer with smaller residuals. Suppose all the k cells are quite
closer to T , then one may not suspect outlier(s) to be present, except in the heuristic
residual approach. Hence, T can be perceived as an Pivot element, for example, a table
with k = 36 cells, N = 366, and T = 10.16667 yields all the cells counts to be pretty closer
to T and the expected values are closer to each other. Following Agresti and Yang (1987),
the present study considers the classification of P , T and Q for the detection of outliers
with Low (L), Moderate (M), and High (H) categories as follows

PZ =

8
<

:

Low, 0  PZ  0.10;
Moderate, 0.10 < PZ  0.20;

High, PZ > 0.20;

PL(nij < 6) =

8
<

:

Low, 0  PL  0.20;
Moderate, 0.20 < PL  0.40;

High, PL > 0.40;

PH(nij > T ) = PL(nij < T ) =

8
<

:

Low, 0  PH , PL  0.45;
Moderate, 0.45 < PH , PL  0.55;

High, PH , PL > 0.55.

Similarly, T and Q have been classified as

T =

8
<

:

Low, 0  T  20;
Moderate, 20 < T  250;

High, T > 250;

Q =

8
<

:

Low, 0  Q  10;
Moderate, 10 < Q  100;

High, Q > 100.

Table 1. Categorization of susceptibility

Susceptibility (T, PZ , PL) (Q,PZ , PL) (PZ , PL, PH)
High 8 12 12
Moderate 10 9 12
Low 9 6 3

Our study proposed three methods (i) (T, PZ , PL) (ii) (Q,PZ , PL) and (iii) (PZ , PL, PH)
based on the above classification to identify the susceptibility to outliers in I ⇥ J tables.
Thus there will be a total of 27 combinations for each method under consideration. Sup-
pose a table with (T, PZ , PL) is (L,L, L), then, there will be a less chance of outliers being
present and hence denote the I ⇥ J table as of low susceptibility to outliers. Correspond-
ingly, a table with (T, PZ , PL) is (H,L,L), then there may be few markedly deviant cells to
exist in the table and denoted as highly susceptible to outliers. Similarly, the combination
of M and L is taken to be moderately susceptible to outliers. Thus the 27 combinations
of L, M, and H are categorized for susceptibility under the three proposed methods and
presented in Table 1. The categorization of susceptibility is based on the direction pro-
vided by Agresti and Yang (1987), but could be suitably modified based on T , Q, and P



Chilean Journal of Statistics 29

and accordingly susceptibility to outliers will also vary. In the same way, method 2 has
been categorized under the three levels; H, M, and L, whereas in the third method, LLL
is taken to be highly susceptible to outliers based on the above mentioned classification.
Thus, 27 combinations are categorized into three methods as presented in the following
table. Consider a 5⇥ 5 table constructed by Simono↵ (1988) for the detection of outliers.
Based on the approach outlined earlier, with k = 25, N = 558, T = 22.32, Q = 1, PZ = 0,
PL(nij < 6) = 0, PL(nij < T ) = 0.8, and PH = 0.2 reveals the table is highly susceptible
to outliers. Thus, the study basically a�rms the approach to be capable of indicating the
presence of outliers. After due classification of I ⇥ J table, the next step is to identify the
outlying frequencies in the table.

Step II: Residual techniques have been carried out by many researchers in order to identify
the outlying cells in a table by considering “large” residual. But many of them failed to
justify “how large” the residual should be considered for an observation as an outlier.
The usual residual based methods of outlier detection methods are devoid of contingency
table characteristics. In the heuristic approach, outliers are identified irrespective of the
polarization of cell frequencies and order of the tables. To overcome this, the box plot of
the following three types of residuals has been considered to identify the outlying cell:
(i) [Pearson residual]

rij =
nij � eijp

eij
, eij = (ni+ ⇥ n+j)/N.

(ii) [Adjusted residual; Haberman (1973)]

r̃ij =
rij

AF
, AF = (1� ni+/N)(1� n+j/N).

(iii) [Deleted residual; Simono↵ (1988)]

rij =
nij � eijp

eij
, eij = (ni+ � nij)(n+j � nij)/(N � ni+ � n+j + nij).

Thus, the two step process provides a systematic approach of identifying outliers under
conditions of polarity for varying order of k. The following section deals with examining
the robustness of susceptibility criteria as envisaged through a simulation study.

3. Simulation Study

Simulating a two way contingency table situation can be achieved using varying combina-
tions of its total frequency, levels in each of the categories, cell probabilities, and the test
statistic used to analyze the independence. Thus, the present study considers two scenarios
of generating I ⇥ J tables where the cell entries are from (i) bi-variate normal distribu-
tion with the assumption of independence, and (ii) multinomial distribution as in Agresti
(2002) since it models the probability of counts in each categories for n independent trails.

Bivariate normal distribution The simulation study starts with generating the entries
of I ⇥ J table from bi-variate normal distribution with di↵erent correlation structures. In
this scenario, the study considered correlation ⇢ and the size of the table k(= I⇥J) as the
potential parameters. Here, we consider four di↵erent values of k, (9, 16, 25, and 100) with
five di↵erent correlation structures (0.5, 0.6, 0.7, 0.8, and 0.9) to evaluate the performance
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of proposed susceptibility methods by contaminating each cell at a time with a constant ↵
(= 0.5, 1, 1.5, 2) and repeated 500 times. The results of this simulation are summarized in
Table 2. The following are the observations based on the simulation presented in Table 2:

(i) The pattern of susceptibility level remains unchanged for k = 9, 16 and with
changes in k = 25 and 100 irrespective of ⇢ and ↵ in methods 1-2.

(ii) When k increases, the susceptibility level increases only when the correlation is
0.5 when ↵ = 0.5. However, it shows few fluctuations due to outliers in other
correlation structures with di↵erent ↵ considered.

(iii) Susceptibility level fluctuates largely for all k in all methods irrespective of ⇢
and ↵.

(iv) As ↵ increases, the susceptibility level shows similar pattern for all order of k
with ⇢ = 0.5, 0.6, 0.8, and 0.9. However, fluctuations are visible between the
contamination ↵ for all k with ⇢ = 0.7.

(v) The variability in the susceptibility is largely observed from method 3 as it gives
poor results for all k irrespective of correlation structure and ↵.

Table 2. Susceptibility to outliers (in %) for scenario 1

Method 1 Method 2 Method 3
Order (T, PZ , PL) (Q,PZ , PL) (PZ , PL, PH)
I ⇥ J ⇢ ↵

0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2
3⇥ 3 0.5 76 75 73 72 78 77 75 74 45 44 42 39

0.6 74 74 73 73 76 75 74 73 73 72 71 70
0.7 75 52 60 54 79 53 59 52 68 53 52 51
0.8 66 58 47 41 63 49 45 44 64 57 52 41
0.9 78 65 51 49 74 62 53 47 72 63 51 50

4⇥ 4 0.5 77 74 72 70 75 74 72 71 47 45 40 38
0.6 76 73 70 69 74 72 71 68 71 69 68 65
0.7 77 55 62 53 75 51 59 52 69 51 49 49
0.8 60 52 40 40 62 54 44 43 60 58 51 39
0.9 76 60 55 52 72 61 52 50 70 64 55 54

5⇥ 5 0.5 78 74 71 70 76 71 69 68 49 46 41 37
0.6 59 56 51 47 62 57 53 48 60 55 51 49
0.7 72 54 56 52 74 51 58 49 65 50 45 43
0.8 56 42 38 34 53 45 41 37 50 49 42 36
0.9 66 50 45 42 62 51 42 40 60 54 49 44

10⇥ 10 0.5 81 79 76 71 79 74 71 69 51 49 47 46
0.6 67 64 60 53 66 61 57 50 63 52 51 50
0.7 75 57 63 55 72 53 65 51 69 54 49 42
0.8 61 58 47 44 59 47 45 40 60 57 51 44
0.9 76 64 54 51 69 57 54 48 67 55 47 46

Following susceptibility, Table 3 presents the results of the simulation involving the
identification of outliers based on three residual methods under di↵erent levels of contam-
ination. The following are the observations based on simulation presented in Table 3:

(i) The identification of exact outlying cell for all k shows similar trend irrespective
of ↵ and ⇢ in all the three residuals considered in this simulation scenario.

(ii) As ↵ increases, the identification level also increases for all k irrespective of the
correlation structure ⇢.
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(iii) Stability of level of identifying the outlier cell increases as ⇢ increases for
k=9, 16, 25. However, for k = 100, yields poorer results for all the three residual
approaches.

Table 3. Identification of outliers (in %)

Pearson Adjusted Deleted
I ⇥ J N ↵

0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2
3⇥ 3 0.5 33.3 34 34.3 34.5 35 35.5 36 36 34 35.5 36.3 36.5

0.6 36 36.5 36.7 37 36.5 37 37.7 38 37 37.5 38 38.3
0.7 36.2 37 37.5 37.7 36 37 37.7 38.2 38.2 38.7 39.2 39.7
0.8 37 37.7 38.2 38.5 36.7 37.5 38 39 37.7 38.5 39.7 40
0.9 38.2 38.5 39 39 38 38.7 39 39.7 38 38.7 39.5 40

4⇥ 4 0.5 43 44.5 45 45.5 45 45 46 46 46 46.7 47 47.5
0.6 45 46 46.5 47.5 47 47.7 48 48.5 47 48.5 48.7 49
0.7 46.5 47.2 48.5 48.7 46 47.7 48.2 48.7 48.5 49 49.5 49.5
0.8 46.7 46.7 47.2 48 47.7 48 48.5 49 48.7 49 49.2 49.7
0.9 48 48.7 49.2 49.5 48 48 49.5 49.7 48 48.5 49 50

5⇥ 5 0.5 44.4 45 45.4 46.5 45 45.5 46 46 45 45.5 46.4 46.5
0.6 46 46.5 46.7 47 46.5 47 47.7 48 47 47.5 48 48.4
0.7 46.2 47 47.5 47.7 46 47 47.7 48.2 48.2 48.7 49.2 49.7
0.8 47 47.7 48.2 48.5 46.7 47.5 48 49 47.7 48.5 49 49.5
0.9 48.2 48.5 49 49 48 48.7 49 49.7 48 48.7 49.5 49.7

10⇥ 10 0.5 25 25.5 26.2 26.5 25 25.5 26 26 24 25.5 26.2 26.5
0.6 26 26.5 26.2 22 26.5 22 22.2 28 22 22.5 28 28.2
0.7 26.2 22 22.5 22.2 26 22 22.2 28.2 28.2 28.2 29.2 29.2
0.8 27 27.2 28.2 28.5 26.2 26.5 28 29 22.2 28.5 29 29.2
0.9 28.2 28.5 29 29 28 28.2 29 29.2 28 28.2 29.5 30.5

The associations between the two categorical variables are identified generally using the
chi-square distribution. Here, the p-value of the chi-square distribution is used to identify
the independence of the two categorical outcomes and found that there is no change in
the independence assumption even after contaminating the cell entries. Moreover, the
data generation process in simulation in no way alters the independence assumption. The
percentage of identification of outliers in this scenario yield poor results since the data
generated from bi-variate normal distribution with the parameter lambda where lambda
is the parameter used to change the continuous bi-variate normal random variables to count
variables. Thus, a more appropriate data generation rule using multinomial distribution is
considered and is explained below.

Multinomial distribution The simulation study considers two potential parame-
ters k; the size and N ; the total frequency of the table and X1, X2, . . . , Xk ⇠
Multinomial(N, (p1, . . . , pk)) where the probability pi ⇠ U(0, 1); i = 1, . . . , k. The prob-
ability range between 0 and 1 is automatically maintained in multinom function in R. The
study of over 100 real time datasets from various fields of social sciences has shown that
polarization is largely observed in tables of order more than 4 and larger tables (I, J > 10)
occurs occasionally and are not discussed in the simulation study. Hence our simulation
study is restricted to k = 9, 16, 20 and 56 with N = 50, 350, 950, 2150, and 4550 providing
a varied cross section of the contingency table to examine the susceptibility to outliers.
The process starts by contaminating the cell frequencies with alpha (↵) for each cell at a
time and then covering the entire table k times. Four di↵erent level of contamination ↵
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(= 0.5, 1, 1.5, 2) are considered and repeated 500 times. The results of simulation based on
the above procedure are summarized in Table 4.
The following are the observations based on the simulation presented in Table 4:

(i) Susceptibility level remains unchanged for k = 9, 16 and minor fluctuations in
k = 20 and 56 irrespective of N and ↵ in method 1.

(ii) When k increases, irrespective of ↵, there exists small changes due to outliers
in method 2 for moderate N of size 350 and 950.

(iii) Susceptibility level fluctuate largely for all k except for a lower order of k (= 9),
in method 3 irrespective of N and ↵.

(iv) As ↵ increases, the level of susceptibility remains constant for all order of k
and for small and large values of N under method 1. However, fluctuations are
visible for moderate values of N and higher order of k.

(v) Susceptibility level remains constant as ↵ increases for all k and for large values
of N under method 2. However, fluctuations are visible for low and moderate
values of N irrespective of k.

(vi) In method 3, as ↵ increases, the susceptibility level remains constant for a small
order of k and moderate to large N and the instability in susceptibility are
observed from rest of k and N .

Table 4. Susceptibility to outliers (in %)

Method 1 Method 2 Method 3
Order (T, PZ , PL) (Q,PZ , PL) (PZ , PL, PH)
I ⇥ J N ↵

0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2
3⇥ 3 50 98 92.6 92.8 87.2 63.2 62.2 62.2 61.6 71.2 71.2 71.2 71

350 100 100 100 100 100 100 100 100 100 100 100 100
950 100 98.6 98.6 98 100 100 100 100 100 100 100 100
2150 100 100 100 100 100 100 100 100 100 100 100 100
4550 100 100 100 100 100 100 100 100 100 100 100 100

4⇥ 4 50 100 100 100 100 69.8 69.8 69.8 69.8 50.2 50.2 48.6 49
350 99.4 95.4 95.4 95.4 99.4 95.4 95.4 95.4 90.2 89.6 89.6 80
950 100 100 100 100 100 100 100 100 100 100 100 100
2150 100 100 100 100 100 100 100 100 99.4 99.4 99.4 99
4550 100 100 100 100 100 100 100 100 100 100 100 100

5⇥ 4 50 100 100 100 100 86.4 86.4 86.4 86.4 65.2 55.4 55.4 55
350 85.6 77 77 70.6 86.2 79.4 77.6 71.2 87 64.6 59.4 54
950 96.8 94.8 94.8 94.6 96.8 94.8 94.8 94.8 69.8 69.8 64.8 64
2150 100 100 100 100 100 100 100 100 95 90.6 88.2 85
4550 100 100 100 100 100 100 100 100 100 100 100 100

7⇥ 8 50 100 100 100 100 100 100 100 100 100 100 99.2 99
350 91 80 80 80 99.4 99.4 99.4 99.4 91.4 99 93.2 93
950 97.6 97.6 89.2 97.6 97.6 97.6 97.6 97.6 55.8 55.8 55.8 52
2150 100 100 100 100 100 100 100 100 94 94 90.8 91
4550 100 100 100 100 100 100 100 100 87.4 87.4 87.4 87

As outlined in Section 2, following susceptibility, next step involves identification of
outliers based on three residual methods under di↵erent levels of contamination. The
results of the simulation are presented in Table 5.
The following are the observations based on simulation presented in Table 5:

(i) Identification of exact outlying cell remains same for all k irrespective of ↵

and N and a few fluctuations are observed in moderate to high N in Pearson
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and Adjusted residual approach whereas in the case of Deleted residual, the
simulation yields inconclusive results.

(ii) As ↵ increases, the identification level decreases for all k and it remains constant
whenN varies from moderate to high in Pearson and Adjusted residual approach
whereas in Deleted residual approach, the identification level decreases as ↵

increases for all k except for k = 16 irrespective of N .
(iii) Stability of level of identifying the outlier cell oscillates as N increases irrespec-

tive of k and ↵ for all the three residual approaches.

Table 5. Identification of outliers (in %)

Pearson Adjusted Deleted
I ⇥ J N ↵

0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2
3⇥ 3 50 95.8 93.8 91.4 86 96.4 93.8 92 89.2 83 72 92 54.4

350 92.6 89.6 87.5 85 94.4 89.4 86.3 84.2 99.4 96.4 94.2 91.6
950 99.2 99 99 99 99.3 99 99 99 91.2 92.3 90 90

2150 100 100 100 100 100 100 100 100 97 96 95 95
4550 95 94.9 100 95 97 98 100 98 93 90 100 91

4⇥ 4 50 94.8 92.8 91 88 95.8 92.8 92 89 90 87 70 69
350 93 93 89 89 94 92 90 88 89 88 89 80
950 98.8 99 99 99 99 99 99 99 92 92.3 90 91

2150 99 99 99 99 99 99 99 99 98 97 95 96
4550 96 94 93 91 97 95 92 90 100 100 96 99

5⇥ 4 50 96 94 90 87 95 93 89 89 92 87 83 86
350 93 93 90 87 94 92 91 88 89 86 85 80
950 100 100 100 100 100 100 100 100 89 86 82 78

2150 92 90 91 92 93 92 93 92 83 79 77 75
4550 93 92 94 90 94 93 95 91 90 91 89 89

7⇥ 8 50 94 93 91 89 95 94 92 92 89 82 77 76
350 93 93 89 90 94 92 90 91 89 88 85 83
950 95 94 90 89 96 95 91 90 88 85 83 78

2150 100 100 100 100 100 100 100 100 89 87 83 72
4550 92 100 97 96 93 95 98 97 84 86 88 78

In summary, even though the level of susceptibility fluctuate in few cases in all the
methods, the identification level of exact outlying cells in all the residual approaches show
that our two-step procedure could be a best alternative in the detection of outliers in
I⇥J tables. The results based on the simulation study have paved the way to examine the
application of two-step process of detection of outliers in contingency table to real time
datasets.

4. Data Analysis

In this section, we illustrate our two-step procedure to six datasets from literature by
assuming the nature of the data as nominal. Kotze and Hawkins (1984) considered a
dataset with k = 196, N = 775 and identified 15 most outlying cells by adding 0.5 to zero
cells using elimination method. The mosaic display of the data is presented in Figure 1.
The present approach, with T = 3.95, Q = 0.27, PZ = 0.26, PL(nij < 6) = 0.52,

PL(nij < T ) = 0.39, andPH = 0.35, shows low susceptibility in method 1 and 2 and high
susceptibility in method 3. Also, boxplot for residuals as presented in Figure 2 identified



34 Sripriya et al.

Figure 1. Mosaic Plot for 14⇥ 14 data

Figure 2. Boxplots for Kotze and Hawkins Data

the same 14 cells as possible outliers in the case of Pearson and Adjusted residuals and
only 3 cells in the case of Deleted residuals.
Yick and Lee (1998) considered the archaeological data and artificial data by Simono↵

(1988) in identifying outliers. For the artificial 5⇥5 data, three cells (2, 1), (1, 2) and (1, 3)
are identified as outliers and the cell (1, 1) being swamped in the perturbation approach. In
our method, with k = 25, N = 558, T = 22.32, Q = 1, PZ = 0, PL(nij < 6) = 0, PL(nij <

T ) = 0.8, and PH = 0.2, this dataset is found to be moderately susceptible to outliers
and the residual boxplot identifies exactly the same cells as outliers as in perturbation
approach.
For the archeological data, the perturbation approach identified three cells (2, 3), (11, 5)

and (18, 1) as outliers out of which two cells have extreme residuals and these two extreme
cells are identified correctly in our two step procedure with k = 114, N = 3297, T = 28.92,
Q = 3.42, PZ = 0.07, PL(nij < 6) = 0.21, PL(nij < T ) = 0.65, PH = 0.72 and the method
show that the data is moderately susceptible to outliers. The mosaic display and boxplot
of residuals for these two data is presented in Figures 3, 4 and 5.
Yick and Lee (1998) considered the 7⇥8 student enrolment data from seven community

schools from Northern Territory, Australia and identified the cells (1, 5), (1, 6), (2, 4) and
(2, 5) as potential outliers using perturbation diagnostics. The mosaic display of the data
is presented in Figure 6.
In our proposed method, the datasets is highly susceptible to outliers with k = 56,

N = 5248, T = 93.71, Q = 2.9, PZ = 0, PL(nij < 6) = 0, PL(nij < T ) = 0.625, PH = 1
and identified the cells (2, 4) and (1, 6) as potential outliers using boxplot of all the
residuals and boxplot are presented in Figure 7.
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Figure 3. Mosaic Plot for Archaeological and Artificial data

Figure 4. Boxplots for Artificial Data

Figure 5. Boxplots for archeological data

Kuhnt et al. (2014) considered 3 ⇥ 3 table of social mobility in Britain and 4 ⇥ 4 table
of artifacts in Nevada and detected outliers using three di↵erent algorithms. For the social
mobility data, all the three algorithms doesn’t give satisfactory results and detected, (i) all
the cell counts, (ii) only diagonal cells and (iii) cells (1, 1), (3, 1), (1, 3) and (3, 3) as
outliers, whereas in our method the table shows highly susceptible to outliers with k = 9,
N = 3494, T = 366.33, Q = 67, PZ = 0, PL(nij < 6) = 0, PL(nij < T ) = 0.44, PH = 0.56,
and detected the cells (1, 1), (3, 1) and (2, 2) as outliers with the help of boxplot of
residuals and the mosaic display is presented in Figure 8.
For the Artifacts in Nevada data, the author identified two cells as outliers but our

methods gave inconclusive decision in susceptibility with k = 16, N = 164, T = 10.25,
Q = 3.77, PZ = 0, PL(nij < 6) = 0.43, PL(nij < T ) = 0.68, PH = 0.32, and no outliers
are detected using boxplot of residuals. The boxplot for these datasets are presented in
Figure 9 and 10.
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Figure 6. Mosaic Plot for Student Enrolment data

Figure 7. Boxplots for Student Enrolment Data

Figure 8. Mosaic Plot for Social Mobility and Artifacts data

Figure 9. Boxplots for social mobility data
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Figure 10. Boxplots for Artifacts in Nevada data

In addition, our study considered 50 other datasets of varied characteristics ranging from
k = 6 to 196 cells based on the literature to identify the feasibility of our methods and the
results are presented in Table 6. Most of the researchers nullified the zero cells in a table
by adding constants, but our two-step method helps to identify the outlying cells even in
the presence of zero cells in a table.

Table 6. Identification of outlying cells through Boxplot

(T, PZ , PL) (Q,PZ , PL) (PZ , PL, PH)
T I NI T I NI T I NI

Highly susceptible 25 25(100%) – 27 25(92.5%) 2 41 38(92.6%) 3
Moderately susceptible 7 6(85.7%) 1 9 8(88.8%) 1 9 2(22.2%) 7
Low susceptible 18 9(50) 9 14 7(50) 7 – – –
T–Total; I–Identified; NI–Not-Identified

The above table clearly shows that method 1 performs better in highly susceptible
category and method 2 performs better in moderately susceptible category, method 1 &
2 equally performs better in low susceptible category. The classification of datasets under
method 2 also contains the datasets under method 1. On the whole, method 3 appears
to be more stringent in identifying outliers since it classifies almost all datasets as highly
susceptible to outliers.

5. Conclusions

The problem of identification of outliers in I ⇥ J contingency tables has been examined
through the ambiguous notion of “markedly deviant” nature of cells from which the other
cell values deviate greatly. However, in this paper a simple measure T has been introduced
as a pivotal element to explain the deviation of other cells in the table. In this direction, a
two-step procedure is devised to first examine the nature of the table through susceptibility
followed by identification of outliers through box plot techniques. The stability of our
proposed methods towards the identification of outliers is examined through a simulation
study. The results have revealed that methods (T, PZ , PL) and (Q,PZ , PL) are found to be
more consistent based on two simulation scenarios. Moreover, it is evident from the results
that a triplet with the pivot element along with proportion of zero and low counts provide
an idea of polarization in the table, and is found to be useful in detecting outliers.
Based on the numerical results, we conclude that the two-step approach as a combination

of summary measures and boxplot for residuals could be a feasible approach to identify
outlier cells in contingency table. However, as pointed out in the earlier section, a judicious
choice is necessary in some cases of ambiguity. Further, even if the boxplot or the residual
approach fails in some cases, summary measure will indicate clearly whether the table
contains high, moderate, or low outlying cells. The practicality of two pronged approach
has been well corroborated by an extensive amount of data sets for its e�cacy and its
usefulness in identifying outlying cells.
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Abstract

Many laboratory experiments in the fields of biological sciences usually involve two main
groups say the healthy and infected subjects. In one of these kind of experiments, each
specimen from each group can be divided in two portions; one portion is stimulated
while the other remains unstimulated. Consequently resulting into two main groups
with paired measurements that are correlated. For all the groups, p genes are measured
for expression. The stimulation in this case can be done by introducing a known infec-
tion causing micro-organism like the group A streptococcus which is usually associated
with the acute rheumatic fever. An important question in such experiment would be to
statistically test for the di↵erences in the di↵erences in means for the healthy and the in-
fected groups. That is, the di↵erence in the means of the healthy group (stimulated and
unstimulated) is tested against the di↵erence in the means of the infected (stimulated
and unstimulated) group. In this paper, a likelihood ratio test statistic is developed for
such kind of problems. The developed statistics and the Hotelling T

2 statistic are both
applied to the data are simulated from real biological situations and their performances
are compared. The simulated data exhibit the correlation structure similar to that of
real biological data obtained from experiments involving the milliplex analyst biomarker
data sets. The results indicate that the proposed test statistic give the same conclusions
for the hypotheses tested as those of the Hotelling T

2 test. However, the proposed test
is intuitively more appealing since it takes care of the correlations between the pairs in
the data. The simulation study confirms that the test statistics follow a chi-square dis-
tribution. This research contributes a theoretical analysis of paired correlated samples
motivated by a practical problem for which the existing statistical methods in use have
seldomly taken into account the correlation structure of the data.

Keywords: Correlated pairs· Likelihood ratio test · Multivariate samples

Mathematics Subject Classification: Primary62H15 · Secondary 62J15.

1. Introduction

Consider an experiment involving two groups of subjects namely the healthy (H) and
the infected (I) donors. Each group is further divided into two sub-groups whereby one
subgroup is stimulated using some infection causing organism for example group A strepto-
coccus (GAS) which causes the acute rheumatic fever (ARF). The other subgroup remains
unstimulated. As a result, we end up with paired samples for the H and also another paired
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samples for the I, resulting into two groups with paired measurements that are correlated.
The samples from all these groups are then sequenced to measure the expression levels for
the p genes under consideration. The genes whose expression levels are measured are the
same for all the paired groups. It is expected that the GAS stimulation of H and I subjects
can help in understanding how the GAS a↵ects the H and I subjects thereby possibly able
to identify the biomarkers associated with the ARF. The e↵ect of GAS stimulation/un-
stimulation can lead to changes in the genes with regards to up or down regulations or
no change. Assuming that the sample sizes for H and I subjects are m and k respectively
and that p genes are considered in the experiment. It is easy to see that the m paired
measurements for the H are correlated and at the same time the k paired measurements
for the I are correlated while H and I groups are independent. Furthermore, since the genes
usually act in a group, the p genes are expected to be correlated.
The main goal therefore is to develop a statistical framework for testing the changes in

expression levels in the di↵erent sets of genes between the two main groups which have
the properties of independence between them but paired correlation within the subjects.
The observations are independent and identically distribute (IID). We use the well known
likelihood ratio theory to formally derive a new test for formally testing for the di↵erence
in the di↵erences of the mean expression levels for the healthy and infected subjects.
The remainder of this paper is organized as follows, Section 2 gives a brief review of

the likelihood ratio testing. The proposed likelihood ratio test statistic for multivariate
paired, correlated samples is presented in Section 3 while the simulation study is given in
4. Finally, the summary and conclusions are given in Section 5.

2. The likelihood ratio test

The theory of the likelihood ratio test (LRT) is well understood and has been utilized
extensively in the field of statistical inference. Most standard multivariate statistics books
like for example Anderson (2003), Seber (2004), Mardia et al. (1980), Johnson and Wichern
(2007) to mention but a few, contain comprehensive treatment of this subject matter.
To review, the LRT, we start by letting ✓ be the parameter vector for the likelihood

function L(✓) with observations x1, . . . ,xn with a density function given by f(x;✓). If
the parameter space is given by ⇥ and suppose that we want to test the null hypothesis
Ho : ✓ 2 ⇥0 where ⇥0 is a subset of ⇥. The parameter space ✓ is unconstrained while ✓0
is constrained. The LRT statistic is given by

⇤ =
max✓2⇥o

L(✓)

max✓2⇥L(✓)
.

The null hypothesis Ho is rejected when ⇤ < C, where C is a critical value depending
on the type-I error. The LRT has good power properties asymptotically and usually is
as good or better than many other test statistics Seber (2004). The LRT statistic under
general conditions and with large samples are approximately �

2
(d) distributed where d is

the degree of freedom which in general is given by the total number of variables under
consideration. The LRT is given by

�2Log⇤ = max✓2⇥0
{�2Log L(✓)}�max✓2⇥{�2Log L(✓)}.

Some common problems that have been tackled in the said standard multivariate statistics
analysis setting with regards to the LRT include the following.

• Suppose we have N observations on X that is multivariate normally distributed accord-
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ing to N (µ,⌃), a test statistic is derived to test for the hypothesis H0 : µ = µ0 when ⌃
is unknown. The obvious MLE for ⌃ in this case is the sample covariance. The resultant
test statistics is the T

2 statistics which follows the T
2 Hotelling distribution. This test

can be used for testing the hypothesis about the mean vector µ of the population and
obtaining the confidence region for the unknown vector µ see (Anderson, 2003; Seber,
2004; Mardia et al., 1980; Johnson and Wichern, 2007).

• The two sample problem with unequal covariance matrices has also been addressed. In

this case, let
n
y(i)
j

o
, j = 1, . . . , N be samples from N (µ(i)

,⌃i), i = 1, 2 a test statistic

for testingH0 : µ(1) = µ(2) is developed. The distribution for the respective sample mean
vectors is given by E(ȳ(1) � ȳ(2)) = µ(1) � µ(2) while the covariance for the di↵erence
Cov(ȳ(1) � ȳ(2)) = ⌃1/N1 +⌃2/N2. It is shown that when N1 6= N2 and assuming that
N1 < N2 then a suitable test would be a T

2 test with [N1 � 1) degrees of freedom; see
(Anderson, 2003).

• When ⌃1 and ⌃2 are assumed to be equal and unknown, then a pooled sample covariance
is used as an estimate. The test statistic is found to be the usual T 2 which follows the
T
2 distribution; see (Anderson, 2003; Seber, 2004).

• The topic of paired comparisons is also treated especially in Johnson and Wichern (2007)
in which for the paired samples, the di↵erence between them is calculated. The T

2 test
is then applied to the di↵erences.

• Most of the likelihood problems tackled only compare two mean vectors and the resultant
statistic is the T

2 with a certain degree of freedom depending on the problem set-up.

In other related type of studies, Varuzza and Pereira (2010) developed an exact significance
test for comparing digital expression profiles which took in to the asymptotic properties
unlike the �

2 test. Furthermore Lim et al. (2010) developed LRT to compare multiple
multivariate normally correlated samples.

3. Proposed LRT statistic

Following the illustration in Section 1, for the healthy subjects, suppose that each gene has
m paired measurements [(hu1, hs1), (hu2, hs2), . . . , (hum, hsm)] where h symbolizes one of
the groups, say healthy while the subscripts u and s stand for unstimulated and stimulated
respectively. Therefore first measurement is for the expression level for the unstimulated
specimen, while the second one is for a stimulated one for the same subject. In a similar
manner let a represent the second group, say the infected subjects. Assume that each of
the p genes has k paired measurements [(au1, as1), (au2, as2), . . . , (auk, ask)] for the unstim-
ulated and stimulated specimens in each pair respectively.
The m measurements from healthy subjects are assumed to be IID from a multi-

variate normal distribution
⇣

hu

hs

⌘
⇠ N2p [(

µu
µs ) ,⌃] and the k measurements from the

infected subjects are also assumed to be IID from a multivariate normal distribution
( au
as

) ⇠ N2p [(
⌫u
⌫s

) ,⌃]. Here, µu and µs represent the mean vectors for unstimulated and
stimulated healthy subjects respectively. On the other hand, ⌫u and ⌫s denote mean vectors
for unstimulated and stimulated infected subjects respectively while ⌃ is the covariance
matrix which is assumed to be the same for the two groups of healthy and infected.
The hypotheses to be tested are:

H0 : (µu � µs) = (⌫u � ⌫s) versus Ha : (µu � µs) 6= (⌫u � ⌫s).
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Case 1: Assuming the covariance matrix ⌃ is known For m healthy subjects denote a

2p⇥ 1 vector of parameters µ = ( µu
µs ) for the random vector h =

⇣
hu

hs

⌘
where the first p

elements represent the elements of hu while the remaining p represents the hs. Similarly
for the k infected subjects we have the vector of parameters ⌫ = ( ⌫u

⌫s
) and is associated

with random variables a = ( au
as

) and ⌫ is of 2p⇥ 1 dimension.
The joint probability density function is given as

f(h,a) = (2⇡)�p|⌃|�1exp
⇣
� 1

2

⇥
(h� µ)0⌃�1(h� µ) + (a� ⌫)0⌃�1(a� ⌫)

⇤⌘
.

A reduced �2log of the likelihood function in terms of su�cient statistics is given by

�2Log L(µ,⌫) = B +m(h̄� µ)0⌃�1(h̄� µ) + k(ā� ⌫)0⌃�1(ā� ⌫), (1)

where B is a constant that does not contain the parameters under consideration and
vanishes during the optimization.
The MLEs under Ho are obtained by considering the parameter space given by ⇥ =

{µ,⌫ : �1 < �1 < µ,⌫ < 1} and then optimizing the constrained log-likelihood
function using the Lagrangian S(⇥,�) = �2LogL(µ,⌫) + �0(µu � µs � ⌫u + ⌫s). The
constraint �0(µu�µs�⌫u+⌫s) is conveniently expressed in a matrix form as A(µ�⌫) = 0
where A = (I,�I) and I is a p⇥ p identity matrix. The constraint added to Equation (1)
is of the form 2(µ � ⌫)0A0� = 2[�0

A(µ � ⌫)]0. The partial derivatives of the constrained
function with respect to each unknown parameter are given as

@S(⇥,�)

@µ
= �2m⌃�1(h̄� µ) + 2A0�, (2)

@S(⇥,�)

@⌫
= �2k⌃�1(ā� ⌫)� 2A0�, (3)

@S(⇥,�)

@�
= 2A(µ� ⌫). (4)

Now, equating (2), (3) and (4) to zero and simplifying, we get

⌃�1(h̄� µ)� 1

m
A

0� = 0, (5)

⌃�1(ā� ⌫) +
1

k
A

0� = 0, (6)

A(µ� ⌫) = 0.
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Subtracting Equation (5) from (6) and with some algebraic manipulations results in

⌃�1(ā� ⌫ � h̄+ µ) +
h 1

m
+

1

k

i
A

0� = 0

(ā� ⌫ � h̄+ µ) = �
h 1

m
+

1

k

i
⌃A0�

A(µ� ⌫) +A(ā� h̄) = �
h
m+ k

mk

i
A⌃A0�

A(h̄� ā) =
h
m+ k

mk

i
A⌃A0�

� =
h

mk

m+ k

i
(A⌃A0)�1

A(h̄� ā)

� =
h

mk

m+ k

i
(A⌃A0)�1� (7)

where � = Ah̄�Aā. From Equations (5) and (6), we get

µ̂0 = h̄� 1

m
⌃A0� (8)

⌫̂0 = ā+
1

k
⌃A0� (9)

The MLEs under the alternative hypothesis Ha are obtained by maximizing the uncon-
strained likelihood function are given by; µ̂ = h̄ and ⌫̂ = ā.
Now, let ✓ be the parameter vector for the likelihood function L(✓) with observations

from the paired samples of healthy and infected subjects. Consider the parameter space
given by ⇥; we wish to test the null hypothesis Ho : ✓ 2 ⇥ versus the alternative Ha : ✓ /2
⇥.
Substituting the MLEs under H0 (Equations (8) and (9)) into the log likelihood function

given by Equation (1) we get

sup✓2⇥o
{�2Log L(✓)}

= B +m

✓
1

m
⌃A0�

◆0
⌃�1

✓
1

m
⌃A0�

◆
+ k

✓
1

k
⌃A0�

◆0
⌃�1

✓
1

k
⌃A0�

◆

= B +
1

m

�
�0
A⌃

�
⌃�1

�
⌃A0�

�
+

1

k

�
�0
A⌃

�
⌃�1

�
⌃A0�

�

= B +
1

m

�
�0
A⌃A0�

�
+

1

k

�
�0
A⌃A0�

�

= B +
[k +m]

mk

�
�0
A⌃A0�

�
. (10)

We now substitute for the expression of � from (7) into Equation (10) to get

sup✓2⇥o
{�2Log L(✓)} =

B +
[k +m]

mk

✓
mk

[m+ k]
(A⌃A0)�1�

◆0
(A⌃A0)�1

✓
mk

[m+ k]
(A⌃A0)�1�

◆

= B +
mk

[m+ k]
�0(A⌃A0)�1�.
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Under the unconstrained hypothesis sup✓2⇥{�2Log L(✓)} = B. The log LRT is therefore
given as

2Log⇤ = sup✓2⇥o
{�2Log L(✓)}� sup✓2⇥{�2Log L(✓)}

=
mk

[m+ k]
�0(A⌃A0)�1� (11)

The distribution of � = Ah̄ � Aā is � ⇠ N

⇣
(A(µ� ⌫), (k+m)

mk (A⌃A0)�1
⌘
. If H0 is true

then A(µ � ⌫) = 0 so that � ⇠ N

⇣
0, (k+m)

mk (A⌃A0)�1
⌘
. It is well known that given

that X ⇠ Np(0, V ) then V
� 1

2 ⇠ N(0, I) implying that (V � 1
2X)T (V � 1

2X) ⇠ �
2
(p) and so

X
T
V

�1
X ⇠ �

2
(p), thus

�2Log⇤ =
mk

(m+ k)
�0(A⌃A0)�1� ⇠ �

2
(p). ⌅

Case 2: Assuming the covariance matrix ⌃ is unknown We estimate the covariance
matrix by first rewriting the -2log likelihood as

l = mplog(2⇡) +mlog|⌃|+ tr⌃�1Sh + tr⌃�1(h̄� µ)(h̄� µ)0

+kplog(2⇡) + klog|⌃|+ tr⌃�1Sa + tr⌃�1(ā� ⌫)(ā� ⌫)0,
(12)

where Sh =
Pm

i=1(hi� h̄)(hi� h̄)0 and Sa =
Pk

j=1(aj� ā)(aj� ā)0. We obtain the partial

derivative of l (12) with respect to ⌃�1, then equate the result to zero. The estimator for
the variance-covariance matrix is then obtained as

⌃̂ =
1

[m+ k]

⇥
Sh + Sa +m(h̄� µ̂)(h̄� µ̂)0 + k(ā� ⌫̂)(ā� ⌫̂)0

⇤
.

By substituting the plug-in estimators for µ̂ and ⌫̂ which are h̄ and ā respectively, we get
the plug-in estimator for the covariance matrix as

⌃̂ =
1

[m+ k]
[Sh + Sa] .

The estimator ⌃̂ is then plugged-in into the LRT statistic given in Equation (11) which
has �2

(p) distribution to get

�2Log⇤ =
mk

[m+ k]
�0(A⌃̂A0)�1�. (13)

Proposition Denote Equation (11) by ⇤1 = mk
[m+k]�

0(A⌃A0)�1� and (13) by

⇤2 = mk
[m+k]�

0(A⌃̂A0)�1� and noting that ⌃̂ is a consistent estimator of ⌃.

Since ⇤1
d⇠ �

2
(p) then ⇤2

a⇠ �
2
(p), where

d⇠ means exactly distributed while
a⇠

stands for asymptotically distributed.
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Proof Since ⌃̂
p�! ⌃ as n ! 1 where n = m + k and the fact that (A⌃A0) is positive

definite, we had shown in Case 1 that A(h̄ � ā)
d⇠ N

�
0, m+k

mk A⌃A0� under H0 then it

follows that in a similar manner A(h̄ � ā)
a⇠ N

⇣
0, m+k

mk A⌃̂A0
⌘

under H0. Consequently

the LRT statistic mk
[m+k]�

0(A⌃̂A0)�1�
a⇠ �

2
(p). ⌅

Remark We note that the world applications, p is usually less than n, that is, p < n. In
such a case, the derived statistic in Equation (13) becomes untenable because the matrix
(A⌃̂A0) is singular. In order to overcome this problem, the usage of the general inverse as
in Ben-Israel and Greville (2003) of the covariance matrix is instead used.

4. Simulation study

In this section, a synthetic data are generated and then analyzed using the proposed LRT
method and the well known Hotelling T

2 statistic. All the simulations and data analysis
were done using the R software (R Core Team, 2020). The data are simulated with the
following di↵erent set-ups.

• The mean vector for the “healthy unstimulated” is obtained by first simulating p uniform
random variables in the range of (0, 0.5) to the vector µu.

• Similarly we generate p uniform random variables in the interval (0.6, 0.75) to create µs

which is the “healthy unstimulated”.
• For the “infected unstimulated”, the values for simulation of ⌫u used to generate uniform

random variables of dimension p is (0, 0.55).
• The ⌫s are obtained by generating a p uniform random variables of the interval

(0.001, 0.2) to obtain the mean vector for the “infected stimulated”.

For each of the category, we assume that all the two paired measurements we generate at
randomly a 2p⇥ 2p positive definite covariance matrix V . The number of subjects for the
healthy group is arbitrarily set at 20 while the infected group is set at 19.
The data are simulated for four di↵erent values of p namely p = {300, 500, 1000} while

the sample sizes were fixed atm = 20 and k = 19. A LRT statistic and the corresponding p-
value are calculated when ⌃ is assumed to be unknown and when it is known. A resampling
distribution is then obtained from which an approximate p-value is then computed. The
results are shown in Table 1 in addition to the plots in Figure 1.
The proposed statistic is applied to the simulated data. The results presented in Table

1 reveal that both the calculated p-value and the one obtained from resampling lead to
the same conclusions regarding the hypothesis testing. In this case, for all the cases, the
di↵erence in the means was statistically significant at 5% level.

Table 1.: Calculated LRT statistic and the p-values for the simulation experiment 1.

p = 300 p = 500 p =1000
⌃ known ⌃ Unknown ⌃ known ⌃ unknown ⌃ known ⌃ unknown

Log LRT 373.61 7.86 617.43 4.3 1202.05 1.56
calculated p-value⇤ 0.00025 1.00 0.002 1.00 0.00 1.00

p-value from resampling 0.001 0.396 0.001 0.166 0.00 0.601
⇤
p-values calculated from the exact �2

(p) distribution.
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Figure 1.: Histograms for the proposed LRT from a the permutation of the statistic for
p =300, 500 and 1000, ⌃ known and unknown.
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In Figure 1, the curves are the chi-squared densities for the corresponding degrees of
freedom p. The plots show that the distributions for the �2 log likelihood test statistic
follow a chi-square distribution and are also positive skewed. However, as the number of
p increases, the distributions look like normal distribution and the skewness is less when
the degree of freedom is higher. The normal looking distribution are still a chi-squared, for
they approach N(p, 2p) distribution as the degree of freedom gets large. The red vertical
lines (when shown) indicates the position of the computed statistic for the un-resampled
data. The plots without the vertical lines are the ones whose computed statistic is far too
small beyond the scale used in plotting.
The simulated data are analyzed using the Hotelling T

2 statistic (Hotelling, 1931) in
order to compare the performance of our proposed method with it. During the compu-
tation, when number of variables p is much greater than the number of samples n, then
the covariance matrix is estimated using the shrinkage approach of Schäfer and Strimmer
(2005). The results are presented in Table 2 . The results indicate that there is a significant
di↵erence in the means at 5% significance level. The permutations for Hotelling T

2 statistic
is done and the di↵erent values plotted on an histogram shown in Figure 2 which reveals
that the statistic is chi-square distributed for all the di↵erent values of p. The results are
consistent with the one obtained by the proposed algorithm.

Table 2.: Hotelling T
2 values for the simulated data.

p=300 p=500 p=1000
Hotelling T

2 value �9.28 �15.76 �32.52
p-value from resampling 0.001 0.00 0.00
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Figure 2.: Histograms of the distribution of the permuted test statistics for Hotelling T
2

when p =300, 500 and 1000, ⌃ unknown.
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5. Conclusions

In this research, we have considered two main groups (say, healthy and infected speci-
mens) with paired measurements that are correlated. We aim to provide a proper statis-
tical framework for testing the di↵erence in the di↵erence in the means for the healthy
and infected subjects. We have shown that this is not a trivial problem and so derived a
likelihood ratio test for these di↵erences. The derived test do follow a chi-square distribu-
tion with p degrees of freedom when the variance-covariance matrix is known. We have
assumed that the observed measurements follow a multivariate normal distribution with a
known variance-covariance matrix which can be deduced from the prior network that has
been chosen. Finally, a likelihood ratio test statistic has been derived when the variance-
covariance matrix is unknown. A simulation study has been done and demonstrated that
the developed tests can be useful when applied to other cases which have similar problem
set-ups. The study demonstrated that the proposed test statistic give the same conclusions
for the hypotheses tested as those of the Hotelling T

2 test. However, the proposed test is
intuitively more appealing since it takes care of the correlations between the pairs in the
experiments. This research contributes a theoretical analysis of paired correlated samples
motivated by a practical problem for which no formal statistical method is in use.
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Schäfer, J. and Strimmer, K., 2005. A shrinkage approach to large-scale covariance matrix
estimation and implications for functional genomics. Statistical Applications in Genetics
and Molecular Biology, 4:32.



Chilean Journal of Statistics 51

Seber, A. 2004. Multivariate Observations. Wiley, New York.
R Core Team 2020. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.
Varuzza, L. and Pereira, C., 2010. Significance test for comparing digital gene expression

profiles: Partial likelihood application. Chilean Journal of Statistics, 1:91–102.



52 Chilean Journal of Statistics



Chilean Journal of Statistics
Vol. 11, No. 1, April 2020, 53–67

CORRECTED PROOFS
Distribution Theory

Research Paper

A new one-parameter unit-Lindley distribution

Josmar Mazucheli
1, Sudeep R. Bapat
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Abstract

A large number of useful distributions for data analysis are obtained by transforming
di↵erent random variables. An example is the one-parameter unit-Lindley distribution,
obtained by transforming a random variable which has a Lindley distribution. In this pa-
per, we introduce a new one-parameter unit-Lindley distribution, useful for data analysis
in the interval (0,1]. It follows some interesting properties such as having closed form
expressions for the moments, belonging to the exponential family. We also analyze a
practical application having covariates, by setting up a suitable regression and show
that our model fits much better than both unit-Lindley and beta regressions.

Keywords: Maximum likelihood estimation · Proportion data · Regression model
· Unit-Lindley distribution · Unit interval.

Mathematics Subject Classification: Primary 60E05 · Secondary 62F10.

1. Introduction

In many practical applications, one encounters data which is spread out in a bounded
interval. Moreover this interval happens to be (0, 1), where the data would be certain
proportions, ratios or standardized scores. Some of the well known distributions having
supports in (0, 1) are uniform, beta and Kumaraswamy. However all of these contain at least
2 parameters and hence it becomes tedious when it comes to estimation. Further, the beta
distribution doesn’t have closed form expressions for the cumulative distribution function
(CDF), whereas the Kumaraswamy distribution fails to have a closed form expression for
the moments. Some of the only one-parameter distributions in (0, 1) are the Topp-Leone
distribution (Topp and Leone, 1955) and the newly proposed unit-Lindley distribution by
Mazucheli et al. (2019), where the authors have transformed a suitable Lindley distribution.
One of the outlook in recent times has been to transform some existing distributions to get
more useful distributions having specific properties. A lot of work has been done related
to the Lindley distribution in the last few years. Some of the prominent works include
the quasi-Lindley distribution by Shanker and Mishra (2013), the log-Lindley distribution
by Gómez-Déniz et al. (2014), the power-Lindley distribution or the generalized-Lindley
distribution by Nadarajah et al. (2011).
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In this paper we propose a new unit-Lindley (NUL) distribution which is a modification
to the existing unit-Lindley distribution, by picking a di↵erent transformation. This NUL
distribution enjoys several interesting properties such as existence of closed form expres-
sions for the moments, the CDF and belonging to the exponential family. Due to its simple
formula, one can incorporate a regression setup by involving several covariates in the mean
to study their dependence on the response. The advantage of this NUL distribution over
the existing unit-Lindley model can be clearly seen through the real-data application which
we present in Section 4.
In Section 2 we propose the NUL distribution by providing the density and the distribu-

tion functions. We also focus on several interesting properties such as defining the moments,
the HR function, the mean residual life function, the quantile function and others. Section
3 involves estimation properties including both method of moments and maximum likeli-
hood (ML) estimators, where we also provide a bias-corrected ML estimators, in addition
to a regression modeling. In Section 4, we provide the numerical applications of our work.
Extensive simulation analyses are covered by taking a wide range of parameter values. We
fit our proposed NUL model to a real-data from finance which involves a ratio of premiums
plus uninsured losses and the total assets as the response whereas Section 5 provides brief
conclusions.

2. Some Mathematical Results

In the following subsections, we provide a number of key properties of the NUL distribution.

2.1 The NUL distribution

Some probability distributions useful in analyzing data in the unit interval, such as
Johnson SB (Johnson, 1949), Johnson S0

B (Johnson, 1955), unit-Gamma Grassia (1977);
Tadikamalla (1981), unit-Logistic (Tadikamalla and Johnson, 1982), log-Lindley (Gómez-
Déniz et al., 2014), unit-Inverse-Gaussian (Ghitany et al., 2018), unit-Birnbaum-Saunders
(Mazucheli et al., 2018a), unit-Weibull (Mazucheli et al., 2018b) are formulated by trans-
forming specific random variables (RVs). It is important to note that beta and Ku-
maraswamy (Kumaraswamy, 1980) distributions also can be obtained by transformations.
A unit-Lindley distribution was proposed by Mazucheli et al. (2019) by considering the

transformation X = Y/[1 + Y ], where Y ⇠ Lindley(✓) (Lindley, 1958). Here we apply the
transformation X = 1/[1 + Y ], where Y ⇠ Lindley(✓) and propose the distribution of X to
be the NUL distribution. One can easily derive its probability density function (PDF) and
the CDF say, using the inverse transform method. These expressions are given respectively
by

f (x|✓) =
✓2

x3 [1 + ✓]
exp

✓
�✓


1� x

x

�◆
, (1)

F (x|✓) =
[✓ + x]

x [1 + ✓]
exp

✓
�✓


1� x

x

�◆
, (2)

where 0 < x  1 and ✓ > 0. Figure (1) shows the PDF of the unit-Lindley distribution for
selected values of ✓.
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Unlike other distributions such as the unit-Lindley, here we have the possibility of having
observations equal to 1 and from (1) the first derivative of f(x|✓) is

d

dx
f(x|✓) =

✓2[✓ � 3x]

[1 + ✓]x5
exp

✓
�✓


1� x

x

�◆
,

which implies that the PDF is unimodal with maximum at Xmax = ✓/3 for all values of
✓ < 3 and Xmax = 1 for ✓ � 3.
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Figure 1. Probability density function of the NUL distribution for selected values of ✓.
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2.2 Convexity

Proposition 2.1 The CDF of the NUL is convex for ✓ > 3.

Proof The second derivative of F (x|✓) is

F 00(x|✓) =
✓2[✓ � 3x]

x5[1 + ✓]
exp

✓
�
✓[1� x]

x

◆
.

This implies that for all x in (0, 1), F 00(x|✓) < 0 only if ✓ < 0 therefore it can never be
concave and F 00(x|✓) > 0 if ✓ > 3. Hence F (x | ✓) is a convex function of x for ✓ > 3.

Proposition 2.2 The PDF of the unit-Lindley distribution is log-concave for all 0 < x 

1 if ✓ > 3/2.

Proof We know that f(x | ✓) is log-concave (log-convex) function of x if for all x in (0, 1]
d
dx log f(x|✓) is a non-increasing (non-decreasing) function of x. Note that

d2

dx2
log f(x|✓) =

d

dx

f 0(x | ✓)

f(x | ✓)
=

d

dx

[✓ � 3x]

x2
= �

2[✓ � 3x]

x3
�

3

x2
.

This is always < 0 for all x in (0, 1] whenever ✓ > 3/2. Hence f(x | ✓) is log-concave for
all 0 < x  1, if ✓ > 3/2.

2.3 Hazard rate function

The hazard rate (HR) function of the unit-Lindley distribution is given by

h(x|✓) =
f(x|✓)

1� F (x|✓)
=

✓2

[✓ + x]x2
, 0 < x  1.

Since dh(x|✓)dx = �[✓2(2✓ + 3x)]/[x3(✓ + x)2] < 0 for all ✓ > 0 the HR function is
decreasing in x. Note that lim

x!0
h(x|✓) = 1 while lim

x!1
h(x | ✓) = ✓2/[1 + ✓].

2.4 Moments

The k-th moment about origin of the unit-Lindley distribution can be obtained from

µ0
k = E

⇣
Xk

⌘
=

1Z

0

kxk�1

⇢
1�

[✓ + x]

x [1 + ✓]
exp

✓
�✓


1� x

x

�◆�
dx, k = 1, 2, . . . .

In particular, for k = 1, 2, 3, 4 we get

µ0
1 =

✓
1+✓ , µ0

2 =
✓2 exp (✓)Ei(1,✓)

1+✓ ,

µ0
3 =

✓2[1�✓ exp (✓)Ei(1,✓)]
1+✓ , µ0

4 =
✓2[1�✓+✓2 exp (✓)Ei(1,✓)]

2[1+✓] ,

where Ei(a, z) =
R1
1 x�a exp (�xz)dx is the exponential integral function; see Abramowitz

and Stegun (1974).
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The k-th incomplete moment about origin is obtained from

Tk(t) = E
⇣
Xk

|X < t
⌘
=

✓2

[1 + ✓]F (t|✓)

Z t

0
xk�3 exp

✓
�✓


1� x

x

�◆
dx, k = 1, 2, . . . .

and for for k = 1, 2, 3, 4 we have

T1 (t) =
✓t

[✓+t] , T2 (t) =
✓2 exp (✓)tEi(1, ✓t )
[✓+t] exp (✓[t�1]/t) ,

T3 (t) =
✓2t [t�✓Ei(1, ✓t ) exp ( ✓

t
)]

[✓+t] , T4 (t) =
✓2t[t[t�1]+✓2Ei(1, ✓t ) exp ( ✓

t
)]

2[✓+t] .

2.5 Mean residual life function

For a nonnegative continuous RV X the mean residual life function is defined as µ(t|✓) =
E(X � t|X > t) and is given by

µ(t|✓) =
1

S(t|✓)

Z 1

t
S(x | ✓)dx.

For the NUL distribution, we get

µ(t|✓) =
t {[(1 + ✓) t� ✓] � (t, ✓)� exp (✓)t} � (�t, ✓)

t [✓ + t] �
⇣

t
t�1 , ✓

⌘
� [1 + ✓]

,

where � (t, ✓) = exp (✓/t).

2.6 Stress strength reliability

Let X and Y be two independent NUL RVs with parameters ✓1, ✓2 respectively and having
PDF’s fX and fY . Then the stress-strength reliability measure (Kotz and Pensky, 2003)
is given by

R = P (Y < X) =

Z 1

0
fX(x|✓1)FY (x | ✓2) dx

=
✓1

2
⇥
✓1

2✓2 + ✓1
2 + ✓1 + 2 ✓1✓2

2 + 4 ✓1✓2 + 3 ✓2 + ✓2
3 + 3 ✓2

2
⇤

[1 + ✓2] [1 + ✓1] [✓1 + ✓2]
3 .

2.7 Quantile function

Let X be a NUL RV with CDF as given in (2). The quantile function, Q(p) = F�1(p), can
then be written as

Q(p|✓) = �
✓

1 +W [� exp (�(1 + ✓))p(1 + ✓)]
, (3)

such that 0 < p < 1 and W is the Lambert W function which is a multivalued complex
function defined as the solution of the equation W (z) exp[W (z)] = z. For more details on
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the Lambert W function, readers may refer to Corless et al. (1996), Jodrá (2010), Veberić
(2012) and references cited therein.

2.8 Mean deviation

As pointed out, for example in Ghitany et al. (2008), the amount of scatter in a population
is measured to some extent by the totality of deviations from the mean and the median.
These are known as the mean deviation about the mean and the mean deviation about
the median and are defined as

� (X) =

Z 1

x
|X �m| f(x | ✓)dx = 2


mF (m)�

Z m

0
xf(x | ✓)dx

�
, (4)

with m = E(X) or m = Median(X) respectively. Considering (2) and (1) in (4) we get

�(X) =
2m exp(✓(m� 1)/m)

1 + ✓
.

For m = E (X) we get � (X) = 2✓ exp (�1)/(1 + ✓)2. Considering m = Q(0.5|✓) we have
the expression for the mean deviation about the median, where the expression for Q(·|✓)
is given in (3).

2.9 Exponential family

A distribution belongs to the exponential family (Dobson, 2001) if it is of the form

f(x|✓) = exp (Q(✓)T (x | ✓) +D(✓) + S(x | ✓)) .

It can be easily seen that the proposed distribution belongs to the exponential family
by rewriting the PDF given in (1) as

f(x|✓) = exp

✓
�
✓(1� x)

x

◆
exp

✓
log

✓
✓2

1 + ✓

◆◆
exp

�
log(x�3)

�
,

where Q(✓) = ✓, T (x | ✓) = [1� x]/x, D(✓) = log
�
✓2/[1 + ✓]

�
, S(x | ✓) = log(x�3).

Therefore, T (x) =
Pn

i=1 [1� xi]/xi is a complete su�cient estimator for ✓ based on a
sample of size n from the proposed distribution. Besides that, since the distribution belongs
to an exponential family, a minimum-variance unbiased estimator can be obtained by bias
corrected ML estimator.

3. Estimation

In this section, we will derive the method of moments (MME) and ML estimators of
parameter ✓ of a NUL distribution. For the ML estimator of ✓ we derive the closed-form
expressions for the second order bias-correction. In addition, in this section, we consider
regression modeling.
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3.1 Maximum likelihood estimation

Let X1, . . . , Xn be a random sample from the NUL distribution with PDF. (1). Then, for
observed x = (x1, . . . , xn), the log-likelihood function of ✓ can be written as

`(✓|x) / 2n log(✓)� n log(1 + ✓)� ✓t(x).

The ML estimate b✓ of ✓ is obtained by solving the following linear equation

d

d✓
`(✓|x) =

2n

✓
�

n

1 + ✓
� t(x) = 0

which gives

b✓ = 1

2 t(x)

h
n� t(x) +

p
t(x)2 + 6n t(x) + n2

i
.

Next

d2

d✓2
`(✓|x) =

n

(1 + ✓)2
�

2n

✓2
< 0

for all ✓, in particular for ✓ = b✓.
Since d2`(✓|x)/d✓2 is data-independent, we have that nE[d2 log f(X|✓)/d✓2] =

d2`(✓|x)/d✓2. Thus, the expected Fisher information is I(b✓) = 2n/✓2 � n/[1 + ✓]2. From
the large sample theory (Lehmann and Casella (1998, pp. 461-463)), the asymptotic dis-

tribution of ML estimator b✓ of ✓ is such that

p
n (b✓ � ✓)

D
! N

⇣
0,V(b✓)

⌘
,

where
D
! denotes convergence in distribution and V(b✓) is just the inverse of the expected

Fisher information written as V(b✓) = ✓2 [1 + ✓]2/n [✓2 + 4 ✓ + 2]. It is easy to see that for

 = g(✓) = E (X) b = bE (X) = 1/[1 + b✓] and V( b ) = ✓2/n [✓2 + 4 ✓ + 2]. Hence, the
asymptotic 100 (1� ↵)% confidence intervals (CIs) for ✓ and  are given, respectively, by

b✓ ± z↵/2

s
b✓2 [1 + b✓]2

n [b✓2 + 4 b✓ + 2]
and

1

1 + b✓
± z↵/2

s
b✓2

n [b✓2 + 4 b✓ + 2]
,

where z↵/2 is the upper ↵/2 quantile of the standard normal distribution.
It is important to note that for a Bayesian setup, we can use the Je↵reys invariant prior

for ✓, given by ⇡(✓) /
p

I(✓). However we will not consider it further in this paper.
Cox and Snell (1968) provided a framework to estimate the bias, to O(n�1) for the ML

estimates of parameters of regular densities. Hence, subtracting the estimated bias from
the original ML estimator produces a bias-corrected estimator (BCE) that is unbiased to
O(n�2). Following Cox and Snell (1968) the analytical expression for bias-correction of an

scalar b✓, given by

B

⇣
b✓
⌘
=

�
11

�2
[0.5111 + 11,1] +O(n�2),
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where

11 = E


�

d2

d✓2
`(✓|x)

��1

=
✓2 (1 + ✓)2

n (✓2 + 4 ✓ + 2)
,

11,1 = E


�

d2

d✓2
`(✓|x)⇥

d

d✓
`(✓|x)

�
= 0,

and

111 = E


�

d3

d✓3
`(✓|x)

�
=

2n
�
✓3 + 6 ✓2 + 6 ✓ + 2

�

✓3 (1 + ✓)3
.

Thus, the bias-corrected ML estimator e✓ is

e✓ = b✓ �
b✓
h
1 + b✓

i h
b✓3 + 6b✓2 + 6b✓ + 2

i

n
h
b✓2 + 4b✓ + 2

i2 ,

where the right hand side is bB
⇣
b✓
⌘
.

Re-parameterizing (1) in terms of the mean µ = ✓/[1 + ✓], the ML of µ is obtained as

bµ =
1

2n

h
3n+ t(x)�

p
t(x)2 + 6n t(x) + n2

i
,

and the corresponding bias-corrected ML estimator eµ of µ as

eµ = bµ�
2bµ [bµ� 1]2

n [bµ2 � 2]2
.

3.2 Method of moment estimation

Let X1, . . . , Xn be a random sample from the unit-Lindley distribution with PDF (1).

Then, the MME b✓MME of ✓ is given by

b✓MME =
X̄

1� X̄
=


1

X̄
� 1

��1

,

which is positively biased, that is, E(b✓)� ✓ > 0.

Proof Let b✓MME = g(X) and g(t) = t/[1� t] for t > 0. Since g00(t) = �2/[t� 1]3 > 0 for
all t < 1, g(t) is strictly convex. Thus, by Jensen’s inequality, we have E(g(X)) > g(E(X)).

Since g(E(X)) = g (✓/[1 + ✓]) = ✓ we get E(b✓) > ✓.

3.3 Regression analysis

We will now present a real data analysis in order to showcase the applicability of the
proposed distribution. Since the NUL distribution has a closed form expression for the
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mean we are able to introduce a new regression model for bounded response variable. The
re-parametrized PDF of the NUL distribution is given by

f(y|µ) =
µ2

[1� µ] y3
exp

✓
�
µ [1� y]

y [1� µ]

◆
, (5)

where 0 < y  1 and 0 < µ  1. Under this parametrization the mean and variance of
NUL distribution are given by

E(Y ) = µ and Var(Y ) =
µ2

1� µ


Ei

✓
1,

µ

1� µ

◆
exp

✓
µ

1� µ

◆
+ µ� 1

�
.

Let Y1, . . . , Yn be n independent RVs, where Yi ⇠ NUL(µi), i = 1, . . . , n with PDF. given
by (5). The NUL regression model is defined assuming that the mean of Yi can be written
as

g(µi) = x>
i �

where � = (�0, . . . ,�(p�1))
> is a p-dimensional vector of unknown regression coe�cients

(p < n) and xi = (1, xi1, . . . , xi(p�1))
> denotes the observations on p known covariates.

Note that the variance of Yi is a function of µi and, as a consequence of the covariate
values, which implies that non-constant response variances are naturally accommodated
into the model.
We shall assume that the mean link function g is a strictly monotonic and twice dif-

ferentiable function that maps (0, 1) into R. Some of the most common link functions
are:

(i) logit: g(µi) = log (µi/(1� µi));
(ii) probit: g(µi) = ��1(µi), where ��1 is the standard normal quantile function;
(iii) complementary log-log: g(µi) = log [� log(1� µi)].

Inferences about the regression coe�cients � can be performed under the likelihood
paradigm (Lehmann and Casella, 1998) . The log-likelihood function based on a sample of
n independent observations is

`(�) / 2
nX

i=1

log(µi)�
nX

i=1

log(1� µi)�
nX

i=1

µi [1� yi]

yi [1� µi]
, (6)

where µi = g�1(x>
i �).

The ML estimates b� of � are obtained by maximizing the log-likelihood function defined
in (6) using standard optimization methods, such as Newton-Raphson or quasi-Newton.
In this paper, the ML estimate were obtained by the quasi-Newton method available in
the SAS/NLMIXED procedure (https://www.sas.com/).
For comparison purpose, we also considered the beta and unit-Lindley regression models.

The PDF of the alternative regression models are:

• Beta regression (Cepeda-Cuervo, 2001; Ferrari and Cribari-Neto, 2004):

f(y|µ,�) =
�(�)

�(µ�)�([1� µ]�)
yµ��1[1� y][1�µ]��1, 0 < y < 1

where 0 < µ < 1 denotes the mean and � > 0 is a precision parameter.

https://www.sas.com/
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• Unit-Lindley regression (Mazucheli et al., 2019):

f(y|µ) =
[1� µ]2

µ [1� y]3
exp

✓
�
y [1� µ]

µ [1� y]

◆
, 0 < y < 1

where 0 < µ < 1 denotes the mean.

To discriminate and choose the best among the proposed models, the Akaike (AIC)
(Akaike, 1974), Schwarz (BIC) (Schwarz, 1978) and corrected Akaike (AICC) (Cavanaugh,
1997) information criteria were used. These measures are defined as follows

AIC = 2 p� 2 log bL, BIC = log(n) p� 2 log bL, AICC =
2n [p+ 1]

n� p� 2
� 2 log bL

where bL is the likelihood evaluated at the ML estimates, p is the number of parameters
in the model and n the number of observations. The decision rule, in all these criteria, is
favorable to the model with the lowest value (Held and Sabanés Bové, 2014). To quantify
the uncertainty associated with these criteria, the non-parametric Bootstrap approach was
used to decide on the final model. We considered 10, 000 independent runs and calculated
the percentage of times each model was selected.
To assess the adequacy of the regression models we used the Cox-Snell residuals and

examined the half-normal plot with simulated envelope (Atkinson, 1981). The Cox-Snell
residuals are defined as

ri = � log
⇣
1� bF (yi)

⌘
, i = 1, . . . , n,

where bF is the estimated CDF. A notable property of the Cox-Snell residuals is that if the
regression model fits the data well, ri’s follow a standard exponential distribution.

4. Numerical results

In this section, we conduct a Monte Carlo simulation in order to evaluate and compare the
finite-sample behavior of the ML estimators, its bias-corrected counterpart obtained by the
Cox-Snell methodology (BCE) and the MME of the parameter ✓ of the NUL distribution.
In addition, in this section, an empirical illustration is conducted.

4.1 Simulation study

We have generated samples ranging from 10 to 90 with a gap of 10 and ✓ =
0.1, 0.5, 1.0, 1.5, 2.0, 3.0 and 4.0. To simulate observations from the proposed distribution
we generated Y from Lindley distribution (see, rlindley function in LindleyR library) and
then used the transformation X = 1/[1 + Y ]. The simulation experiment was repeated
M = 20, 000 times. The performance evaluation was done based on the estimated bias and
estimated root mean squared error (RMSE).
Figure 2 shows that ML estimates and MME of ✓ are positively biased, while the BCE

estimator achieve substantial bias reduction, especially for small and moderate sample
sizes. It is also observed that the RMSE decreases as n increases, as expected. Additionally,
the RMSE of the corrected estimates are smaller than those of the uncorrected estimates.
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Figure 2. Upper Panel: Estimated bias. Lower Panel: Estimated root mean squared error. (1: ✓ = 0.1, 2: ✓ = 0.5,
3: ✓ = 1.0, 4: ✓ = 1.5, 5: ✓ = 2.0, 6: ✓ = 3.0 and 7: ✓ = 4.0).

4.2 Empirical illustration

The real data set considered is presented by Schmit and Roth (1990), and corresponds to
the 73 responses to a questionnaire sent to 374 risk managers of large North American
organizations. The objective of Schmit and Roth (1990) was to evaluate the cost e↵ective-
ness with the management philosophy of controlling the company’s exposure to various
property losses and accidents, taking into account company characteristics such as size
and type of industry.
The response variable y (Firm cost) is the firm-specific ratio of premiums plus uninsured

losses divided by total assets. The covariates associated with this response variable are:

• X1 (Assume): firm-specific ratio of the summation of per occurrence retention levels, as
measured by the corporate risk manager.

• X2 (Cap): 1 if the firm uses a captive and 0 otherwise.
• X3 (Sizelog): log of the firm’s total asset value.
• X4 (Indcost): industry average of premiums plus uninsured losses divided by total assets,

as measured by the 1985 Cost of Risk Survey (a measure of risk).
• X5 (Central): importance of local manager in choosing local retention levels, as measured

by the corporate risk manager.
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• X6 (Soph): importance of analytical tools in making risk management decisions, as
measured by the corporate risk manager.

We assume that the regression structure for the mean is given by

logit(µi) = �0 + �1xi1 + �2xi2 + �3xi3 + �4xi4 + �5xi5 + �6xi6, i = 1, . . . , 73,

where xij are the values of the covariate Xj .
The point estimates and the 95% confidence intervals for the parameters of the three

regression models are given in Table 1. It is observed that the NUL and beta regression
models have the same significant covariates to explain the response variable, which are the
Sizelog and Indcost variables.

Table 1. The ML estimates and the 95% confidence intervals.

NUL UL Beta
Parameter MLE 95% CI MLE 95% CI MLE 95% CI

�0 4.3789 (2.6395, 6.1183) 3.0506 (0.8132, 5.2879) 1.8880 (-0.4096, 4.1855)
�1 -0.0050 (-0.0273, 0.0173) -0.0592 (-0.0830, -0.0354) -0.0121 (-0.0394, 0.0151)
�2 -0.0112 (-0.3780, 0.3556) 1.8972 (1.2649, 2.5295) 0.1780 (-0.2763, 0.6322)
�3 -0.8943 (-1.0709, -0.7176) -0.6606 (-0.8889, -0.4322) -0.5115 (-0.7524, -0.2705)
�4 1.7145 (1.0244, 2.4046) 4.5081 (2.8651, 6.1511) 1.2362 (0.3359, 2.1366)
�5 -0.0538 (-0.1878, 0.0801) 0.0885 (-0.1143, 0.2912) -0.0122 (-0.1836, 0.1593)
�6 0.0012 (-0.0317, 0.0340) -0.0846 (-0.1415, -0.0277) -0.0037 (-0.0455, 0.0380)
� - - - - 6.3305 (4.1300, 8.5311)

Table 2 gives the values of the likelihood-based statistics and one can see that the NUL
regression model provides the best fit, since it has the lowest values of AIC, AICC and
BIC. It is also observed that the NUL was selected approximately 68% of the times as
opposed to the UL and beta models.

Table 2. The likelihood-based statistics of fit.

Criteria NUL UL Beta
AIC (%)† -224.9780 (68.26%) -77.3946 (16.17%) -159.4460 (15.57%)
AICC (%) -223.2549 (68.44%) -75.6715 (16.23%) -157.1960 (15.33%)
BIC (%) -208.9447 (69.16%) -61.3614 (16.42%) -141.1223 (14.42%)

†: % of times out of 10,000 non-parametric Bootstrap runs that the model is selected.

In Figure 3 we present the half-normal plots for the Cox-Snell residuals with simulated
envelopes. It is observed for the NUL regression model that all points lie inside the en-
velopes, suggesting that there is no serious violation of the model assumptions. We can
conclude that NUL regression model provides a good fit to these data and therefore can
be used for inference purposes.
From the inference results of NUL model (see Table 1) it is observed that the mean

of Firm cost is negatively related to the log of the firm’s total asset value (Sizelog). In
contrast, the measure of risk (Indcost) has a positive impact on the mean response.

5. Concluding remarks

The ideas in this paper stem from a recent work which proposed a unit-Lindley distri-
bution by transforming a Lindley random variable appropriately. We applied a slightly
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Figure 3. The half-normal plot with simulated envelope for the Cox-Snell residuals.

di↵erent transformation, yet again to a Lindley random variable and introduced a new one-
parameter unit-Lindley distribution which is capable of describing data which is limited to
the interval (0,1]. Several mathematical properties of the new distribution are presented
in detail and parameter estimation is discussed considering the methods of maximum
likelihood and moments. We also derived an analytical expression for the bias corrected
maximum likelihood estimator. Using a simple re-parametrization of the new distribution
we introduced a newer regression model to describe data in a bounded interval. An ap-
plication of the proposed model to a real dataset from finance shows a better and more
parsimonious fit than the classical beta regression model. As such we envisage that the
new model attracts the attention of practitioners across all relevant fields of science.
A few related ideas for future work could be to provide a Fisher scoring algorithm for

parameter estimation, and to check if this algorithm is equivalent to an iteratively re
weighted least squares, as the model belongs to the exponential family.
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