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Luis M. Castro Pontificia Universidad Católica de Chile
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Hector Gómez Universidad de Antofagasta, Chile

Daniel Gri�th University of Texas at Dallas, US

Eduardo Gutiérrez-Peña Universidad Nacional Autónoma de Mexico

Nikolai Kolev Universidade de São Paulo, Brazil

Eduardo Lalla University of Twente, Netherlands

Shuangzhe Liu University of Canberra, Australia
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Abstract

Detecting outliers in two-way contingency tables is an important and interesting sta-
tistical problem. There is no clear objective procedure available in literature to handle
outliers in categorical data unlike other data types. Therefore, this study envisages a
two-step procedure, to first indicate and then to identify outliers in two-dimensional con-
tingency tables. The approach deals with enhancing the summary measure to indicate
the presence of possible outlying cells followed by residual approaches supplemented
by boxplot in identifying the outliers. The fundamental definition of outlying cell as
“markedly deviant” cell is clearly exploited in this two-step procedure. A simulation
study has been carried out to examine the consistency of the proposed methods and
later applied to a large collection of real datasets from various applications of social
sciences.

Keywords: Boxplot · Contingency tables · Outlying cells · Residuals · Summary
measures.

Mathematics Subject Classification: Primary 62H17 · Secondary 97K80.

1. Introduction

The phenomenal growth of availability of data, in recent years, has drawn the attention
of researchers in the identification of unusual observations (outliers) in data for its own
significance and its impact on the data analysis. Outliers may be errors, or else accurate
but unexpected observations, which could shed new light on the phenomenon under study
(Barnett and Lewis (1978)). On the other hand, it is possible that an outlier is simply a
manifestation of the inherent variability of the data.
Unlike in metric case, there exists no clarity in the definition of outliers for categorical

data, as the cells are purely frequencies or counts of a contingency table. Hence, the
problem is to first identify a pivotal element and then markedly deviated cells are detected
as outliers. In continuous data, mean or quartiles are considered as pivot and the metric
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such as Q3± 1.5Q1, µ±K�, etc., are used to identify the outliers (Park et al., 2019; Kim,
2015). However, it is challenging to establish exact criteria for deciding on an observation
to be unusual, denoted as an outlier, in contingency tables. Hence, an attempt has been
made to provide a set of statistical rules enabling the experimenter to look closely for
causes of an outlier to really exist, and then to decide on its plausible acceptability.
The existence of one or two outliers in a sample can badly distort the summary indica-

tions and analyses of data. In the detection of outliers in contingency tables, residual based
approach has been widely used (Haberman, 1973; Brown, 1974; Simono↵, 1988; Fuchs and
Kenett, 1980; Bradu and Hawkins, 1982; Yick and Lee, 1998).
The use of residual approach may cause masking and swamping and a method resistant

to it has been studied by Kotze and Hawkins (1984) and Lee and Yick (1999). But, residuals
play an important role in detecting outliers in two-way contingency tables, and an extensive
review is presented in Kateri (2014). Graphical display of contingency table can be made
with plots such as association plot, sieve plot, and mosaic plot (Friendly (2000)) which
are based on independence of the row and column variables. Velez and Marmolejo-Ramos
(2017) proposed an extension of a graphical diagnostic test for contingency tables using
polygraph. Kuhnt (2004) described a procedure to identify outliers based on the tails of
the Poisson distribution and declared a cell as outlier if the actual count falls in the tails
of the distribution.
Rapallo (2012) studied the pattern of outliers by fitting log-linear model and tests the

goodness of fit to specify the notion of outlier with the use of algebraic statistics. Sripriya
and Srinivasan (2018a) and Sripriya and Srinivasan (2018b) have suggested a new approach
in the detection of outliers in categorical tables of order I ⇥J , based on Poisson log-linear
model. Kuhnt et al. (2014) detected outliers through subsets of cell counts called minimal
patterns for the independence model.
The principal interest in the analysis of I ⇥ J contingency tables is to test the inde-

pendence between the two categories. The Pearson chi-square and the log-likelihood ratio
statistics (Agresti (2002)) are the long standing techniques in testing independence under
multinomial set up. Literature is abundant to show that the residual test statistic con-
verges approximately to the chi-square distribution (Song, 2007; McCullagh and Nelder,
1989). Following Agresti (2002) and Sangeetha et al. (2014) proposed the reversal pattern
of association (RAP) to understand deeply the association between attributes in high di-
mensional tables. Sripriya and Srinivasan (2018a), Sripriya and Srinivasan (2018b) adapted
the RAP to detect the outliers based on chi-square statistic through an iterative algorithm.
Indeed, there are many procedures like residuals based approach, pattern based approach,
and test based approach which are more heuristic in nature as pointed by Simono↵ (2003)
leading us to the present study based on the characteristics of the contingency table.
In this paper, an attempt has been made to explain the fundamental meaning of

“markedly deviant” by answering; which cell, from where and, by how much. To real-
ize the definition, there is a need for a measure which captures the deviation from the
pivotal element. Thus, a measure based on the generic characteristics of the table has
been considered as a pivotal element for detection of outliers.
The purpose of the present study is to detect possible outliers for a two-way contingency

table in a more generic way by a two-step procedure, firstly through an indicator followed
by an exact identifier. The first step involves the enhancement of summary measures for
categorical data, and a methodical way to indicate susceptibility to outliers by explaining
the characterization of contingency tables through three di↵erent methods. In step two,
potential outliers are detected by using theoretical approach of residuals supported by the
boxplot in explaining the deviation of residuals. Lastly, a simulation study has been carried
out by contaminating the cell values to determine the stability of the results for detecting
outliers through the proposed method.
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The paper is organized as follows. In Section 2, we define our two-step procedure and
discuss the classification of level of susceptibility. The results of simulation study in Sec-
tion 3 reveals that the two-step approach performs well in detecting outliers. Section 4
presents few applications to real data in detecting the outliers in two-way contingency
tables. Finally, some concluding remarks are given in Section 5.

2. Two-Step Procedure

Let X and Y denote two categorical response variables, X with I categories R1, . . . , RI

and Y with J categories C1, . . . , CJ leading to IJ possible combinations. When the cells
contain frequency (nij) of outcomes from a sample, the table is called a contingency table,
or cross-classification table.
Sparseness in contingency tables often occurs in practice and detecting outliers in the

sparse data is a challenging one. The remedial actions for sparseness in categorical data
such as collapsibility of cells with small frequencies, or dropping the tables altogether lead
to loss of information (Baglivo et al. (1988)). However, this study considers the detection
of outlier in I⇥J contingency tables without considering the sparseness index but in terms
of polarization and its underlying issues.
Further, polarization of cell counts is one of the major problem when it comes to outlier

detection. Polarization is basically a highly uneven distribution of counts in I ⇥ J tables.
Polarization in contingency tables involves presence of counts/frequencies of disparate in
nature, such as zero counts, low counts, high counts, and extreme values, etc. Suppose a
table consists of more number of zero counts and very few high counts forming unusual
clusters which could a↵ect the inference of I⇥J tables, in addition to detection of outliers.
Thus, the structure and nature of cell counts in a contingency table play an important
role in the data analysis with the cell counts ranging from zero to very high frequencies
(Sangeetha et al. (2014)). The relevance of sparseness on summary measure and the sen-
sitivity of analysis in 2⇥ 2 tables have been discussed by Subbiah and Srinivasan (2008).
The prevailing researches on the characteristics of I⇥J tables are: Order of k, numerical

issues (aberration/zero width intervals ZWI), polarization of cell counts, low cell count,
sparseness and computational complexity. However, the present study is concerned with
the detection of unusual observations or outliers in contingency table. The two step process
considered in this study as follows:

Step 1: Indicator – Identify whether the table contains outlier cells through the level of
susceptibility
Step 2: Identifier – Detect the exact outlying cells using boxplot of residuals

The detailed two step procedure is as follows:
Step I: Contingency tables are often summarized by its size I⇥J (= k) and total frequency
N =

P
i

P
j
nij (Agresti and Yang (1987)). However, there can be other characteristics

of contingency table which can be captured and included in the summary measures, such as
ZC : Number of zero counts in a I ⇥ J table
PZ : Proportion of zero counts in a table = ZC/k

LC : Number of low counts in a table
PL: Proportion of low counts in a table = LC/k

HC : Number of high counts in a table
PH : Proportion of high counts in a table = HC/k

R: Range of the cell counts
T : T = N/k

Q: Q = Range/k
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The three defined measures T , Q and P (PZ , PL, PH) can be considered as an enhancement
of the summary measures apart from k and N and could constitute an important component
of contingency tables and in particular to indicate the presence of outliers in a table. In
an ideal table, all the observations are expected to be closer to the pivot element and
thereby expected values are closer with smaller residuals. Suppose all the k cells are quite
closer to T , then one may not suspect outlier(s) to be present, except in the heuristic
residual approach. Hence, T can be perceived as an Pivot element, for example, a table
with k = 36 cells, N = 366, and T = 10.16667 yields all the cells counts to be pretty closer
to T and the expected values are closer to each other. Following Agresti and Yang (1987),
the present study considers the classification of P , T and Q for the detection of outliers
with Low (L), Moderate (M), and High (H) categories as follows

PZ =

8
<

:

Low, 0  PZ  0.10;
Moderate, 0.10 < PZ  0.20;

High, PZ > 0.20;

PL(nij < 6) =

8
<

:

Low, 0  PL  0.20;
Moderate, 0.20 < PL  0.40;

High, PL > 0.40;

PH(nij > T ) = PL(nij < T ) =

8
<

:

Low, 0  PH , PL  0.45;
Moderate, 0.45 < PH , PL  0.55;

High, PH , PL > 0.55.

Similarly, T and Q have been classified as

T =

8
<

:

Low, 0  T  20;
Moderate, 20 < T  250;

High, T > 250;

Q =

8
<

:

Low, 0  Q  10;
Moderate, 10 < Q  100;

High, Q > 100.

Table 1. Categorization of susceptibility

Susceptibility (T, PZ , PL) (Q,PZ , PL) (PZ , PL, PH)
High 8 12 12
Moderate 10 9 12
Low 9 6 3

Our study proposed three methods (i) (T, PZ , PL) (ii) (Q,PZ , PL) and (iii) (PZ , PL, PH)
based on the above classification to identify the susceptibility to outliers in I ⇥ J tables.
Thus there will be a total of 27 combinations for each method under consideration. Sup-
pose a table with (T, PZ , PL) is (L,L, L), then, there will be a less chance of outliers being
present and hence denote the I ⇥ J table as of low susceptibility to outliers. Correspond-
ingly, a table with (T, PZ , PL) is (H,L,L), then there may be few markedly deviant cells to
exist in the table and denoted as highly susceptible to outliers. Similarly, the combination
of M and L is taken to be moderately susceptible to outliers. Thus the 27 combinations
of L, M, and H are categorized for susceptibility under the three proposed methods and
presented in Table 1. The categorization of susceptibility is based on the direction pro-
vided by Agresti and Yang (1987), but could be suitably modified based on T , Q, and P
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and accordingly susceptibility to outliers will also vary. In the same way, method 2 has
been categorized under the three levels; H, M, and L, whereas in the third method, LLL
is taken to be highly susceptible to outliers based on the above mentioned classification.
Thus, 27 combinations are categorized into three methods as presented in the following
table. Consider a 5⇥ 5 table constructed by Simono↵ (1988) for the detection of outliers.
Based on the approach outlined earlier, with k = 25, N = 558, T = 22.32, Q = 1, PZ = 0,
PL(nij < 6) = 0, PL(nij < T ) = 0.8, and PH = 0.2 reveals the table is highly susceptible
to outliers. Thus, the study basically a�rms the approach to be capable of indicating the
presence of outliers. After due classification of I ⇥ J table, the next step is to identify the
outlying frequencies in the table.

Step II: Residual techniques have been carried out by many researchers in order to identify
the outlying cells in a table by considering “large” residual. But many of them failed to
justify “how large” the residual should be considered for an observation as an outlier.
The usual residual based methods of outlier detection methods are devoid of contingency
table characteristics. In the heuristic approach, outliers are identified irrespective of the
polarization of cell frequencies and order of the tables. To overcome this, the box plot of
the following three types of residuals has been considered to identify the outlying cell:
(i) [Pearson residual]

rij =
nij � eijp

eij
, eij = (ni+ ⇥ n+j)/N.

(ii) [Adjusted residual; Haberman (1973)]

r̃ij =
rij

AF
, AF = (1� ni+/N)(1� n+j/N).

(iii) [Deleted residual; Simono↵ (1988)]

rij =
nij � eijp

eij
, eij = (ni+ � nij)(n+j � nij)/(N � ni+ � n+j + nij).

Thus, the two step process provides a systematic approach of identifying outliers under
conditions of polarity for varying order of k. The following section deals with examining
the robustness of susceptibility criteria as envisaged through a simulation study.

3. Simulation Study

Simulating a two way contingency table situation can be achieved using varying combina-
tions of its total frequency, levels in each of the categories, cell probabilities, and the test
statistic used to analyze the independence. Thus, the present study considers two scenarios
of generating I ⇥ J tables where the cell entries are from (i) bi-variate normal distribu-
tion with the assumption of independence, and (ii) multinomial distribution as in Agresti
(2002) since it models the probability of counts in each categories for n independent trails.

Bivariate normal distribution The simulation study starts with generating the entries
of I ⇥ J table from bi-variate normal distribution with di↵erent correlation structures. In
this scenario, the study considered correlation ⇢ and the size of the table k(= I⇥J) as the
potential parameters. Here, we consider four di↵erent values of k, (9, 16, 25, and 100) with
five di↵erent correlation structures (0.5, 0.6, 0.7, 0.8, and 0.9) to evaluate the performance
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of proposed susceptibility methods by contaminating each cell at a time with a constant ↵
(= 0.5, 1, 1.5, 2) and repeated 500 times. The results of this simulation are summarized in
Table 2. The following are the observations based on the simulation presented in Table 2:

(i) The pattern of susceptibility level remains unchanged for k = 9, 16 and with
changes in k = 25 and 100 irrespective of ⇢ and ↵ in methods 1-2.

(ii) When k increases, the susceptibility level increases only when the correlation is
0.5 when ↵ = 0.5. However, it shows few fluctuations due to outliers in other
correlation structures with di↵erent ↵ considered.

(iii) Susceptibility level fluctuates largely for all k in all methods irrespective of ⇢
and ↵.

(iv) As ↵ increases, the susceptibility level shows similar pattern for all order of k
with ⇢ = 0.5, 0.6, 0.8, and 0.9. However, fluctuations are visible between the
contamination ↵ for all k with ⇢ = 0.7.

(v) The variability in the susceptibility is largely observed from method 3 as it gives
poor results for all k irrespective of correlation structure and ↵.

Table 2. Susceptibility to outliers (in %) for scenario 1

Method 1 Method 2 Method 3
Order (T, PZ , PL) (Q,PZ , PL) (PZ , PL, PH)
I ⇥ J ⇢ ↵

0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2
3⇥ 3 0.5 76 75 73 72 78 77 75 74 45 44 42 39

0.6 74 74 73 73 76 75 74 73 73 72 71 70
0.7 75 52 60 54 79 53 59 52 68 53 52 51
0.8 66 58 47 41 63 49 45 44 64 57 52 41
0.9 78 65 51 49 74 62 53 47 72 63 51 50

4⇥ 4 0.5 77 74 72 70 75 74 72 71 47 45 40 38
0.6 76 73 70 69 74 72 71 68 71 69 68 65
0.7 77 55 62 53 75 51 59 52 69 51 49 49
0.8 60 52 40 40 62 54 44 43 60 58 51 39
0.9 76 60 55 52 72 61 52 50 70 64 55 54

5⇥ 5 0.5 78 74 71 70 76 71 69 68 49 46 41 37
0.6 59 56 51 47 62 57 53 48 60 55 51 49
0.7 72 54 56 52 74 51 58 49 65 50 45 43
0.8 56 42 38 34 53 45 41 37 50 49 42 36
0.9 66 50 45 42 62 51 42 40 60 54 49 44

10⇥ 10 0.5 81 79 76 71 79 74 71 69 51 49 47 46
0.6 67 64 60 53 66 61 57 50 63 52 51 50
0.7 75 57 63 55 72 53 65 51 69 54 49 42
0.8 61 58 47 44 59 47 45 40 60 57 51 44
0.9 76 64 54 51 69 57 54 48 67 55 47 46

Following susceptibility, Table 3 presents the results of the simulation involving the
identification of outliers based on three residual methods under di↵erent levels of contam-
ination. The following are the observations based on simulation presented in Table 3:

(i) The identification of exact outlying cell for all k shows similar trend irrespective
of ↵ and ⇢ in all the three residuals considered in this simulation scenario.

(ii) As ↵ increases, the identification level also increases for all k irrespective of the
correlation structure ⇢.
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(iii) Stability of level of identifying the outlier cell increases as ⇢ increases for
k=9, 16, 25. However, for k = 100, yields poorer results for all the three residual
approaches.

Table 3. Identification of outliers (in %)

Pearson Adjusted Deleted
I ⇥ J N ↵

0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2
3⇥ 3 0.5 33.3 34 34.3 34.5 35 35.5 36 36 34 35.5 36.3 36.5

0.6 36 36.5 36.7 37 36.5 37 37.7 38 37 37.5 38 38.3
0.7 36.2 37 37.5 37.7 36 37 37.7 38.2 38.2 38.7 39.2 39.7
0.8 37 37.7 38.2 38.5 36.7 37.5 38 39 37.7 38.5 39.7 40
0.9 38.2 38.5 39 39 38 38.7 39 39.7 38 38.7 39.5 40

4⇥ 4 0.5 43 44.5 45 45.5 45 45 46 46 46 46.7 47 47.5
0.6 45 46 46.5 47.5 47 47.7 48 48.5 47 48.5 48.7 49
0.7 46.5 47.2 48.5 48.7 46 47.7 48.2 48.7 48.5 49 49.5 49.5
0.8 46.7 46.7 47.2 48 47.7 48 48.5 49 48.7 49 49.2 49.7
0.9 48 48.7 49.2 49.5 48 48 49.5 49.7 48 48.5 49 50

5⇥ 5 0.5 44.4 45 45.4 46.5 45 45.5 46 46 45 45.5 46.4 46.5
0.6 46 46.5 46.7 47 46.5 47 47.7 48 47 47.5 48 48.4
0.7 46.2 47 47.5 47.7 46 47 47.7 48.2 48.2 48.7 49.2 49.7
0.8 47 47.7 48.2 48.5 46.7 47.5 48 49 47.7 48.5 49 49.5
0.9 48.2 48.5 49 49 48 48.7 49 49.7 48 48.7 49.5 49.7

10⇥ 10 0.5 25 25.5 26.2 26.5 25 25.5 26 26 24 25.5 26.2 26.5
0.6 26 26.5 26.2 22 26.5 22 22.2 28 22 22.5 28 28.2
0.7 26.2 22 22.5 22.2 26 22 22.2 28.2 28.2 28.2 29.2 29.2
0.8 27 27.2 28.2 28.5 26.2 26.5 28 29 22.2 28.5 29 29.2
0.9 28.2 28.5 29 29 28 28.2 29 29.2 28 28.2 29.5 30.5

The associations between the two categorical variables are identified generally using the
chi-square distribution. Here, the p-value of the chi-square distribution is used to identify
the independence of the two categorical outcomes and found that there is no change in
the independence assumption even after contaminating the cell entries. Moreover, the
data generation process in simulation in no way alters the independence assumption. The
percentage of identification of outliers in this scenario yield poor results since the data
generated from bi-variate normal distribution with the parameter lambda where lambda
is the parameter used to change the continuous bi-variate normal random variables to count
variables. Thus, a more appropriate data generation rule using multinomial distribution is
considered and is explained below.

Multinomial distribution The simulation study considers two potential parame-
ters k; the size and N ; the total frequency of the table and X1, X2, . . . , Xk ⇠
Multinomial(N, (p1, . . . , pk)) where the probability pi ⇠ U(0, 1); i = 1, . . . , k. The prob-
ability range between 0 and 1 is automatically maintained in multinom function in R. The
study of over 100 real time datasets from various fields of social sciences has shown that
polarization is largely observed in tables of order more than 4 and larger tables (I, J > 10)
occurs occasionally and are not discussed in the simulation study. Hence our simulation
study is restricted to k = 9, 16, 20 and 56 with N = 50, 350, 950, 2150, and 4550 providing
a varied cross section of the contingency table to examine the susceptibility to outliers.
The process starts by contaminating the cell frequencies with alpha (↵) for each cell at a
time and then covering the entire table k times. Four di↵erent level of contamination ↵
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(= 0.5, 1, 1.5, 2) are considered and repeated 500 times. The results of simulation based on
the above procedure are summarized in Table 4.
The following are the observations based on the simulation presented in Table 4:

(i) Susceptibility level remains unchanged for k = 9, 16 and minor fluctuations in
k = 20 and 56 irrespective of N and ↵ in method 1.

(ii) When k increases, irrespective of ↵, there exists small changes due to outliers
in method 2 for moderate N of size 350 and 950.

(iii) Susceptibility level fluctuate largely for all k except for a lower order of k (= 9),
in method 3 irrespective of N and ↵.

(iv) As ↵ increases, the level of susceptibility remains constant for all order of k
and for small and large values of N under method 1. However, fluctuations are
visible for moderate values of N and higher order of k.

(v) Susceptibility level remains constant as ↵ increases for all k and for large values
of N under method 2. However, fluctuations are visible for low and moderate
values of N irrespective of k.

(vi) In method 3, as ↵ increases, the susceptibility level remains constant for a small
order of k and moderate to large N and the instability in susceptibility are
observed from rest of k and N .

Table 4. Susceptibility to outliers (in %)

Method 1 Method 2 Method 3
Order (T, PZ , PL) (Q,PZ , PL) (PZ , PL, PH)
I ⇥ J N ↵

0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2
3⇥ 3 50 98 92.6 92.8 87.2 63.2 62.2 62.2 61.6 71.2 71.2 71.2 71

350 100 100 100 100 100 100 100 100 100 100 100 100
950 100 98.6 98.6 98 100 100 100 100 100 100 100 100
2150 100 100 100 100 100 100 100 100 100 100 100 100
4550 100 100 100 100 100 100 100 100 100 100 100 100

4⇥ 4 50 100 100 100 100 69.8 69.8 69.8 69.8 50.2 50.2 48.6 49
350 99.4 95.4 95.4 95.4 99.4 95.4 95.4 95.4 90.2 89.6 89.6 80
950 100 100 100 100 100 100 100 100 100 100 100 100
2150 100 100 100 100 100 100 100 100 99.4 99.4 99.4 99
4550 100 100 100 100 100 100 100 100 100 100 100 100

5⇥ 4 50 100 100 100 100 86.4 86.4 86.4 86.4 65.2 55.4 55.4 55
350 85.6 77 77 70.6 86.2 79.4 77.6 71.2 87 64.6 59.4 54
950 96.8 94.8 94.8 94.6 96.8 94.8 94.8 94.8 69.8 69.8 64.8 64
2150 100 100 100 100 100 100 100 100 95 90.6 88.2 85
4550 100 100 100 100 100 100 100 100 100 100 100 100

7⇥ 8 50 100 100 100 100 100 100 100 100 100 100 99.2 99
350 91 80 80 80 99.4 99.4 99.4 99.4 91.4 99 93.2 93
950 97.6 97.6 89.2 97.6 97.6 97.6 97.6 97.6 55.8 55.8 55.8 52
2150 100 100 100 100 100 100 100 100 94 94 90.8 91
4550 100 100 100 100 100 100 100 100 87.4 87.4 87.4 87

As outlined in Section 2, following susceptibility, next step involves identification of
outliers based on three residual methods under di↵erent levels of contamination. The
results of the simulation are presented in Table 5.
The following are the observations based on simulation presented in Table 5:

(i) Identification of exact outlying cell remains same for all k irrespective of ↵

and N and a few fluctuations are observed in moderate to high N in Pearson
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and Adjusted residual approach whereas in the case of Deleted residual, the
simulation yields inconclusive results.

(ii) As ↵ increases, the identification level decreases for all k and it remains constant
whenN varies from moderate to high in Pearson and Adjusted residual approach
whereas in Deleted residual approach, the identification level decreases as ↵

increases for all k except for k = 16 irrespective of N .
(iii) Stability of level of identifying the outlier cell oscillates as N increases irrespec-

tive of k and ↵ for all the three residual approaches.

Table 5. Identification of outliers (in %)

Pearson Adjusted Deleted
I ⇥ J N ↵

0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2
3⇥ 3 50 95.8 93.8 91.4 86 96.4 93.8 92 89.2 83 72 92 54.4

350 92.6 89.6 87.5 85 94.4 89.4 86.3 84.2 99.4 96.4 94.2 91.6
950 99.2 99 99 99 99.3 99 99 99 91.2 92.3 90 90

2150 100 100 100 100 100 100 100 100 97 96 95 95
4550 95 94.9 100 95 97 98 100 98 93 90 100 91

4⇥ 4 50 94.8 92.8 91 88 95.8 92.8 92 89 90 87 70 69
350 93 93 89 89 94 92 90 88 89 88 89 80
950 98.8 99 99 99 99 99 99 99 92 92.3 90 91

2150 99 99 99 99 99 99 99 99 98 97 95 96
4550 96 94 93 91 97 95 92 90 100 100 96 99

5⇥ 4 50 96 94 90 87 95 93 89 89 92 87 83 86
350 93 93 90 87 94 92 91 88 89 86 85 80
950 100 100 100 100 100 100 100 100 89 86 82 78

2150 92 90 91 92 93 92 93 92 83 79 77 75
4550 93 92 94 90 94 93 95 91 90 91 89 89

7⇥ 8 50 94 93 91 89 95 94 92 92 89 82 77 76
350 93 93 89 90 94 92 90 91 89 88 85 83
950 95 94 90 89 96 95 91 90 88 85 83 78

2150 100 100 100 100 100 100 100 100 89 87 83 72
4550 92 100 97 96 93 95 98 97 84 86 88 78

In summary, even though the level of susceptibility fluctuate in few cases in all the
methods, the identification level of exact outlying cells in all the residual approaches show
that our two-step procedure could be a best alternative in the detection of outliers in
I⇥J tables. The results based on the simulation study have paved the way to examine the
application of two-step process of detection of outliers in contingency table to real time
datasets.

4. Data Analysis

In this section, we illustrate our two-step procedure to six datasets from literature by
assuming the nature of the data as nominal. Kotze and Hawkins (1984) considered a
dataset with k = 196, N = 775 and identified 15 most outlying cells by adding 0.5 to zero
cells using elimination method. The mosaic display of the data is presented in Figure 1.
The present approach, with T = 3.95, Q = 0.27, PZ = 0.26, PL(nij < 6) = 0.52,

PL(nij < T ) = 0.39, andPH = 0.35, shows low susceptibility in method 1 and 2 and high
susceptibility in method 3. Also, boxplot for residuals as presented in Figure 2 identified
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Figure 1. Mosaic Plot for 14⇥ 14 data

Figure 2. Boxplots for Kotze and Hawkins Data

the same 14 cells as possible outliers in the case of Pearson and Adjusted residuals and
only 3 cells in the case of Deleted residuals.
Yick and Lee (1998) considered the archaeological data and artificial data by Simono↵

(1988) in identifying outliers. For the artificial 5⇥5 data, three cells (2, 1), (1, 2) and (1, 3)
are identified as outliers and the cell (1, 1) being swamped in the perturbation approach. In
our method, with k = 25, N = 558, T = 22.32, Q = 1, PZ = 0, PL(nij < 6) = 0, PL(nij <

T ) = 0.8, and PH = 0.2, this dataset is found to be moderately susceptible to outliers
and the residual boxplot identifies exactly the same cells as outliers as in perturbation
approach.
For the archeological data, the perturbation approach identified three cells (2, 3), (11, 5)

and (18, 1) as outliers out of which two cells have extreme residuals and these two extreme
cells are identified correctly in our two step procedure with k = 114, N = 3297, T = 28.92,
Q = 3.42, PZ = 0.07, PL(nij < 6) = 0.21, PL(nij < T ) = 0.65, PH = 0.72 and the method
show that the data is moderately susceptible to outliers. The mosaic display and boxplot
of residuals for these two data is presented in Figures 3, 4 and 5.
Yick and Lee (1998) considered the 7⇥8 student enrolment data from seven community

schools from Northern Territory, Australia and identified the cells (1, 5), (1, 6), (2, 4) and
(2, 5) as potential outliers using perturbation diagnostics. The mosaic display of the data
is presented in Figure 6.
In our proposed method, the datasets is highly susceptible to outliers with k = 56,

N = 5248, T = 93.71, Q = 2.9, PZ = 0, PL(nij < 6) = 0, PL(nij < T ) = 0.625, PH = 1
and identified the cells (2, 4) and (1, 6) as potential outliers using boxplot of all the
residuals and boxplot are presented in Figure 7.
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Figure 3. Mosaic Plot for Archaeological and Artificial data

Figure 4. Boxplots for Artificial Data

Figure 5. Boxplots for archeological data

Kuhnt et al. (2014) considered 3 ⇥ 3 table of social mobility in Britain and 4 ⇥ 4 table
of artifacts in Nevada and detected outliers using three di↵erent algorithms. For the social
mobility data, all the three algorithms doesn’t give satisfactory results and detected, (i) all
the cell counts, (ii) only diagonal cells and (iii) cells (1, 1), (3, 1), (1, 3) and (3, 3) as
outliers, whereas in our method the table shows highly susceptible to outliers with k = 9,
N = 3494, T = 366.33, Q = 67, PZ = 0, PL(nij < 6) = 0, PL(nij < T ) = 0.44, PH = 0.56,
and detected the cells (1, 1), (3, 1) and (2, 2) as outliers with the help of boxplot of
residuals and the mosaic display is presented in Figure 8.
For the Artifacts in Nevada data, the author identified two cells as outliers but our

methods gave inconclusive decision in susceptibility with k = 16, N = 164, T = 10.25,
Q = 3.77, PZ = 0, PL(nij < 6) = 0.43, PL(nij < T ) = 0.68, PH = 0.32, and no outliers
are detected using boxplot of residuals. The boxplot for these datasets are presented in
Figure 9 and 10.
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Figure 6. Mosaic Plot for Student Enrolment data

Figure 7. Boxplots for Student Enrolment Data

Figure 8. Mosaic Plot for Social Mobility and Artifacts data

Figure 9. Boxplots for social mobility data
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Figure 10. Boxplots for Artifacts in Nevada data

In addition, our study considered 50 other datasets of varied characteristics ranging from
k = 6 to 196 cells based on the literature to identify the feasibility of our methods and the
results are presented in Table 6. Most of the researchers nullified the zero cells in a table
by adding constants, but our two-step method helps to identify the outlying cells even in
the presence of zero cells in a table.

Table 6. Identification of outlying cells through Boxplot

(T, PZ , PL) (Q,PZ , PL) (PZ , PL, PH)
T I NI T I NI T I NI

Highly susceptible 25 25(100%) – 27 25(92.5%) 2 41 38(92.6%) 3
Moderately susceptible 7 6(85.7%) 1 9 8(88.8%) 1 9 2(22.2%) 7
Low susceptible 18 9(50) 9 14 7(50) 7 – – –
T–Total; I–Identified; NI–Not-Identified

The above table clearly shows that method 1 performs better in highly susceptible
category and method 2 performs better in moderately susceptible category, method 1 &
2 equally performs better in low susceptible category. The classification of datasets under
method 2 also contains the datasets under method 1. On the whole, method 3 appears
to be more stringent in identifying outliers since it classifies almost all datasets as highly
susceptible to outliers.

5. Conclusions

The problem of identification of outliers in I ⇥ J contingency tables has been examined
through the ambiguous notion of “markedly deviant” nature of cells from which the other
cell values deviate greatly. However, in this paper a simple measure T has been introduced
as a pivotal element to explain the deviation of other cells in the table. In this direction, a
two-step procedure is devised to first examine the nature of the table through susceptibility
followed by identification of outliers through box plot techniques. The stability of our
proposed methods towards the identification of outliers is examined through a simulation
study. The results have revealed that methods (T, PZ , PL) and (Q,PZ , PL) are found to be
more consistent based on two simulation scenarios. Moreover, it is evident from the results
that a triplet with the pivot element along with proportion of zero and low counts provide
an idea of polarization in the table, and is found to be useful in detecting outliers.
Based on the numerical results, we conclude that the two-step approach as a combination

of summary measures and boxplot for residuals could be a feasible approach to identify
outlier cells in contingency table. However, as pointed out in the earlier section, a judicious
choice is necessary in some cases of ambiguity. Further, even if the boxplot or the residual
approach fails in some cases, summary measure will indicate clearly whether the table
contains high, moderate, or low outlying cells. The practicality of two pronged approach
has been well corroborated by an extensive amount of data sets for its e�cacy and its
usefulness in identifying outlying cells.
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