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Abstract

In recent years, several attempts to improve the efficiency of the canonical genetic algo-
rithm have been presented. The advantage of the elitist non-homogeneous genetic algo-
rithm is that, variations of the mutation probabilities permit the algorithm to broaden
its search space at the start and restrict it later on, however the way in which the muta-
tion probabilities vary is defined before the algorithm is initiated. To solve this problem
various types of controllers can be used to adjust such changes. This work presents an
elitist non-homogeneous genetic algorithm where the mutation probability is adjusted
by a fuzzy controller. Many simulation studies have used fuzzy controllers to adjust the
parameters in order to improve the performance of the genetic algorithm. However, no
previous investigation has discussed the conditions that must be met by the controller
in order to ensure convergence of the genetic algorithm. A generalized example will be
used to illustrate how sufficient conditions for the algorithm convergence can be readily
achieved. And finally, numerical simulations are used to compare the proposed algorithm
with the canonical genetic algorithm.

Keywords: Convergence · Fuzzy controller · Genetic algorithms · Global optimization
· Markov chain.

Mathematics Subject Classification: 60J20 · 65C40.

1. Introduction

The Canonical Genetic Algorithm (CGA), presented in Holland (1975), is a computational
tool to describe the natural genetic evolutionary process of a population, involving three
stages: selection, crossover (mating) and mutation. The CGA considers a population of
N individuals or chromosomes, (u1, u2, . . . , uN ). An evaluation function f : E → (0,∞)
assigns a fitness value 0 < f(ui) < ∞ to each individual, ui. In the selection stage, the
current population is re-sampled; individuals with higher fitness are more likely to be se-
lected, while those with low fitness will tend to be eliminated (elitist selection). Following
the natural evolutionary process, biological reproduction (crossover) and occasional muta-
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tion occur. In the crossover stage, individuals are independently chosen for crossover, with
a prescribed probability pc. Mutation also operates independently on each individual, with
a prescribed probability pm. For simpler implementation, each individual is represented
by a binary vector of length l, where l depends on the desired precision. Further details,
as well as implementation procedures, see Campos et al. (2012a), Andrade and Pereira
(2015) and Goldberg (1989).

In the optimization context, CGAs are used to solve problems of the type max{f(x), x ∈
E} with the objective function satisfying 0 < f(x) < ∞. The individuals represent the
feasible solutions, and in the selection stage, the best fitted/searched points are preserved
with higher probability. In the crossover stage, neighboring points are searched, allowing
a refined comparison in the surroundings. In the mutation stage, random points, possibly
distant from the preserved ones, are visited as a strategy to avoid being trapped in local
optimum points. In Rudolph (1994) it is shown that this algorithm does not converge
almost surely to the set of populations that contains the optimum point as one of its
points. Moreover, in Rudolph (1994), was proposed a modification called the Elitist Genetic
Algorithm (EGA) and its convergence was proved.

In Grefensttete (1986) is presented a series of parameters to the GA and simulations
were developed to illustrate that variations on those parameters interfere the output of
the algorithm. In Lee and Takagi (1993) is related that, based on Grefensttete (1986), one
attempt of defining the way of varying the parameters in order to improve the performance
of the algorithm was tried but unsuccessfully. For this reason, a fuzzy controller was pro-
posed in that work as a tool to be used to vary the parameters. However, nothing beyond
simulations was presented to show that this proposal could be interesting.

The non-homogeneous Genetic Algorithm (NHGA) in Campos et al. (2012b) was in-
troduced as an attempt to improve the efficiency of the CGA, by allowing the mutation
and crossover probabilities to vary according to certain hypotheses. A non-homogeneous
version of the EGA, called the elitist non-homogeneous genetic algorithm (ENHGA), see
Cruz and Pereira (2012), was introduced in order to improve the efficiency of the EGA.
Other attempts to improve the efficiency of the CGA, without changing the mutation
and crossover probabilities, can be found in Dorea et al. (2010). Numerical comparisons
between ENHGA and EGA can be found in Campos et al. (2012a), and a proper way of
running the ENHGA is described in Andrade and Pereira (2015).

The advantage of the ENHGA over the EGA is that variations of the mutation prob-
abilities (starting high and decreasing) permit the algorithm to broaden its search space
at the start and restrict it later on. The problem in using the ENHGA is that the way
in which the mutation probabilities vary is defined before the algorithm is initiated; in
other words, it is already previously defined when the algorithm starts. The ideal would
be for the parameters to vary, rather than only diminish, depending on a certain measure
of dispersion of the elements of the current population, as well as the number of iterations
of the algorithm. To this end, controllers are introduced in the intermediate stages of the
algorithm in order to adjust such changes. Various types of controllers can be used for this
task, ranging from deterministic methods to those that employ fuzzy logic. Many simula-
tion studies have used fuzzy controllers to adjust the parameters in order to improve the
performance of the genetic algorithm. However, no previous investigation has discussed
the conditions that must be met by the controller in order to ensure convergence of the
genetic algorithm, see Yun and Gen (2003). Without a convergence proof for the algorithm
we do not have guarantee that the algorithm behaves as it supposed to do.

In many others papers GA and fuzzy controllers are used to obtain a rule basis and
membership functions in a dynamic way, so that the performance of the fuzzy controller
is improved. An example of that use can be seen in Lam et al (2004) where a GA, called
improved GA, is used to adjust the rules and functions mentioned above. However, no
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additional piece of information is given to explain why that GA is better.
It is shown in Section 4 that when you are looking for a pair of parameters (pm, pc) that

improves the convergence rate of the algorithm, it is worth to concentrate your efforts on
pm. The contribution of this work is to show how analyze the membership functions and
the rule basis of the fuzzy controller, which is adjusting just the mutation probability, so
as to guarantee the convergence of the GA.

A very simple fuzzy controller with one input variable and one output variable was
constructed, using underlying membership functions as well as rule basis in such process.
The goal of this paper, besides the convergence results, is to illustrate how to use the
membership functions and the rule basis in order to guarantee the convergence of the GA.
In the example that was developed, the input variable is the number of iterations (Ng)
and the output variable is the mutation probability (pm).

This paper is divided into 4 parts. In Section 2, definitions and results concerning the
non-homogeneous Markov chains that will be used in the rest of the paper are presented. In
Section 3, the fuzzy controller is introduced, the way the controller is used in the evolution
of the genetic algorithm is explained, and convergence results are obtained in Theorem 3.1
and Theorem 3.2. Theorem 3.2 could be easily extended to the case where more than one
input variable and more than one output variable, e.g. pm and pc, are used by the fuzzy
controller. In Section 4, numerical comparisons between the canonical genetic algorithm
and the algorithm presented in Section 3 are developed.

2. Preliminaries

Let f : E → (0,∞) be a function. An elitist non-homogeneous genetic algorithm was built
in order to find the point

x∗ = arg max
x

{f(x), x ∈ A},

where A is a discretization of E, the domain of the function f . To proceed the following
steps of the algorithm, such points are represented as binary vectors of length l, where
l depends on the desired precision. A population of size N is considered and let Z =
{(u1, u2, . . . , uN );ui ∈ A, i = 1, 2, . . . , N} be the set of all populations of size N . Z is the
state space of the Markov chain that is used to prove the convergence of the algorithm (see
Campos et al. (2012b), Dorea et al. (2010), Cruz and Pereira (2012) and Rudolph (1994)).

The evolution of the ENHGA is different from the evolution of the EGA just by the up-
date of the values of parameters pm and pc. Thus, the elitist algorithm can be summarized
in the following sketch:

a) Choose randomly an initial population having N elements, each one being represented
by a binary vector of length l, and create one more position, the (N + 1)-th entry of the
population vector, which will keep the best element from the N previous elements.

b) Repeat
(1) Perform selection with the first N elements.
(2) Perform crossover with the first N elements.
(3) Perform mutation with the first N elements.
(4) If the best element from this new population is better than that of the (N + 1)-th

position, change the (N+1)-th position by this better element, otherwise, keep the
(N + 1)-th position unchanged.

(5) Change the values of pc and pm as previously planned.
c) Until some stopping criterion applies.
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Note that one new position was added to the population vector, now the set of all
populations is different from Z, so denote this new state space by Z̃. In Cruz and Pereira
(2012), it is shown that the ENHGA is a non-homogeneous Markov chain, with a finite
state space Z̃, whose transition matrices are given by Pn = SCnMn, ∀n ∈ IN , where
S,Cn,Mn are transition matrices which represent the selection, crossover and mutation
stages respectively. Here, Mn is composed by the third and fourth steps described in
sketch just presented. In the same paper it is shown that there is a sequence {αn}n∈IN
satisfying a Doeblin type condition

inf
i∈Z̃,j∈Z̃∗

Pn(i, j) ≥ αn,

where Z̃∗ ⊂ Z̃, which contains all populations that have the optimum point as one of its
points. The following results were obtained.

Lemma 2.1 Let {Xn}n∈IN be the Markov chain which models the elitist non-homogeneous

genetic algorithm. If the sequence above is such that
∑
k≥1

αk =∞, then

P ( lim
n→∞

Xn ∈ Z̃∗) = 1, (1)

that is, the chain finds the optimum point almost surely.

A more simple condition, to run in simulations, that guarantee the previous result is:

Lemma 2.2 Let {Xn}n∈IN be the Markov chain which models the elitist non-homogeneous
genetic algorithm. If the mutation probabilities {pm(n)}n∈IN ⊂ (0, 1) are such that pm(n) >
γ > 0 for all n ∈ IN , then (1) holds.

So far we have the hypothesis the algorithm has to satisfies in order to enter into the set
where at least one coordinate is the searched point. However, one could be interested in
the equilibrium distribution of the algorithm. The algorithm we are dealing with is a non-
homogeneous Markov chain and to find the equilibrium distribution we need to remember
the weak and strong convergence definitions.

So, let {Xn} be a non-homogeneous Markov chain with finite state space Z̃ and with
transition matrices given by {Pm}m≥0, where

Pm(i, j) = P (Xm+1 = j|Xm = i) = P (m,m+1)(i, j), i, j ∈ Z̃.

By the properties of non-homogeneous Markov chains, the k step transition is given by
the product of the transitions matrices PmPm+1 · · ·Pm+k−1, for all m ≥ 0. Thus,

P (m,m+k)(i, j) =
∑

i1∈Z̃,...,ik−1∈Z̃

Pm(i, i1)Pm+1(i1, i2) · · ·Pm+k−1(ik−1, j)

and we can write the Chapman-Kolmogorov equation as

P (m,m+k) = P (m,m+r) · P (m+r,m+k) , 1 ≤ r < k.

Definition 2.3 A non-homogeneous Markov chain {Pn}n∈IN is said to be weakly ergodic if
it satisfies

lim
k→∞

‖µ0P
(m,k) − µ1P

(m,k)‖ = 0 , ∀m ≥ 0 (2)
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where µ0 and µ1 are any probability distributions, ‖P‖ = sup
i

∑
j∈Z̃

|Pij | and ‖µ‖ =
∑
j∈Z̃

|µj |.

In Issacson and Madsen (1976), it is proved that (2) is equivalent to:

lim
k→∞

δ(P (m,k)) = 0, ∀m ≥ 0.

Where, for a stochastic matrix Q = (qij)i,j∈Z̃ , the Dobrushin’s delta coefficient is defined
by

δ(Q) = sup
i,k∈Z̃

∑
j∈Z̃

[qij − qkj ]+ with [qij − qkj ]+ = max{0, qij − qkj},

or equivalently,

δ(Q) =
1

2
sup
i,k∈Z̃

∑
j∈Z̃

|qij − qkj |.

We see easily that δ(P ) ≤ 1, for any stochastic matrix P .

Definition 2.4 A non-homogeneous Markov chain {Pn}n∈IN is said to be strongly ergodic
if there exists a constant matrix P∞ such that

lim
k→∞

‖P (m,m+k) − P∞‖ = 0 , ∀m ≥ 0. (3)

In Cruz (1998) is proved the following theorem:

Theorem 2.5 Let {Pn}n∈IN be a non-homogeneous Markov chain and P a transition kernel
which is weakly ergodic. If

lim
n→∞

‖Pn − P‖ = 0 (4)

then {Pn}n∈IN is strogly ergodic.

So, when a Markov chain is strongly ergodic, that is (3) holds, then there exists a
equilibrium distribution π which is one of the rows of P∞.

In the next section it is shown how to use the membership functions and the rule basis in
a very simple case so as to guarantee that the hypotheses of Lemma 2.2 are satisfied. The
procedure used in such example are easily extended to the cases where more input/output
variables are used. Furthermore, with aditional hypothesis on pm and pc and using Theorem
2.5 it is shown that the algorithm is strongly ergodic.

3. The Fuzzy Controller

A fuzzy controller has the ability to associate an output value with an input value. Its
functioning involves four essential components: fuzzification, the inference method, the
rule basis, and defuzzification, as shown in Figure 1, for more details see Pedrycz (1993).

To illustrate how to use the fuzzy controller to adjust the values of the mutation proba-
bility pm, let the input variable Ng be the number of iterations of the GA and the output
variable is the new value of pm that will be used by the algorithm in the next iteration.
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Figure 1. Fuzzy controler scheme

Fuzzification is the first part of the process, and consists of converting the numerical
input into fuzzy sets. For such task we need the membership functions for the input and
output variables, as presented in Figure 2 and 3.

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5
1.

0
1.

5

n. of steps

dN
g

 L  A  H 

x4x3x2x1

Figure 2. Membership function for Ng

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Mutation Probability

dP
m

 L  A  H 

y4y3y2y1

Figure 3. Membership function for pm

The second part involves the definition of an inference method and a rule basis in order
to get from an input value a fuzzy set as output. Considering the following rule basis

(1) If Ng is low (L), then pm is high (H);
(2) If Ng is average (A), then pm is average (A);
(3) If Ng is high (H), then pm is low (L).

and the Mamdani inference method, based on max-min operators, we obtain different fuzzy
sets (the shadowed areas) as presented in Figures 4 and 5.

Finally, defuzzification is an operation that converts a fuzzy set to a numerical value,
which can be achieved using a technique such as the Center of Gravity method, described
by the formula

C =

∫
uϕ(u)du∫
ϕ(u)du

(5)

where ϕ(u) is the function whose area below it and above the x-axis is the shadowed area
in Figures 4 and 5.

Theorem 3.1 Consider a fuzzy controller with some input variables and with the mutation
probability pm and crossover probability pc as its output variables. In order to use this
controller to ensure the convergence of an EHNGA, it is sufficient that there exists a
positive integer L and a positive real number γ, such that, from the L-th iteration of the
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Figure 4. Possible outcomes when x ∈ (x3, x4)

algorithm on, the pm, calculated as in the Equation (5), satisfies the following condition:

pm ≥ γ > 0. (6)

Proof If the output of the controller satisfies Equation (7) then it satisfies the hypotheses
of Lemma 2.2, so the algorithm converges. �

For a special class of fuzzy controllers we can state

Theorem 3.2 An ENHGA that has its crossover/mutation probabilities adjusted by a
fuzzy controller, that use input and output variables with membership functions like those
presented in Figures 2 and 3 and the Mamdani inference method, based on max-min
operators converges.

Proof We want to prove that the hypothesis of the Theorem 3.1 is satisfied, that is, pm
satisfies (6). The only difference of one or more input variables is the number of cases to be
analysed. For this reason, the one input variable case is explained in details and the case
with more than one variable is easily obtained by the finiteness of the number of cases to
be analysed.

Considering the input variable membership function as that of Figure 2 and the output
variable membership function as that of Figure 4, we have that just one rule is triggered
when x ∈ (0, x1) ∪ (x2, x3) ∪ (x4, 1000). By the membership functions for pm we have:

If Ng triggers just the L (x ∈ (0, x1)), then pm is H and since dNg(L)(x) = 1 this implies
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Figure 5. Possible outcomes when x ∈ (x1, x2)

that ϕ(u) = dpm(H)(u), and

∫
uϕ(u)du∫
ϕ(u)du

≥
∫
y3ϕ(u)du∫
ϕ(u)du

=
y3

∫
ϕ(u)du∫
ϕ(u)du

≥ y3.

If Ng triggers just A (x ∈ (x2, x3)), then pm is A and since dNg(A)(x) = 1 this implies
that ϕ(u) = dpm(A)(u), and

∫
uϕ(u)du∫
ϕ(u)du

≥
∫
y1ϕ(u)du∫
ϕ(u)du

=
y1

∫
ϕ(u)du∫
ϕ(u)du

≥ y1.

When Ng triggers just H then dpm(L) is activated so ϕ(u) = dpm(L)(u) and

∫
uϕ(u)du∫
ϕ(u)du

≥
∫ y2

0 udpm(L)(u)du∫ y2
0 dpm(L)(u)du

≥
∫ y1

0 udpm(L)(u)du∫ y2
0 1du

≥ y2
1

2y2
.

If two rules are triggered. This happens when x ∈ (x1, x2) ∪ (x3, x4).
If x ∈ (x1, x2) then dNg(L) and dNg(A) are trigged, so we have one of the possible

outputs illustrated in Figure 5.
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In any of the above situations we have∫
uϕ(u)du∫
ϕ(u)du

=

∫ 1
y1
uϕ(u)du∫ 1

y1
ϕ(u)du

≥
∫ 1
y1
y1ϕ(u)du∫ 1
y1
ϕ(u)du

= y1

If x ∈ (x3, x4), then the rules Ng(H) and Ng(A) are triggered and we have as output
dpm(L) and dpm(A) respectively, and one of the possible situations showed in Figure 4
will happen.

Observe that when two rules are triggered, this implies Ng(H)(x), Ng(A)(x) < 1 and
when that happens the maximum value of the output which is max{Ng(A)(x), Ng(H)(x)}
occurs in a interval whose length is bigger than min{(y3−y2), y1}. Let denote such interval
by I. So, ∫

uϕ(u)du∫
ϕ(u)du

=

∫ y4
0 uϕ(u)du∫ y4
0 ϕ(u)du

≥
∫
I uϕ(u)du

y4 max{Ng(A)(x), Ng(H)(x)}

=
max{Ng(A)(x), Ng(M)(x)}

∫
I udu

y4 max{Ng(A)(x), Ng(M)(x)}
≥ β

y4

where β = min{y
2
1

2 ,
y23−y22

2 }.
In all cases, we have found lower bounds for pm ( βy4 ,

y21
2y2
, y1 and y3). All of these lower

bounds are fixed and positive, so, defining γ = min{ βy4 ,
y21
2y2
, y1, y3}, we have pm ≥ γ > 0

and the condition required in Theorem 3.1 is satisfied. �

So far we just guaranteed that in a finite time the chain will have a searched point as
one of its coordinates (the last one) almost surely. Under these same hypotheses we are
not able to guarantee if there exists a equilibrium distribution for such algorithm, but
with aditional hypotheses on {pm(n)} and {pc(n)} the algorithm is shown to be strongly
ergodic.

Theorem 3.3 If the rule basis are chosen in such a manner that as the times goes by the
outputs pm(n) and pc(n) converges to positive values pm > 0 and pc > 0 respectively, then
the algorithm is strongly ergodic and has a equilibrium distribution.

Before proving this theorem note that the example we have been developing satisfies the
hypotheses of this theorem, because we have pc(n) = pc > 0 for all n, and

pm(n)→
∫
uϕ(u)du∫
ϕ(u)du

=

∫ y2
0 udpm(L)(u)du∫ y2
0 dpm(L)(u)du

> 0.

Proof It is known that the inputs of the transition matrix Pn of the elitist non-
homegeneous genetic algorithm is a polynomial expression whose variables are pc(n) and
pm(n). Since pm(n) and pc(n) converge to positive constants, then Pn → P and even
though P is not positive we have that δ(P ) < 1 and hence the chain is weakly ergocidic.
So, all hypotheses of Theorem 2.5 are satisfied and we have that the algorithm is strongly
ergodic. �

4. Numerical comparisons

In this section we develop some tools to measure the mean time that the algorithm takes to
find the optimum point of an objective function. In the following examples, we analyze the
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importance of the values of the mutation and crossover probabilities on the convergence
rate.

In the next examples, 100 repetitions of each algorithm are run and in each repetition,
1000 iterations are performed. After that, we observe the number of repetitions where the
algorithm finds the optimum point (called here success) in x iterations, x = 1, . . . , 1000.
The summarized results are shown in Table 1, where a0 is the number of success observed
when the algorithms starts, a1 is the number of success after one iteration, . . . and a1000

is the number of success after thousand iterations. Based on the results of the simulations

Iteration Number of successes
0 a0

1 a1
...

...
1000 a1000

Table 1. Number of successes in each iteration

we are able to develop a measure to evaluate the mean time the algorithm takes to find
the optimum point of the function f , namely:

mtexp(f) =

1000∑
k=0

kpk

where a0, (a1−a0), . . . , (a1000−a999) represent the number of repetitions that the algorithm
has found the optimum point at the step 0, 1, 2, . . . , 1000 respectively. Moreover, p0 = a0

100

and pi = ai−ai−1

100 , i = 1, 2, . . . , 1000 are the corresponding proportions of realizations where
the optimum was found at step 0, 1, . . . , 1000, respectively.

We observe that after 1000 iterations, in some realizations (mostly when the population
is small) the algorithm does not find the optimum point. So, a penalization function is
introduced to increase the mean time on those realizations that the maximum is not found
after 1000 iterations. We define the penalization function as

p(f) =
100− a1000

100
× penalty,

where the factor penalty represents the estimated number of iterations to find the optimum
point. Such penalty is applied to all cases, and the larger the number of trajectories that
does not find the maximum in 1000 iterations is; the larger the value of its penalization
function is. So, the mean time function is given by

mt(f) = mtexp(f) + p(f).

The evaluation functions considered in the examples are widely used in the literature to
test algorithms’ performance:

(1) f(x, y) = 6+x2−3cos(2πx)+y2−3cos(2πy) whose domain is D = [−2, 1]× [−2, 1].

(2) f(x, y) = 0.5 − (sin(
√
x2 + y2)2 − 0.5)/(1 + .001 ∗ (x2 + y2))2 whose domain is

D = [−1280
63 , 1240

63 ]× [−1280
63 , 1240

63 ].
(3) f(x, y) = 1/(0.3 + x2 + y2) whose domain is D = [−4, 2]× [−4, 2].
(4) f(x, y) = (1 + (19 − 14x + 3x2 − 14y + 6xy + 3y2)(x + y + 1)2)(30 + (18 − 32x +

12x2 + 48y − 36xy + 27y2)(2x− 3y)2) whose domain is D = [−2, 2]× [−2, 2].
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(5) f(x, y) = (y − (5.1x2)/(4π2) + (5x)/π − 6)2 + 10(1 − 1/(8π)) ∗ cos(x) + 10 whose
domain is D = [−5, 10]× [0, 15].

In the following simulations, the domain of the functions are discretized into a net of
212 points and the factor penalty is 1200. Then, the EGA is used to search the optimum
point of each function. For each function the algorithm was run for the following values of
pm and pc:

• Mutation probabilities = {0.01, 0.03, 0.05, 0.07, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.93,
0.95, 0.97, 0.99}.

• Crossover probabilities = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Moreover, we repeat the above scenarios considering different population sizes (10, 20, 30,
40 and 50).

In the following figures we show a pair of boxplots for each function. The boxplot on
the left was obtained from the simulations for a population of size 20, for some values of
pc while the mutation probability is fixed. The boxplot on the right is obtained under the
same conditions but the pc is ketp fixed while pm varies. It can be seen that when pm is
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fixed, the median of the mean time presents a low variability as a function of pc and its
distribution is, in general, right skewed independently of the function we are dealing with.
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On the other hand, when pc is fixed, the median of the mean time presents a high variability
as a function of pm and its distribution presents different behaviors (simetric, right skewed,
left skewed) depending on the function we are dealing with. Thus, we can say that there
is not a pair (pm, pc) that improves the convergence rate of the algorithm independetly of
the objective function and that for a given objective function if you are looking for a pair
of parameters (pm, pc) that improves the convergence rate of the algorithm, it is worth to
concentrate your efforts on pm, once it is found, if pc varies then the mean time for such
pair of parameters will not vary widely.

The following figures show the graphics of the mean time for the previous functions in
three different scenarios, namely:

(1) For a fixed pm = 0.01
(2) For a decreasing pm, it varies from 0.99 to 0.01 linearly.
(3) Using a fuzzy controller, which has input variable Ng and outuput variable pm,

having membership functions as those presented in Figures 2 and 3, where x1 =
200, x2 = 300, x3 = 400, x4 = 500 and y1 = 0.05, y2 = 0.1, y3 = 0.85, y4 = 0.9.
Moreover the rule basis, is given by: If Ng = L then pm = H, if Ng = A then
pm = L and if Ng = H then pm = L.
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5. Conclusion

Although the literature contains many studies in which fuzzy controllers have been used to
adjust the parameters of a genetic algorithm, all of them are exclusively concerned about
simulations involving different rule basis and membership functions for the controller.
Unfortunately, without a mathematical convergence proof, such experiments performed
in those papers can not be used in practice with other functions because no convergence
can be guaranteed. The present work states sufficient conditions that a fuzzy controller
has to satisfy in order to guarantee the convergence of an ENHGA whose parameters
(mutation/crossover probabilities) are adjusted by such controller. Theorem 3.1 shows a
safety way to set a class of fuzzy controllers to adjust the parameters of an ENHGA in
order to find the optimum point of an objective function and Theorem 3.3 shows that with
additional hypotheses there exists an equilibrium distribution for the algorithm. Moreover,
experiment shows that even naive controllers as the one used in this paper (based on the
number of iterations of the algorithm), can improve the convergence rate of the algorithm.
Finally, it was shown that there is not a pair of parameters (pm, pc) that improves the
performance of the algorithm for all objective functions and if one decides to search the best
parameters for each situation, it is worth to focus first in finding the mutation probability.
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