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Abstract

In this paper, we introduce a new distribution for positively skewed data by combining
the Birnbaum-Saunders and centered skew-normal distributions. Several of its proper-
ties are developed. Our model accommodates both positively and negatively skewed
data. Also, we show that our proposal circumvents some problems related to another
Birnbaum-Saunders distribution based on the usual skew-normal model, previously pre-
sented in the literature. We derive both maximum likelihood and Bayesian inference,
comparing them through a suitable simulation study. The convergence of the expectation
conditional maximization (for maximum likelihood inference) and MCMC algorithms
(for Bayesian inference) are verified and several factors of interest are compared. In
general, as the sample size increases, the results indicate that the Bayesian approach
provided the most accurate estimates. Our model accommodates the asymmetry of the
data more properly than the usual Birnbaum-Saunders distribution, which is illustrated
through real data analysis.

Keywords: Bayesian inference · Birnbaum-Saunders distribution · ECM algorithm
· Frequentist inference · MCMC algorithms · R software

Mathematics Subject Classification: Primary 60E05 · Secondary 62F15.

1. Introduction

The Birnbaum-Saunders (BS) distribution is characterized by two parameters and de-
fined in terms of the standard normal distribution. The BS distribution has been received
considerable attention over the past few years, since it has been used quite e↵ectively to
model positively skewed data, especially lifetime and crack growth data. Since the pio-
neering work of Birnbaum and Saunders (1969a) was published, several extensions of the
BS distribution have been proposed in the literature and its parameters estimated under
both frequentist and Bayesian paradigms.
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From a frequentist viewpoint, Birnbaum and Saunders (1969b) presented a discussion on
the maximum likelihood (ML) parameter estimation. Mann et al. (1974) showed that the
BS distribution is unimodal. Engelhardt et al. (1981) developed confidence intervals and
hypothesis tests for both parameters. Desmond (1985) developed a BS-type distribution
based on a biological model. Desmond (1986) investigated the relationship between the BS
distribution and the inverse Gaussian distribution. Lu and Chang (1997) used bootstrap
methods to construct prediction intervals for future observations. In the linear regression
context, Rieck and Nedelman (1991) developed a related log-linear model and showed
that it can be used for modeling accelerated life tests and to compare average lifetime of
di↵erent populations.
From a Bayesian perspective, there are few works on the BS distribution. The first one is

due to Achcar (1993) who developed Bayesian estimation using numerical approximations
for the marginal posterior distributions of interest based on the Laplace approximation.
Also, Xu and Tang (2011) presented a Bayesian study with partial information, while
Wang et al. (2016) assumed that the two parameters follow mutually independently in-
verse gamma distributions. All these results were studied under a normal distribution for
generating the BS distribution.
In terms of modeling, most of the generalizations of the BS distribution are based on

elliptical and skew-elliptical laws, in order to obtain more robust and flexible models.
Some works developed extensions based on symmetric distributions as Diaz-Garcia and
Leiva (2005) who generalized the BS model using elliptical distributions that includes the
Cauchy, Laplace, logistic, normal and Student-t distributions as particular cases. Other
works are: the generalized BS distribution (Leiva et al., 2007), the Student-t BS distribution
(Barros et al., 2008), and the scale-mixture of normal BS distribution (Balakrishnan et
al., 2009), among others. More information can be found in Leiva (2016), who presented a
review on the BS distribution. Other generalizations have been obtained in di↵erent ways
to those aforementioned, as Owen and Padgett (1999), who developed a three-parameter
BS distribution and the �-BS distribution presented in Cordeiro and Lemonte (2011).
Also, Ferreira (2013) proposed a based BS distribution useful for modeling tail events
and Mazucheli et al. (2018) presented a distribution on the unit interval based on the BS
model. In addition, Balakrishnan et al. (2017) and Maehara (2018) provided new families
of BS distribution based on the skew scale mixture of normal models. Also, extensions of
the BS distribution based on the skew-elliptical models can be found in Vilca and Leiva
(2006), Leiva et al. (2007, 2008) and Vilca et al. (2011). In these works, theoretical results
were obtained, extending the properties of the BS and log-BS distributions.
A Bayesian perspective for the BS distributions based on skew-normal (SN) distribution

did not receive much attention in the literature. Indeed, Vilca et al. (2011) considered,
under a frequentist perspective, the BS distribution based on the SN model. However,
even though the SN distribution has been applied with success in several fields, when the
related asymmetry parameter is equals to zero, the associated Fisher information matrix
is singular. Recently, to overcome this problem, Arellano and Azzalini (2008) and Azzalini
(2013) explored a SN distribution under a convenient parameterization (proposed by Azza-
lini (1985) and deeper explored by Pewsey (2000)), the so-called centered parametrization
(CP), which leads to a non-singular Fisher information matrix. Moreover, the relative
profile log-likelihood function (RPLL) for the Pearson index of skewness exhibits a more
regular behavior, closer to a quadratic function, and without a stationary point under null
asymmetry . The resulting empirical distributions of the estimators under the CP, named
CP estimators, are much closer to the normality than those obtained under the usual SN
distribution, which is named direct parametrization estimators. All these desirable prop-
erties, related to the the CP, may be transferred to the respective BS distribution based
on the centered SN (CSN) model. It is worthwhile to mention that all the aforementioned
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BS models (that consider the SN model) used the direct parametrization that is, likely,
they inherit the above problems.
The main objective of this work is to propose an alternative to the skew-normal BS

(SNBS) distribution proposed by Vilca et al. (2011), considering the CSN distribution,
as the generator variable. The resulting BS-type distribution has advantages, in inference
terms, over the SNBS distributions (including those obtained as particular cases of the
more general families as those of Balakrishnan et al. (2009) and Maehara (2018)), similarly
to those related to the CSN distribution, compared with the SN distribution. The specific
objectives of this work are: to develop a BS distribution based on the CSN model, named
centered skew-normal BS (CSNBS) distribution, highlighting its advantages over the SNBS
distribution proposed by Vilca et al. (2011), and its main properties. Also, estimation
procedures under both frequentist and Bayesian approaches are developed and compared,
considering di↵erent scenarios. In addition, some model comparison statistics are studied.
Finally, two real data sets are analyzed showing some advantages of the CSNBS model
compared to the usual BS distribution.
The paper is outlined as follows. In Section 2, we present our distribution and some

motivation for its development. In Section 3, the estimation methods are proposed and
some statistics of model comparison are presented. In Section 4, some simulation studies
are presented and two real data sets are analyzed. Finally, in Section 5, some additional
comments and conclusions are provided.

2. The Centered Skew-normal BS Distribution

2.1 The centered skew-normal distribution

A random variable Y is said to have a CSN distribution, denoted by Y ⇠ CSN(µ,�, �),
where µ, � and � are the mean, the standard deviation and the Pearson coe�cient of
skewness, respectively, if its density is given by
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The quantity � is the asymmetry parameter, see Azzalini (1985). For µ = 0 and � = 1, we
have the standard CSN distribution, denoted by Y ⇠ CSN(0, 1, �), whose density is given
by
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1 + �2/3s2. For inferential purposes, a useful stochastic
representation of Y is given by
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where Xi ⇠ N(0, 1), for i = 0, 1, are independent and so H = |X0| follows a half-normal
(HN) distribution, denoted by HN(0, 1).
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2.2 The proposed distribution

Here, we present the CSNBS distribution, which is defined similarly to the usual BS and
the SNBS distributions by

T = �
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where Y ⇠ CSN(0, 1, �), ↵ is the shape parameter, � is the location parameter, and � is
the asymmetry parameter. We use the following notation T ⇠ CSNBS(↵,�, �). The vector
(↵,�, �)> is called centered parameter and based on the SN distribution, that is, (↵,�,�)>

is named direct parameters. Following the same steps as in the usual BS distribution, we
have that its density is given by

fT (t) = 2� [at;µ,�(↵,�)]� [� at;µ,�(↵,�)]At;�(↵,�), t > 0, (4)
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�3/2(t+ �)/(2↵�1/2), and the other quantities are previously
defined. Note that for � = 0, we have the usual BS distribution. The mean and variance
of T (see Appendix A for more details) are given, respectively, by
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where � = 2(⇡ � 3)(4/⇡2)�4[1� (2�2/⇡)]�2 + 3.
The following theorem is very useful to develop both classical and Bayesian approaches

since they lead to conditional distributions that allow us to implement, more easily, the
EM algorithm, and simplify the Bayesian developments. For the use of standard MCMC
software, such as WinBUGS, OpenBUGS, JAGS or Stan, see Lunn et al. (2000), Lunn et
al. (2009), Depaoli et al. (2016) and Carpenter et al. (2016).

Theorem 2.1 Let T ⇠ CSNBS(↵,�, �) as in Equation (3), and Y and H as defined in
Equation (2). Then,

(i) The conditional density of T , given H = h, can be expressed as
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The density in Theorem 2.1 corresponds to the extended Birnbaum-Saunders (EBS)
discussed in Leiva et al. (2008) and denoted by EBS(↵�,�,� = 2, ⌫h). The proof of Theorem
2.1 is in the Appendix B.
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Figures 1-3 present the density of the CSNBS distribution for di↵erent values of ↵, �
and �. From Figure 1, we have that for ↵ = 0.2 the density is concentrated around �

(� = 1), and for ↵ = 0.8 the density is more asymmetric, with a higher variability. As
↵ increases, the density becomes more flat, positively skewed and more dispersed, as it
can be seen in Figure 2, for di↵erent values of ↵, fixing the other parameters. In addition,
Figure 3 shows densities more concentrated around � for di↵erent values of ↵ and �, with
� = 0.9. It is also possible to see that for large values of �, the density is more negatively
skewed. Note that the distribution tends to be symmetric around �, for � = 0 (the usual BS
distribution) and/or for small values of ↵. Positive asymmetry is observed as ↵ increases,
� decreases and/or � assumes positive values. In addition, negative asymmetry is observed
as ↵ decreases, � increases and/or � assumes negative values. Another interesting point is
that the CSNBS distribution may be negatively skewed, which is an unusual behavior for
positive random variables. This feature makes our distribution a very useful alternative
for modeling positive skewed data.
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Figure 1. CSNBS density for di↵erent values of �, with � = 1, ↵ = 0.2 (a)-(b) and ↵ = 0.8 (c)-(d).
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Figure 2. CSNBS density for di↵erent values of ↵, with � = 1, � = 0.9 (a) and � = �0.9 (b).
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Figure 3. CSNBS density with � = 2 (a), � = 3 (b), � = 4 (c), and � = 5 (d) for indicated ↵ and � = 0.9.

2.3 Some motivational remarks on the proposal

(i) It is well known that there is some di�culty in estimating the parameters of the SN
distribution by the ML approach, when the asymmetry parameter is close to zero. Some
problems seem to persist even if one switched to the Bayesian inference, unless a strongly
informative prior is considered, as pointed out by Arellano and Azzalini (2008). The
SNBS distribution seems to inherit such problems. Thus, the proposed CSNBS distri-
bution can circumvents these problems, since it is based on the CSN model.

(ii) When the asymmetry parameter is equals to zero, the Fisher information matrix is
singular, even if all parameters are identifiable. This a↵ects the behavior of the empir-
ical distributions of the ML estimators and the Bayesian estimators. To get a direct
perception of the problem, we generated 100 samples of size n = 200, from the SNBS
distribution and for each sample, the ML and Bayesian estimates (b↵, b�, b�) have been
computed. In this case, we fix ↵ = 0.5, � = 1 and � = 1, which induces a strong
positively skewed behavior of the SNBS distribution. Figures 4 and 5 display the corre-
sponding empirical distribution of b↵ and (b↵, b�), through a histogram and scatter plot,
respectively. Moreover, 100 samples of size n = 200 are generated from the CSNBS dis-
tribution, and the respective ML and Bayesian estimates (b↵, b�, b�) have been computed.
In this case, we fix ↵ = 0.5, � = 1 and � = 0.137, which induces a strong positively
skewed behavior of the CSNBS model. The empirical distributions of b↵ and (b↵, b�) are
shown in Figures 6 and 7, respectively. Clearly these empirical distributions are much
closer to normality than those in Figures 4 and 5. In fact, it can be shown that the
singularity of the expected Fisher information matrix, when the asymmetry parameter
is null, no longer occurs.

(iii) The CP circumvents the problem concerning the existence of an inflection point in the
RPLL of this parameter. This can be seen in Figure 8, which refers to the plots of
twice the RPLL function for �, the asymmetry parameter of the SNBS distribution (left
panel), and the for �, the asymmetry parameter of the CSNBS distribution (right panel).

The RPLL corresponds to `(b↵(�), b�(�), �) � `(b↵(�), b�(�), b�), where `(·) represents the
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log-likelihood function. The respective plots are constructed by considering a random
sample of both SNBS and CSBNS distributions, under suitable values of ↵, � and �. We
can notice a non-quadratic form of the log-likelihood function under the SNBS model,
induced by the existence of an inflection point when the asymmetry parameter is very
close to zero, making it di�cult the obtaining of the ML estimates. However, the log-
likelihood function of the CSNBS distribution presents a concave shape. Also, there is
no inflection point when the asymmetry parameter is equals zero.

(iv) The posterior distribution of � for the SNBS distribution has a non-quadratic form, as
it can be seen in Figure 9 (a), and this occurs even if we consider an informative prior.
However, the posterior distribution of � for the CSNBS distribution is well-behaved,
presenting a concave shape, as it can be seen in Figure 9 (b).
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Figure 9. Posterior distribution of � for the SNBS distribution (left) and of � for the CSNBS distribution (right).

3. Estimation and Inference

3.1 General context

We present the ML estimation, based on the expectation conditional maximization (ECM)
algorithm as in Meng and Rubin (1993), and the Bayesian approach, through MCMC algo-
rithms. Let T ⇠ CSNBS(↵,�, �) and then, recall that, from Theorem 2.1, we have T |(H =
h) ⇠ EBS(↵�,�,� = 2, ⌫h), where H = |X0| ⇠ HN(0, 1), ↵� = ↵

p
(1� �2)/(1� r2�2)

and ⌫h = ��(h� r)/
p
1� �2. In Appendix B, we present some results that are useful for

obtaining the ML estimators. For both methods, we consider a random sample T1, . . . , Tn

from T ⇠ SNBS(↵,�, �), where ✓ = (↵,�, �)>.
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3.2 The ECM algorithm and ML estimation

Here, we discuss the ML estimation through the ECM algorithm. The log-likelihood func-
tion for ✓ is given by `(✓|t) =

P
n

i=1 `i(✓|ti), where

`i(✓|ti) = log(2) + log {� [ati;µ,�(↵,�)]}+ log {� [� ati;µ,�(↵,�)]}+ log [Ati;�(↵,�)] , (5)

and ati;µ,�(↵,�) and Ati;�(↵,�) are given in Equation (4). Instead of considering the direct
maximization of Equation (5), we obtain the ML estimates through the ECM algorithm,
since it allows for a more tractable optimization process. In this case, we need to work with
the so-called augmented likelihood function. Also, instead of working with ✓⇤ = (↵,�, �)>,
we estimate ✓ = (↵,�, �)>, where � is defined in Equation (1). Then, we recover � through
the invariance principle related to the ML estimators. This is performed since the related
expressions (both analytically and computationally) are more tractable for ✓.

Recall that, From Theorem 2.1, we have Ti|Hi = hi
IND⇠ EBS(↵�,�,� = 2, ⌫hi

) andHi

IND⇠
HN(0, 1); i = 1, . . . , n, where “IND” denotes “independent”, ↵� = ↵

p
(1� �2)/(1� r2�2)

and ⌫hi
= �(�(hi � r))

p
1� �2. Then, defining tc = (t>,h>)>, with t = (t1, . . . , tn)> and

h = (h1, . . . , hn)>, the augmented log-likelihood function can be written as

`(✓|tc) =
nX

i=1

log[fT |H(ti|hi)] +
nX

i=1

fH(hi)

= c� �
2

2(1� �2)

nX

i=1

h
2
i +

r�
2

(1� �2)

nX

i=1

hi �
nr

2
�
2

2(1� �2)

+
�
p
1� r2�2

1� �2

nX

i=1

hiati(↵,�)�
r�
p
1� r2�2

1� �2

nX

i=1

ati(↵,�)�
1� r

2
�
2

2(1� �2)

nX

i=1

a
2
ti
(↵,�)

+
n

2
log(1� r

2
�
2) +

nX

i=1

log(ti + �)� n

2
log(1� �

2)� n log(↵)� n

2
log(�).

For a current value of ✓, say b✓, the E-step requires the evaluation of Q(✓|b✓) =

E[`(✓|tc)|t, b✓], where the expectation is taken with respect to the conditional distribution

H|(T = t), evaluated at b✓. For a estimate of ✓ at r-th iteration, say ✓(r) = (↵(r)
,�

(r)
, �

(r))>,

consider bhi = E[Hi|✓ = b✓, ti] and bh2
i
= E[H2

i
|✓ = b✓, ti], given in Theorem 2.1, that is,

bhi = b⌘ti +W�

✓
b⌘ti
b⌧

◆
b⌧ and bh2i = b⌘2ti + b⌧2 +W�

✓
b⌘ti
b⌧

◆
(b⌘tib⌧) , (6)

respectively, where b⌘ti = b�
p

1� r2b�2
�
ati(b↵, b�) + rb�/

p
1� r2b�2

�
, b⌧ =

p
1� b�2 and

W�(z) = �(z)/�(z), z 2 R. Then, let ✓(r) = (↵(r)
,�

(r)
, �

(r))> be the estimate of ✓ at the
k-th iteration. By considering Equation (6), we have that the augmented log-likelihood

function becomes Q(✓|✓(r)) = E[`(✓|tc)|t, b✓(r)], where
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Q(✓|✓(r)) = c� �
2(r)

2
�
1� �2(r)

�
nX
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bh2(r)
i

+
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.

Hence, the ECM algorithm corresponds to iterate the following steps:

E-step: Given ✓ = b✓(r), compute bhi and bh2
i
, for i = 1, . . . , n by using Equation (6);

CM-step 1: Fix � = b�(r) and � = b�(r) and update b↵(r) through the positive root of
b↵2 + b̂

(r)b↵+ ĉ
(r) = 0, where

b̂
(r) =

1

(1� b�2(r))

h
b�(r)

q
1� r2b�2(r) 1

n

nX

i=1

bhiati(1, b�(r))� rb�(r)
q

1� r2b�2(r) 1
n

nX

i=1

ati(1, b�(r))
i
.

ĉ
(r) = �(1� r

2b�2(r))
(1� b�2(r))

1

n

nX

i=1

bhi
h
ati(1, b�(r))

i2
,

that is, b↵(r+1) = (�b(r + 1) +
p

b2(r+1) � 4c(r + 1))/2;

CM-step 2: Fix ↵ = b↵(r+1) and update b�(r) and b�(r) using

b�(r+1) = argmax
�

Q

⇣
b↵(r+1)

,�, b�(r)
⌘

and b�(r+1) = argmax
�

Q

⇣
b↵(r+1)

, b�(r+1)
, �

⌘
.

The updating of b�(r+1) and b�(r+1) needs to be done through some numerical optimiza-
tion method. In this work we use the function optim, available on the R software (see R
Development Core Team, 2017), considering the L-BFGS-B optimization algorithm (see

Byrd et al., 1995)). Also, we start the ECM algorithm with initial values, say, b↵(0), b�(0)

and b�(0), using: b↵(0) = [2(s/v) � 1]1/2 and b�(0) = (sv)1/2, where s = (1/n)
P

n

i=1 ti and

v = [(1/n)
P

n

i=1 1/ti]
�1, as in Vilca et al. (2011). After obtaining b↵(0) and b�(0), we can

define zi = (1/b↵(0))[(ti/b�(0))1/2 � (b�(0)
/ti)1/2], for i = 1, . . . , n, which are observations

related to a CSN distribution. Thus, b�(0) can be obtained by maximizing (numerically) the
log-likelihood function of a SN distribution with respect to �, which is given by

`(✓) =
nX

i=1

h
log(2) + log(�z) + log [� (µz + �zyi)] + log {� [�(µz + �zyi)]}

i
.

According to Vilca et al. (2011), for ensuring that the true ML estimates are obtained,
it is recommended to run the ECM algorithm using a range of di↵erent starting val-
ues and checking whether all of them result in similar estimates. The steps of the
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ECM algorithm are repeated until a suitable convergence is attained, for example, us-
ing k✓(r) � ✓(r�1)k < ", with " > 0. It is worthwhile to mention, under certain regularity

conditions, that b✓ converges in distribution to N3(✓,⌃b✓), as n ! 1. We approximate ⌃b✓
by I

�1(✓), where I(✓) = �῭, ῭ = [῭✓1✓2 ], ✓1, ✓2 = ↵,� or � is the Hessian matrix, and
῭
✓1✓2

= ῭
✓2✓1

= @
2
`(✓)/@✓1✓2 =

P
n

i=1 @
2
`i(✓)/@✓1✓2. The second derivatives of `i(✓) are

provided in Appendix C. The approximate standard errors (SE) of b✓ can be estimated

with the square roots of the diagonal elements of I�1(✓), replacing ✓ by b✓.

3.3 Bayesian inference

Next, we present the developments related to the Bayesian inference through MCMC
algorithms. We present the prior and the respective posterior distributions, along with
suitable MCMC algorithms to sample from the respective marginal posterior distributions
of interest. Consider both original and augmented likelihood functions (in order to compare
them). The first of them is given by

L(✓|t) =
nY

i=1

2� [ati;µ,�(↵,�)]� [� ati;µ,�(↵,�)]Ati;�(↵,�).

We assume the following prior distributions: ↵ ⇠ gamma(r↵;�↵), � ⇠ gamma(r� ;��) and
� ⇠ U(a; b), mutually independent, where gamma(r,�) stands for a gamma distribution
such that E(↵) = r/� and Var(↵) = r/�

2 and U(a; b) stands for a continuous uniform
distribution over the interval [a, b]. Combining the likelihood function with the prior dis-
tribution, we have that the joint posterior distribution is given by

⇡(✓|t) / ↵
r↵�1

�
r��1 exp [�(↵�↵ + ���)]

nY

i=1

� [ati;µ,�(↵,�)]� [� ati;µ,�(↵,�)]Ati;�(↵,�),

and the respective full conditional distributions, given by

⇡(↵|�, �, t) / ↵
r↵�1 exp(�↵�↵)

nY

i=1
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⇡(�|↵, �, t) / �
r��1 exp(����)

nY

i=1
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⇡(�|↵,�, t) /
nY

i=1

� [ati;µ,�(↵,�)]� [� ati;µ,�(↵,�)]Ati;�(↵,�).

In addition, the augmented likelihood function is given by

L(✓|tc) =
nY

i=1

p
2/⇡� [⌫hi

+ ati(↵,�)]Ati(↵,�) exp

✓
�h

2
i

2

◆
.

Similarly, combining the augmented likelihood function with the above prior distribution,
we have that the posterior distribution is expressed as

⇡(✓,h|t) / ↵
r↵�1

�
r��1

nY

i=1

� [ati,hi
(↵,�)]Ati(↵,�) exp


�1
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�
h
2
i + 2↵�↵ + 2���

��
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and the respective full conditional distributions are given by

⇡(h|↵,�, �, tc) /
nY

i=1

� [ati,hi
(↵,�)]Ati(↵,�) exp

✓
�h

2
i

2

◆
,
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⇡(�|↵,�, tc) /
nY

i=1

� [ati,hi
(↵,�)]Ati(↵,�) exp

✓
�h

2
i

2

◆
,

where ati,hi
(↵,�) = ⌫hi

+ ati(↵,�). We can see that both posterior distributions are not
analytically tractable. Therefore, some numerical method must be employed to obtain
suitable numerical approximations for the respective marginal posterior distributions. The
above full conditional distributions do not correspond to known distributions, but they
can be simulated through some auxiliary algorithm such as the Metropolis-Hastings, slice
sampling or adaptive rejection. All these algorithms can be easily implemented in the R

program. In addition, which is the approach pursued here, we can use a general MCMC
computational framework, such OpenBUGS, see Lunn et al. (2009). In this case, it is nec-
essary to provide the original or the augmented likelihood function, along with the prior
distributions, such that the full conditional distributions are simulated through suitable
algorithms, following a pre-defined hierarchy available on the OpenBUGS. We made all sim-
ulations using the R package R2OpenBUGS.

4. Numerical Aspects

4.1 Simulation study I

A simulation study is conducted to assess the behavior of the ECM algorithm, in terms
of parameter recovery, and the accuracy of the corresponding SEs, calculated through
the observed Fisher information matrix. For that, N = 1, 000 replications are generated
considering n = 500 and ✓> = (↵,�, �) = (0.5, 1.0, 0.67), which induces a strong positively
skewed behavior of the SNBS distribution. In Table 1 we can see the mean of the estimates
( b̄✓), the mean of the theoretical (asymptotic) SE (SE(b✓)) and the empirical SE (SEemp).
We can notice that the parameters are well recovered and that the empirical SE are close
to the theoretical ones, which indicates that the use of the observed Fisher information
matrix, to obtain the corresponding SE, is appropriate.

Table 1. Results of the simulation study I.

b̄✓ SE(b✓) SEemp

b↵ 0.495 0.019 0.021
b� 1.003 0.032 0.028
b� 0.667 0.015 0.012



Chilean Journal of Statistics 67

4.2 Simulation study II

We consider a total of 30 scenarios, resulting from the combination of the levels of:
three di↵erent sample sizes (n) (10, 50, 200), under ↵ 2 (0.5; 1.5), � = 1 and � 2
(�0.67;�0.45; 0; 0.45; 0.67). The sample sizes are chosen in order to verify the proper-
ties of the estimators, as consistency, and to compare their behavior, in terms of accuracy.
The values of ↵ and � are chosen in order to induce di↵erent shapes and small variabil-
ity, whereas the values of � induce from null to high positive/negative asymmetry. We
calculated the usual statistics to measure the accuracy of the estimates: bias, variance
(Var), root mean squared error (RMSE) and absolute value of the relative bias (AVRB).

Let ✓ be the parameter of interest, b✓r be some estimate related to the replica r and b✓ =

(1/R)
P

R

r=1
b✓r. The adopted statistics are: Bias = b✓� ✓, Variance = (1/R)

P
R

r=1(
b✓r � b✓)2,

RMSE = ((1/R)
P

R

r=1(✓ � b✓r)2)1/2, AVRB = |b✓ � ✓|/|✓|.
The usual tools for monitoring the convergence of the MCMC algorithms, see Gamer-

man and Lopes (2006), indicate that a burn-in of 4,000, a thin of 100, simulating a total of
100,000 values, are enough to produce valid MCMC samples of size 1,000 for each parame-
ter. Since the other results are similar (they are omitted here but they are available under
request from the authors), we present only those related to the scenario where ↵ = 0.5,
� = 1, � = �0.67, varying the sample size. We used (< 0.001) to represent positive val-
ues (statistics and/or estimates) and (> �0.001) to denote negative values, when they
are close to zero. In addition, we refer the Bayesian estimates as “augmented”, when the
augmented likelihood function is used, and “original”, whenever the original likelihood
function is considered. The selected results can be seen in Table 2. In general, we can see
that, as the sample size increases, the estimates obtained by the three approaches tend
to the correspondent the respective true values. When ↵ = 0.5, the ML estimates are
more accurate than the Bayesian ones, especially considering the bias and AVRB met-
rics. In other scenarios (not shown), when ↵ = 1.5, the opposite occurs for all sample
sizes. Concerning � and �, it is possible to notice that, under the smallest sample size
(n = 10), the ML approach presents more accurate estimates than the Bayesian ones. In
addition, for n = 50 and n = 200, Bayesian estimates, for both parameters, are closer
to the respective true values. In conclusion, we can say that all estimators, mainly the
Bayesian ones, are consistent, since both bias and RMSE tend to decrease, as the sample
size increases. Furthermore, the results indicate (including those not shown here) that the
Bayesian approach provided the most accurate estimates. Moreover, we can notice that
the original and augmented approaches, performed quite similarly. Therefore, we decide to
use the original likelihood function) approach, since it is easier to implement and faster.

4.3 Real data analysis I

We analyze a data set corresponding to self-e�cacy, which is available in the R software
and can be accessed from the EstCRM package through the command data(SelfEff). A
group of 307 pre-service teachers, graduated from various departments in the college of
education, are asked to check on a 11 cm line segment with two end points (can not do at
all, highly certain can do) using their own judgment for the 10 items that measure teacher
self-e�cacy on di↵erent activities. We take, as response variable, the teacher self-e�cacy
in the creation of learning environments in which students can e↵ectively express them-
selves. Table 3 presents some descriptive statistics, including location measures, standard
deviation (SD), coe�cient of skewness (CS), and kurtosis (CK). We can notice that the
distribution is strongly negatively skewed. We fit the CSNBS and BS distributions, using
the Bayesian augmented and the ML method, to the data. The results obtained consider-
ing the frequentist approach are omitted here but they are available under request from
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Table 2. Results of simulation study II with � = �0.67.

Parameter n Method Mean Variance Bias RMSE AVRB

Augmented 0.577 < 0.001 0.077 0.081 0.154
10 Original 0.578 0.001 0.078 0.082 0.156

ML 0.520 0.071 0.020 0.267 0.040
↵ Augmented 0.511 < 0.001 0.011 0.016 0.022

50 Original 0.511 < 0.001 0.011 0.015 0.021
ML 0.498 0.001 -0.002 0.033 0.004

Augmented 0.502 < 0.001 0.002 0.005 0.004
200 Original 0.502 < 0.001 0.002 0.005 0.004

ML 0.490 < 0.001 -0.010 0.012 0.019
Augmented 1.006 < 0.001 0.006 0.023 0.006

10 Original 1.004 < 0.001 0.004 0.021 0.004
ML 1.105 0.214 0.105 0.474 0.105

� Augmented 0.996 < 0.001 -0.004 0.009 0.004
50 Original 0.997 < 0.001 -0.003 0.009 0.003

ML 1.039 0.018 0.039 0.140 0.039
Augmented 0.999 < 0.001 -0.001 0.005 0.001

200 Original 0.999 < 0.001 -0.001 0.005 0.001
ML 0.997 < 0.001 -0.003 0.004 0.003

Augmented -0.157 0.067 0.513 0.575 0.766
10 Original -0.182 0.054 0.488 0.540 0.728

ML -0.603 0.028 0.067 0.179 0.100
� Augmented -0.493 0.059 0.177 0.301 0.264

50 Original -0.505 0.049 0.165 0.276 0.247
ML -0.569 0.012 0.101 0.148 0.150

Augmented -0.614 0.017 0.056 0.142 0.083
200 Original -0.601 0.015 0.069 0.141 0.103

ML -0.523 0.002 0.147 0.153 0.220

the authors. The prior distributions are the same used in Section 3. In Table 4, in ad-
dition to the posterior expectations (PE), the posterior standard deviations (PSD) and
the 95% equi-tailed credibility intervals (CI), we also present the model selection criteria.
We consider the usual statistics of model comparison for both frequentist (AIC, BIC) and
Bayesian (DIC, EAIC, EBIC and LPLM) see, respectively (Akaike, 1974; Schwarz, 1978;
Spiegelhalter et al., 2014). The smaller values of AIC and BIC indicates the model that
fits the data better. In addition, the smaller the values of DIC, EAIC, EBIC, the better
the model fit, occurring the opposite with the LPML. We can notice that the estimates
of ↵ and � (under the CSNBS model) indicate that the distribution is strongly negatively
skewed. Notice also that we have indications that the asymmetry parameter is di↵erent
from zero, since this value does not belong to the CI. Moreover, the criteria indicated the
CSNBS model is the best. Figure 10 (left) presents the histogram of the observations and
estimated densities. We can notice that the CSNBS distribution presents an advantage
over the BS model. From Figure 10, we can notice that the CSNBS distribution predicts
better the observations than the BS distribution. In conclusion, we can say that the CSNBS
model is preferable to the BS model.

Table 3. Descriptive statistics for the teacher self-e�cacy data.

Mean Median Minimum Maximum SD Asymmetry Kurtosis

9.205 9.700 1.650 10.900 1.365 -1.752 7.781

4.4 Real data analysis II

We analyze now a data set corresponding to prices of bottles of Barolo wine and discussed
in Azzalini (2013). It concerns the price (in euros) of bottles (75 cl) of Barolo wine. The
data have been obtained in July 2010 from the websites of four Italian wine resellers,
selecting only quotations of Barolo wine, which is produced in the Piedmont region of
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Table 4. Posterior expectations (PE), posterior standard deviations (PSD), equi-tailed 95% CI and model
selection criteria.

Parameter PE PSD CI95%

CSNBS

↵ 0.154 0.002 [0.151; 0.157]
� 8.871 0.016 [8.836; 8.903]
� -0.971 0.003 [-0.978; -0.966]
EAIC 1,021.912
EBIC 1,033.093
DIC 3,047.154
LPML -508.531

BS

↵ 0.205 0.008 [0.190; 0.222]
� 9.016 0.105 [8.815; 9.229]
EAIC 1,252.772
EBIC 1,260.226
DIC 3,744.335
LPML -632.9564
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Figure 10. Histogram of the observations and estimated densities (left), histogram of the predicted and observed
distributions for the CSNBS (center) and BS (right) models.

Italy. The price does not include the delivery charge. In Table 5 and Figure 11 (left), we
present a descriptive analysis. It is possible to see that the distribution is positively skewed
and more concentrated in the first class [0,100]. We fit the CSNBS and BS distributions,
using the Bayesian augmented and the ML method, to the data. The results obtained
considering the frequentist approach are omitted here but they are available under request
from the authors. The prior distributions are the same used in Section 3. In Table 6,
in addition to the posterior expectations (PE), the posterior standard deviations (PSD)
and the 95% equi-tailed CI, we also present the Bayesian criteria. Table 6 shows that the
estimates of ↵ and � (under the CSNBS model) indicate that the distribution of the prices
is strongly positively skewed. Notice also that we have indications that the asymmetry
parameter is di↵erent from zero, since this value does not belong to the CI. Moreover,
the criteria indicated the CSNBS model is the best. Also, we construct QQ plots with
simulated envelopes. Similar to Vilca et al. (2011), we considered the Bayesian estimates
of ↵ and � in d(↵,�) = (1/↵2)(T/� + �/T � 2). When T ⇠ BS(↵,�), it is know that

d(↵,�) ⇠ N(0, 1). Since the observations d(b↵, b�) are expected to follow a standard normal
distribution, under the well fit of the model, the envelopes are simulated from the standard
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normal distribution, as described in Atkinson (1985). Similarly, if T ⇠ CSNBS(↵,�, �),

thus d(↵,�) ⇠ CSN(0, 1, �). Since the observations d(b↵, b�) are expected to follow a CSN
distribution, under the well fit of the model, the envelopes are simulated from the CSN
distribution. These plots are presented in Figure 11 (lines represent the 5th percentile, the
mean, and the 95th percentile of 100 simulated points). From those figures, we conclude
that the CSNBS distribution provides a better fit than the BS model. Specifically, from
the QQ plot shown in Figure 11 (a), we notice that the observations appear to form a
slight upward-facing concave. However, the QQ plot shown in Figures 11 (b) indicate that
the CSNBS distribution o↵ers an excellent fit, provided that the majority of observations
are inside of the envelope.

Table 5. Descriptive statistics for the prices of bottles of Barolo wine.

Mean Median Minimum Maximum SD Asymmetry Kurtosis

124.617 72 14 1000 37.041 2.903 12.982

Table 6. Posterior expectations (PE), posterior standard deviations (PSD), equi-tailed 95% CI and model
selection criteria.

Parameter PE PSD CI95%

CSNBS

↵ 0.844 0.037 [0.775; 0.917]
� 89.576 3.911 [82.260; 97.871]
� 0.690 0.070 [0.541; 0.809]
EAIC 3,437.879
EBIC 3,449.060
DIC 10,292.690
LPML -1,718.110

BS

↵ 0.858 0.035 [0.794; 0.929]
� 92.444 4.264 [84.778; 101.302]
EAIC 3,474.893
EBIC 3,482.346
DIC 10,410.620
LPML -1,736.669
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Figure 11. Histogram of the prices of bottles of Barolo wine (left), QQ plots with envelopes for BS (center) and
CSNBS (right) distributions for the data of Barolo wine bottle prices.
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5. Concluding Remarks

In this paper, we introduced a new distribution for modeling positive data which can
present both positive and negative asymmetry, by combining the Birnbaum-Saunders
and the centered skew normal distributions. We developed both maximum likelihood and
Bayesian estimation procedures, comparing them through a suitable simulation study. The
convergence of the conditional expectation maximization and MCMC algorithms were ver-
ified and several factors of interest were compared in the parameter recovery study. In
general, as the sample size increases, the results indicated that the Bayesian approach
provided the most accurate estimates. In future works we can consider the development
of predictive posterior checking to detect the goodness of fit. Furthermore, we suggest the
use of Je↵reys-rule prior and independence Je↵reys prior. Other auxiliary algorithms as
the Hamiltonian Monte Carlo (see Homand and Gelman, 2014; Carpenter et al., 2016)),
adaptive reject sampling and slice sampling (see Gamerman and Lopes, 2006) can be used
and compared. Other family of distributions could be used instead of the centered skew
normal distribution, as the scale mixture of the SN distributions, to generate new family
of Birnbaum-Saunders-type distributions. Finally, other numerical methods to obtain ap-
proximation for the marginal posterior distributions, such as the INLA algorithm, can be
considered (see Rue and Martino, 2009).

6. Appendix

Appendix A. Moments of the CSNBS Distribution
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From the binomial theorem again, we have
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Appendix B. The ECM Algorithm

The following result is used in the proof of Theorem 2.1.

Lemma 1. Let X ⇠ N(⌘, ⌧2), thus 8a 2 R
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Proof of Theorem 2.1
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From the above result, the proof is completed.
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Therefore, the proof of (i) follows directly from that fH|T (h|t) = fT |H(t|h)fH(h)/fT (t). To
demonstrate (ii)-(iii), notice, for k = 1, 2, we have that
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Then, using some properties of the HN distribution from Lemma 1, the proof is com-
pleted.
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Appendix C. The Observed Fisher Information Matrix

The necessary expressions are given below. For the sake of simplicity, we consider the
following notation to obtain the necessary expressions, ati;µ,� = ati;µ,�(↵,�) and Ati;� =
Ati;�(↵,�).
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where W
0

�(x) = �W�(x)[x+W�(x)] is the derivative of W�(x) with respect to x, see Vilca
et al. (2011), and the other quantities are as before defined.
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