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Abstract

In this paper, the problem of the maximum of Shannon and Tsallis entropies is inves-
tigated by considering the inverse of the distribution function that is called quantile
function. The proposed method is a further generalization of a direct method for quan-
tile estimation, which used the integral-order probability weighted moments of in place
of the product moments commonly used in the maximum entropy principle. This paper
presents an advanced method combining simulation and optimization to determine the
fractional probability weighted moments and the Lagrange multipliers associated with
the quantile function. The numerical example presented, illustrates that the accuracy of
the proposed fractional probability weighted moments based on the quantile function,
is very high.
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1. Introduction

The Principle of Maximum Entropy is based on the premise that when estimating the
probability distribution, one should select a distribution which leaves the largest remain-
ing uncertainty (i.e., the maximum entropy) consistent with the constraints. This way
avoids the introduction of any additional assumptions or biases into the calculations. For
the first time, Jaynes (1957) obtained a probabilistic distribution with a minimal elliptic
under certain constraints using Shannon’s maximum entropy. Many people, such as Zo-
grafos (2008), have studied the features, applications and generalization of the maximum
entropy principle. This method has been used in many different branches of sciences that
a comprehensive review of it can be found in Cover and Thomas (2006) and Pardo (2006).

Suppose that X is a random variable with an unknown distribution function F (x). If
F (x) satisfy some special conditions, then we can find the form of a distribution function,
from sampling characteristics. But these estimations are not possible or, if possible, are
not reliable.

Tsallis (1988) proposed the generalization of the entropy by postulating a non-extensive
entropy, (i.e., Tsallis entropy), which covers Shannon entropy in particular cases. This
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measure is non-logarithmic. Vila et al. (2011) investigated the application of three dif-
ferent Tsallis-based generalizations of mutual information to analyze the similarity be-
tween scanned documents. Another paper by Castelló et al. (2011) presented a study and
a comparison of the use of different information-theoretic measures for polygonal mesh
simplification by applying generalized measures from Information Theory such as Havrda-
Charvát-Tsallis entropy and mutual information.

Tsallis entropy plays an essential role in non-extensive statistics, which is often called
Tsallis statistics, so that many important results have been published from the various
points of view by Tsallis (2009). As a matter of course, the Tsallis entropy and its related
topics are mainly studied in the field of statistical physics. However, the concept of entropy
is important not only in thermo-dynamical physics and statistical physics but also in
information theory and analytical mathematics such as operator theory and probability
theory.

In this paper, we deal with the estimation of the inverse distribution function, i.e. x(F ),
which is called quantile function (QF). If there is a specific type of moments that we
will define later, then we can maximize the entropy of the unknown function x(F ) under
moments conditions and obtain the shape, and the parameters of x(F ). The proposed
method is a further generalization of a direct method for quantile estimation, which used
the probability weighted moments (PWMs) of integral orders in place of product mo-
ments commonly used with maximum entropy principle. We present an advanced method
combining simulation and optimization to determine the fractional probability weighted
moments and the Lagrange multipliers associated with the quantile function. The rest of
this paper is dedicated to obtain estimations of the quantile function via the maximum
entropy method by using weighted moments.

This paper is organized as follows: Section 2 defines probability weighted moments and
introduces one approximation. Section 3 and Section 4 study the Shannon maximum en-
tropy and Tsallis maximum entropy, respectively. Finaly Section 5 studies the accuracy of
the obtained approximation for QF, with an example based on generalized Pareto Distri-
bution (GPD).

2. Probability weighted moments

For a random variable X, the probability weighted moments (PWM), is defined as,

Mr,s,t = E[XrF s(1− F )t] =

∫ 1

0
[x(F )]rF s(1− F )tdF. (1)

Usually r, s, t are integers and Mr,s,t is called integral-order probability weighted moment
(IPWM). If at least one of these three values is a real (non-integer) and positive, Mr,s,t is
called the fractional probability weighted moment (FPWM). Two special cases below are
simple and often used.

αt = M1,0,t =

∫ 1

0
x(F )(1− F )tdF,

βs = M1,s,0 =

∫ 1

0
x(F )F sdF. (2)
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For an ordered sample, x1 ≤ x2 ≤ · · · ≤ xn (n is the number of sample data), αt and βs
can be approximated from the following formula (Deng and Pandey, 2008).

at =
1

n

n∑
i=1

(
n−i
t

)
xi(

n−1
t

) ,
bs =

1

n

n∑
i=1

(
i−1
s

)
xi(

n−1
s

) , (3)

where
(
n
k

)
= n!

k!(n−k)! , for 0 ≤ k ≤ n.

3. Shannon maximum entropy

We remind that for a random variable X with density f , Shannon entropy is defined by
Shannon (1948) as follows,

H[f(x)] = −
∫ +∞

−∞
f(x) ln(f(x))dx. (4)

Let x(F ) represent the true but unknown quantile distribution of a random variable X,
and xM (F ) be the Mth order estimated model. The entropy of a QF is defined as,

H[x(F )] = −
∫ 1

0
x(F ) ln(x(F ))dF, (5)

and the available information is presented in terms of sample FPWMs,

∫ 1

0
xM (F )F δidF = bi, i = 0, 1, . . . ,M ; δ0 = 0. (6)

The sample FPWMs were considered to be accurate up to Mth order, which means,

∫ 1

0
xM (F )F δidF =

∫ 1

0
x(F )F δidF = bi, i = 0, 1, . . . ,M ; δ0 = 0, (7)

where δi for i = 1, 2, . . . ,M are real positive or fractional numbers, bi is a sample esti-
mate of the population FPWM, for i = 0, 1, . . . ,M , and M is the highest order of FPWM
considered in the analysis. Note that x(F ) in Equation (5) is not normalized, rather nor-
malizing condition is included as an external constraint in Equation (6) corresponding to
δ0 = 0.
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In this way, the problem changes to the following optimization problem,

max

∫ 1

0
xM (F ) ln(xM (F ))dF

s. t.∫ 1

0
xM (F )dF = b0∫ 1

0
xM (F )F δidF = bi, i = 1, 2, . . . ,M. (8)

The optimization problem (8) satisfies the Lagrange multiplier conditions and it can be
written as,

max−
∫ 1

0
xM (F ) ln(xM (F ))dF − (λ0 − 1)

(∫ 1

0
xM (F )dF − b0

)

−
M∑
i=1

λi

(∫ 1

0
xM (F )F δidF − bi

)
. (9)

By differentiating Equation (9) with respect to xM (F ) and by setting it equal zero, we
have,

∂

∂xM (F )

[
−
∫ 1

0
xM (F ) ln(xM (F ))dF − (λ0 − 1)

(∫ 1

0
xM (F )dF − b0

)
− · · · − λM

(∫ 1

0
xM (F )F δMdF − bM

)]
= − ln(xM (F )) + 1− (λ0 − 1)− · · · − λMF δM

= − ln(xM (F ))−
M∑
i=0

λiF
δi

= 0. (10)

The following statement can be concluded,

ln(xM (F )) = −
M∑
i=0

λiF
δi ⇒ xM (F ) = exp

(
−

M∑
i=0

λiF
δi
)
. (11)
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Now by differentiating Equation (9) with respect to the other variables, we have,

∂

∂λi

[
−
∫ 1

0
xM (F ) ln(xM (F ))dF − (λ0 − 1)

(∫ 1

0
xM (F )dF − b0

)
− · · · − λM

(∫ 1

0
xM (F )F δMdF − bM

)]
= −

∫ 1

0
xM (F )F δidF + bi

= 0, (12)

for i = 0, 1, . . . ,M one can be conclude that,

∫ 1

0
xM (F )F δidF = bi, i = 0, 1, . . . ,M. (13)

By substituting, xM (F ) we obtain,

∫ 1

0
exp

(
−

M∑
i=0

λiF
δj
)
F δidF = bi, j = 0, 1, . . . ,M. (14)

To find the unknown values λi, we must solve the non-linear system with M + 1 unknown
values and M + 1 equations in the form of Equation (14). But the uncertainty of δi makes
the problem more complicated.

To solve this problem, one can use a Monte Carlo simulation based optimization proce-
dure. To begin with, fractionals δi, i = 1, . . . ,M are simulated uniformly from a selected
interval (0, h). Because, when we do not have any conditions, uniform distribution has
the maximum entropy. Then, the Lagrangian multipliers λi, i = 0, . . . ,M are obtained by
solving a set of nonlinear equations using the standard Newton-Raphson’s method.
δi and λi obtained by this method satisfy all the constraints of the original problem.

First by repeat the above process, we can obtain multiple δi and λi, then by selecting from
among all obtained values of δi and λi we can have much more entropy than have other
values. After that, we rewrite xM (F ) = exp(−

∑M
i=0 λiF

δi).
A measure of discrepancy between xM (F ), and the exact QF, x(F ), can be given by the

Kullback Leibler measure as (Deng and Pandey, 2008)

KL(x, xM ) =

∫ 1

0
x(F ) ln

( x(F )

xM (F )

)
dF = −H(x)−

∫ 1

0
x(F ) ln(xM (F ))dF. (15)

This measure signifies the difference between a true and an estimated probability distri-
bution.

4. Tsallis Maximum Entropy

In this section, we describe the process of obtaining the quantile function by maximizing
Tsallis entropy. To do this, first we define the Tsallis entropy, especially the maximum
entropy problem, and then obtain an answer using mathematical software for an example.
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Tsallis entropy for the random variable X is defined as follows,

H[f(x)] = −
∫ +∞

−∞
f q(x) lnq(f(x))dx, (16)

where lnq(x) = (x1−q − 1)/(1− q). Similar Equation (9), one can put,

max−
∫ 1

0
xqM (F ) lnq(xM (F ))dF − (λ0 − 1)

(∫ 1

0
xM (F )dF − b0

)

−
M∑
i=1

λi

(∫ 1

0
xM (F )F δidF − bi

)
. (17)

Now we derive from Equation (17) with respect to xM (F ) then we set it equal to zero. For
this purpose we have,

∂

∂xM (F )

[
−
∫ 1

0
xqM (F ) lnq(xM (F ))dF − (λ0 − 1)

(∫ 1

0
xM (F )dF − b0

)
− · · · − λM

(∫ 1

0
xM (F )F δMdF − bM

)]
= −qxq−1

M (F )
x1−q
M (F )− 1

1− q
+ xqM (F )

(1− q)x−qM
1− q

− (λ0 − 1)− · · · − λMF δM

= −
[

q

1− q
xq−1
M (F ) + 1

]
− (λ0 − 1)− λ1F

δ1 − · · · − λMF δM

= −
[

q

1− q
xq−1
M (F )

]
−

M∑
i=0

λiF
δi = 0. (18)

The following statement can be concluded,

xM (F ) =

(
1 +

1− q
q

M∑
i=0

λiF
δi

) 1

q−1

. (19)

In the Figure 1, the estimate of the quantile function of the Equation (19) for M = 2 with
parameters b1 = 0.50, b2 = 0.75 and δ1 = 0.25, δ2 = 1.00 has been shown. In this case λis
are obtained for M = 2 in Table 1.

Table 1. Calculate of λi for i = 0, 1, 2

i 0 1 2
λi 0.6887 -1.6035 1.0613

5. Numerical examples on based Pareto distribution

This section evaluates the accuracy of the proposed estimate of quantile function by con-
sidering an example involving generalized Pareto distribution (GPD). This example is
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Figure 1. The approximation of QF for M = 2 with parameters b1 = 0.50, b2 = 0.75, δ1 = 0.25 and δ2 = 1.00.

intended to show that how well an estimated QF, xM (F ), can approximate its exact coun-
terparts x(F ). The cumulative distribution function of generalized Pareto Distribution is
defined as,

F (x) =

{
1− [1− cx

d ]
1

c , c 6= 0

1− exp(−x/d), c = 0.
(20)

So we have the inverse of this function as,

x(F ) =

{
d
c [1− (1− F )c], c 6= 0

−d[ln(1− F )], c = 0,
(21)

where c and d 6= 0 are constants. The range of x is 0 ≤ x <∞ for c ≤ 0 and 0 ≤ x ≤ c/d
for c > 0. In Figure 2 and Figure 3 the diagrams of probability function F and quantile
functions for d = 1, c = −0.2 are drawn respectively.

Figure 2. The probability function of GPD with d = 1, c = −0.2
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Figure 3. The quantile function of GPD with d = 1, c = −0.2

The αt = M1,0,t for the function GPD for c 6= 0 is obtained as follows,

αt = M1,0,t =

∫ 1

0
x(F )(1− F )tdF

=

∫ 1

0

d

c
[1− (1− F )c](1− F )tdF

=
d

c

∫ 1

0
[1−Gc]GtdG

=
d

(t+ 1)(c+ t+ 1)
, (22)

and for c = 0, we get,

αt = M1,0,t =

∫ 1

0
−d[ln(1− F )](1− F )tdF (23)

= −d
∫ 1

0
[ln(G)]GtdG (24)

=
d

(t+ 1)2
, (25)

where the variable G = 1− F is used.
For the amount of t, obtained results are given in Table 2.

Table 2. The calculation of αt for t = 1, 2, · · · , 10

t 1 2 3 4 5
αt 0.2778 0.1190 0.0658 0.0417 0.0287
t 6 7 8 9 10
αt 0.0210 0.0160 0.0126 0.0102 0.0084

Although for αt = M1,0,t could obtain explicit formulas In general, Mr,s,t can’t be written
explicitly, because it leads to the solution of a complicated integral. But it should solve
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the corresponding integral with numerical methods. As an example in Table 3, the results
of these calculations are given for the quantile function GPD with c = −0.2 and d = 1.

Table 3. The calculation of Mr,s,t

r s t Mr,s,t

2 5 6 0.0001
1.20 1.75 2.50 0.0201

In Table 3, values r, s and t are randomly selected, and Simpson method have been used
for solving integral with MATLAB software. For the quantile function, the optimal values
of λi and δi have been obtained for m = 1 in Table 4.

Table 4. The calculation of λi and δi for M = 1

δ0 δ1 λ0 λ1

0 0.0001 -1894.4940 1893.5210

Figure 4 shows that the approximation accuracy of these parameters are remarkable. So
the F (x) with more approximation accuracy is as follows,

xM (F ) = − ln(1− F )e−(1+λ1)−λ2(1−F )δ1−···−λM (1−F )δM . (26)

So,

x1(F ) = − ln(1− F )e−(1−1894.4940)−1893.5210(1−F )0.0001 . (27)

Figure 4. The approximation of QF with parameters λi and δi

Using equation (15) to calculate the error in Figure 4, we have

KL(x, x1) =

∫ 1

0
x(F ) ln

x(F )

x1(F )
dF (28)

= −H(x)−
∫ 1

0
x(F ) ln(x1(F ))dF (29)

= 0.0017, (30)
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where this shows the high accuracy of the mentioned method.
For Shannon entropy, Deng and Pandey (2008) showed the proposed method exhibits

significantly higher estimation accuracy. The statistical error, bias and RMSE, associated
with FPWM method is smaller than that obtained from the use of IPWM method. From
a practical example, conclusion can be made that FPWM based maximum entropy QF
combines advantage of empirical QF (normal distribution) and IPWM based QF.

Conclusions

The paper presents a method to estimate the maximum of a quantile function from a small
sample of data using Shannon’s and Tsalli’s maximum entropy methods. Our proposal is
a further generalization of a direct method for quantile estimation, which used the prob-
ability weighted moments of integral orders in place of product moments commonly used
with Shannon and Tsallis maximum entropy principles. A general estimation method was
proposed in which Monte Carlo simulations and optimization algorithms were combined
to estimate the fractional probability weighted moments and the Lagrange multipliers that
would lead to the best-fit quantile function. We explored the relatively high accuracy of
this method providing an example. A furue line of research is the study of the accuracy of
this method for Tsallis entropy, analytically.
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