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Abstract

This paper describes the specification, estimation and comparison of simplex mixed
models based on the likelihood paradigm. This class of models is suitable to deal with
restricted response variables, such as rates, percentages, indexes and proportions. The
estimation of simplex mixed models is challenged by the intractable integral in the like-
lihood function. We compare results obtained with three numerical integration methods
Laplace, Gauss-Hermite and Quasi-Monte Carlo to solve such integral. The specification
of simplex mixed models includes the choice of a link function for which we compare
models fitted with logit, probit, complement log-log and Cauchy link functions. Further-
more, results from the simplex mixed models fitted to two datasets are compared with
fits of beta, linear and non-linear mixed effects models. The first is a study concerning
life quality of industry workers with data collected according to a hierarchical sampling
scheme. The second corresponds to water quality measurements taken at 16 operating
hydroelectric power plants in Paraná State, Brazil. Our results showed that the sim-
plex mixed models provide the best fit between the approaches considered for the two
datasets analyzed. None of the choices of the link function outperformed the others.
Simulation studies were designed to check the properties of the maximum likelihood
estimators and the computational implementation. The Laplace method provides the
best balance between computational complexity and accuracy. The data sets and R code
are available in the supplementary material.

Keywords: Life quality · Likelihood · Numerical integration · Simplex distribution
· Water quality.

1. Introduction

Statistical regression models are used to establish relations between explanatory and re-
sponse variables in many fields of science. In particular, the linear regression model is
probably the most used statistical method in the literature. Limitations of this model to
deal with variance heterogeneity and discrete response variables motivated developments
resulting in the class of generalized linear models (GLM) (Nelder and Wedderburn, 1972).
GLMs extend linear regression models to deal with distributions of response variables
belonging to the exponential family. Based on the ideas laid by Nelder and Wedderburn
(1972), statistical modelling literature has grown quickly, mainly to deal with binary, bi-
nomial and count data.

In spite of its flexibility the standard GLM family has no suitable distributions to model
restricted response variables such as rates, percentages, indexes and proportions. In this
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situation a frequently adopted approach is to use the beta regression model as proposed by
Paolino (2001), Cepeda (2001), Kieschnick and McCullough (2003) and Ferrari and Cribari-
Neto (2004) in the context of independent observations. We are interested in situations
where the observations cannot be assumed independent such as for repeated measurements
and longitudinal data analysis. We follow an approach similar to the analysis of dependent
data in the class of generalized linear mixed models (GLMM), a natural extension of GLMs
obtained by adding Gaussian random effects to the linear predictor.

To deal with the combination of restricted response variables and dependent observations
Bonat et al. (2015) discuss the inference for the class of beta mixed models. Through a
couple of data sets, the authors showed that beta mixed models provide a better fit than
orthodox linear mixed models and non-linear mixed models. Similar models were proposed
by Figueroa-Zúñiga et al. (2013) and Bonat et al. (2015) but with inference based upon a
Bayesian paradigm.

In this paper we present an alternative model to deal with a combination of restricted re-
sponse variables and dependent observations based on the simplex distribution (Barndorff-
Nielsen and Jørgensen, 1991; Jørgensen, 1997). Such distribution is a natural choice to
model restricted response variable, since its domain is the unit interval. The simplex dis-
tribution is a flexible two parameters distribution with a diversity of shapes for the distri-
bution function and, as a member of the exponential dispersion family, can be parametrised
with orthogonal parameters.

The literature about simplex regression models is sparse, probably Kieschnick and Mc-
Cullough (2003) was the first to use the simplex distribution in the context of regression
models. The simplex regression model is implemented by the simplexreg package (Zhang
et al., 2014) for the R environment for statistical computing (R Core Team, 2015). Bonat
et al. (2012) proposed a comprehensive approach to specify regression models for response
variables in the unit interval, where the simplex regression model is a special case. López
(2013) presents Bayesian inference for simplex regression models and a comparison with
beta regression models.

Song (2007) presents simplex regression models in the context of correlated data adopt-
ing generalized estimating equations and quadratic estimating equations for estimation.
Qiu et al. (2008) uses penalized quasi-likelihood and restricted maximum likelihood for
estimation of simplex mixed models in the context of longitudinal data analysis. Zhang
and Wei (2008) propose simplex mixed models with likelihood based inference using an
stochastic approximation algorithm. The likelihood function for simplex mixed models
requires the solution of an analytically intractable integral. Here, we adopt an approach
based on the marginal likelihood function and use two datasets to assess three numerical
methods to solve the integral: Laplace, Gauss-Hermite and Quasi-Monte Carlo. Four link
functions are considered: logit, probit, complement log-log and cauchy. Additionally,
we compare the results obtained with the simplex mixed model, with the ones obtained
with beta, linear and non-linear mixed models. The first dataset is a study concerned with
the life quality index of industry workers with data collected according to a hierarchical
sampling scheme. The second corresponds to water quality indicators measured quarterly
at 16 operating hydroelectric power plants in Paraná State, Brazil. Both were previous
analysed by Bonat et al. (2015) using beta mixed models. Furthermore, simulation stud-
ies were designed to check the properties of the maximum likelihood estimators and the
computational implementation.

Section 2 presents the simplex mixed model. Section 3 presents the estimation procedure,
including a review on the numerical integration methods. Section 4 presents the results
of the simulation study. Section 5 summarizes the results of the data analyses. Finally,
Section 6 provides some discussions and recommendations for future work. R code and
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data sets are provided in the supplementary material.1

2. Simplex mixed models

We specify the simplex mixed model with a structure similar to a generalized linear mixed
model. The random variable Y ∈ (0, 1) is said to follow a simplex distribution, Y ∼
S−(µ, σ2), with the probability density function given by

f(y;µ, σ2) =
1√

2πσ2[y(1− y)]3
exp

{
− 1

2σ2
d(y, µ)

}
,

where µ ∈ (0, 1) and σ2 > 0 are the mean and the dispersion parameters, respectively; and

d(y, µ) =
(y − µ)2

y(1− y)µ2(1− µ)2

is the unit deviance function. For specification of simplex mixed models, let yij be the
observation j = 1, . . . , ni within the unit sample i = 1, . . . , N of the random variable Yij .
A hierarchical description for the simplex mixed model is the following:

Yij |bi ∼ S−(µij , σ
2)

g(µij) = x>ijβ + z>ijbi.

The model assumes that the observations from the response variable Yij are conditionally
independent given a q-dimensional vector of Gaussian random effects, bi ∼ N(0,Σ). The
linear predictor is linked to the mean by a link function g and consists of the sum of fixed
effects x>ijβ and random effects z>ijbi. The vectors xij and zij contain values of p and q
covariates, respectively. Finally, β is a vector of p regression parameters.

In the context of simplex mixed models the link function g : (0, 1) → < plays an
important role, since it links the linear predictor to the mean of the response variable. The
logit link function is a frequent choice. In this paper along with the logit link function we
investigate and compare the fit of some alternative functions, such as probit, complement
log-log (clog-log) and Cauchy. Table 1 presents the expressions for each link function,
its inverse and first derivative. Here η denotes the linear predictor, Φ is the cumulative
distribution function of the standard Gaussian distribution, tan and csc are the tangent
and cosecant functions, respectively.

Table 1. Expressions related to the link functions logit, probit,clog-log and Cauchy.

Link function g(µ) g−1(η) g′(µ)

Logit log
(

µ
1−µ

)
expη

1+expη µ(1− µ)−1

Probit Φ−1(µ) Φ(η)
√

2π exp(µ2/2)

Clog-log log (− log (1− µ)) 1− exp(− exp η) (µ− 1) log (1− µ)−1

Cauchy tan (π(µ− 1
2)) π csc2(πη) π csc2(π · µ)

1Available at www.leg.ufpr.br/doku.php/publications:simplexmix

www.leg.ufpr.br/doku.php/publications:simplexmix
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3. Estimation of simplex mixed models

The marginalised likelihood is used to estimate model parameters. Let θ = (β,Σ, σ2)> be
the parameter vector and yi be an ni-dimensional vector of measurements from the ith

sample unit. The contribution to the likelihood of each independent sample unit is

Li(β,Σ, σ
2;yi) ≡

∫ ni∏
j=1

fij(yij |bi;β,Σ, σ2)f(bi|Σ)dbi.

Therefore, the marginal likelihood function is given by

L(β,Σ, σ2;yi) =

N∏
i=1

Li(yi;β,Σ, σ
2). (1)

The maximum likelihood estimator θ̂ is obtained by maximization of the log-likelihood
function (1). Note that for each evaluation of this function we need to numerically solve
N q-dimensional integrals.

The two numerical methods are applied, one within each step of the other: the integration
of the random effects within each step of the maximization for parameter estimation. We
use the BFGS algorithm implemented in the R (R Core Team, 2015) function optim() for
the maximization procedure. The numerical integration plays an important role in the
estimation of simplex mixed models, since it will be computed many times within the
numerical maximization algorithm. When the dimension of the random effects is low, say
q ≤ 5, a frequent choice is the Gauss-Hermite method. In this paper, along with Gauss-
Hermite method we also use the Laplace and Monte Carlo methods. These methods were
chosen because each one uses a different approach to solve the integral. The Gauss-Hermite
method is based on a quadrature procedure, basically it means that the integral will be
approximated by a finite sum. The Monte Carlo method uses samples from the integral
to approximate it as an expectation. Finally, the Laplace approximation uses a Taylor
series expansion to approximate the integrand by a function analytically tractable. In
what follows, we provide a short description of these methods.

3.1 Gauss-Hermite

The Gauss-Hermite method has been designed to approximate integral as follows∫
<

exp(−x2)f(x)dx ≈
n∑
i=1

wif(gi),

where n is the number of points used for the approximation, gi’s are roots of the Hermite
polynomial Hn(g)(i = 1 < 2, . . . , n) and wi are weights given by,

wi =
2n−1n!

√
π

n2[Hn(gi)]2
.

The Gauss-Hermite method approximates the integral by a weighted sum of the function
evaluated at the Gauss-Hermite points and integration weights. It is easily implemented
in R, as the function gauss.quad() from package statmod (Smyth et al., 2013) provides
the weights and the Gauss-Hermite points.
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3.2 Laplace approximation

The Laplace approximation method Tierney and Kadane (1986) has been designed to
approximate integrals as follows∫

<
exp{Q(x)}dx ≈ (2π)

q

2 |Q′′(x̂)|−
1

2 exp{Q(x̂)},

where Q(x) is a known, unimodal and bounded function of a q-dimensional variable x.
Let x̂ be the value for which Q(x) is maximized. The method requires obtaining x̂ the
maximum of the integrand and the Hessian Q′′(x̂), the matrix of second derivatives, either
analytically or numerically. The latter is used here.

3.3 Monte Carlo and Quasi-Monte Carlo Integration

The Monte Carlo method Pan and Thompson (2007) has been proposed to estimate the
value of integrals written as an expectation. Suppose we want to estimate the integral of
a given function f(x) whose domain is the real line <. Let p(x) be a probability density
function in the same domain. The following equation suggests an estimator for the value
of the integral ∫

<
f(x)dx ≈

∫
<

f(x)

p(x)
p(x)dx,

since it is equivalent to E
(
f(x)
p(x)

)
with respect to the density p(x). The expectation is

estimated by generating random numbers according to p(x), computing f(x)/p(x) for
each sample and averaging the values. The number of samples determines the accuracy of
the estimator. A natural choice for p(x) is the standard Gaussian distribution, since the
domain of this distribution is the real line.

The Monte Carlo method is quite easy to use, but in the context of simplex mixed
models it is computed within a numerical maximization process. In that case the Monte
Carlo method presents an inconvenient problem, since it is based on simulations, it can
return different values for the integral evaluated at the same points. This fact can slow
down or even prevent convergence of the maximization process.

To overcome this problem the Quasi-Monte Carlo method suggests to change the sim-
ulated values by a low-discrepancy sequence (Pan and Thompson, 2007). The package
fOptions (Wuertz, 2012) for R (R Core Team, 2015) has routines to obtain such sequences
by two methods, Halton and Sobol. In this paper we choose to report the results based
on the Halton method, since for most fitted models the results were identical. Generic
functions to use these methods in the context of simplex mixed models are provided in the
supplementary material.

4. Simulation study

In this section we present a simulation study to verify the properties of the maximum
likelihood estimators and the computational implementation. We generated 500 data sets
considering 25 measures taken at an increasing number of subjects (10, 20 and 40) resulting
in samples of size 250, 500 and 1000, respectively. We fitted the models using the three
integration methods, namely, Laplace (LA), Gauss-Hermite (GH) and Quasi-Monte Carlo
(QMH). The number of integration points used by the Gauss-Hermite method was fixed
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at 100. Similarly, the number of samples used by the Quasi-Monte Carlo method was fixed
at 200. These numbers were fixed based on preliminaries fits. We also ran the simulation
study using different numbers of integration points or sample sizes. For the Gauss-Hermite
method, we also considered 150 and 200 integration points. For the Quasi-Monte Carlo,
we also considered 500 and 1000 sample sizes. For both methods, the results obtained by
using the different numbers of integration points or sample sizes were really similar. Thus,
we opted to report the results for the values aforementioned, i.e. 100 integration points for
the GH method and 200 samples for the QMH method.

We use the logit link function and consider models with an intercept (β0 = 0.5) and
slope (β1 = 0.3). The covariate is a sequence from −1 to 1. In order to explore the
proportion of the variance coming from each of the two random components in the model,
we designed three simulation scenarios. The scenarios 1, 2 and 3 assume that σ2 = 0.75
and σ2

I = 0.25, σ2 = 0.5 and σ2
I = 0.5 and σ2 = 0.25 and σ2

I = 0.75, respectively. In this
notation, σ2 represents the dispersion parameter associated with the simplex distribution
and σ2

I denotes the variance associated with the Gaussian random effect. In this way, we
have a often case of simplex models with random intercepts. Figure 1 shows the expected
bias plus and minus expected standard error for the parameters in each scenario.
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Figure 1. Expected bias plus and minus expected standard error for each parameter and simulation scenario.

The results in Figure 1 show that for all scenarios both, the expected bias and expected
standard error, tend to zero as the sample size is increased. In general all methods tend
to underestimate the parameters in the covariance structure for small sample sizes whilst
improving for increasing sample sizes. The biases are close to zero for large samples, as
expected. It is clear the decreasing of the values of expected standard errors for increasing



Chilean Journal of Statistics 9

sample sizes, indicating the consistency of our estimators. In general the methods agree in
terms of estimates and disagree in terms of standard errors mainly for the ones associated
with the regression parameters.

The scenario 1 presents the easiest case for the estimation algorithm, since the propor-
tion of the variance from the Gaussian random effect is small. In that scenario the three
integration methods present estimates and standard errors similar mainly for the param-
eters that describe the covariance structure (σ2 and σ2

I ). For the regression parameters
the three integration methods provide similar estimates. However, the GH method presents
expected standard errors smaller than the ones obtained by the Laplace and QMH methods.

In the scenario 2 the proportion of variance from the Gaussian random effect increases,
thus the differences between the integration methods also appear clearer. The expected
standard errors for the regression parameters obtained by the GH method are smaller than
the ones obtained by the Laplace and QMH methods. Finally, in the scenario 3 the most
proportion of the variance comes from the Gaussian random effect, thus the expected
standard errors computed by the Laplace and QMH methods for the regression parameters
increase as expected. On the other hand, the standard errors for the regression parameters
computed by the GH method are really small. It gives us reason to believe that the GH

method underestimate the standard errors for the regression parameters. To verify it,
Table 2 presents the coverage rate for each simulation scenario, sample size and integration
method. The nominal level of confidence was fixed at 95%.

Table 2. Coverage rate by simulation scenario, sample size and integration method.

Methods
Laplace GH QMH

250 500 1000 250 500 1000 250 500 1000
Scenario 1

β0 0.8654 0.9375 0.9393 0.6600 0.6882 0.6960 0.8694 0.9334 0.9432
β1 0.9056 0.9233 0.9313 0.7000 0.6902 0.7140 0.9116 0.9193 0.9249
σ2 0.8895 0.8991 0.8404 0.8880 0.8967 0.8380 0.8915 0.8971 0.8377
σ2
I 0.8121 0.8770 0.8868 0.8540 0.8987 0.9220 0.8232 0.8850 0.9026

Scenario 2
β0 0.9117 0.9245 0.9144 0.4596 0.3870 0.4460 0.8016 0.8526 0.8520
β1 0.8932 0.9116 0.9239 0.5320 0.5570 0.5000 0.8243 0.8571 0.8830
σ2 0.8644 0.8620 0.8242 0.8633 0.8545 0.8235 0.8698 0.8861 0.8568
σ2
I 0.7905 0.8620 0.8741 0.8716 0.9082 0.9117 0.7954 0.8616 0.8758

Scenario 3
β0 0.9083 0.9184 0.9315 0.2926 0.2500 0.2222 0.5041 0.5093 0.5598
β1 0.8891 0.9090 0.9070 0.3684 0.3490 0.2729 0.6193 0.6261 0.6339
σ2 0.8891 0.8624 0.8117 0.8989 0.8773 0.8019 0.9074 0.8785 0.8588
σ2
I 0.8123 0.8694 0.8973 0.8989 0.9386 0.9299 0.8106 0.8785 0.9138

The results presented in Table 2 show that the coverage rate for the regression parameters
are sensitive to the simulation scenarios. In the scenario 1 both Laplace and QMH presented
coverage rate for the regression parameters close to the nominal level (95%). However, the
results were getting worst from scenario 1 to 3 for the QMH method. The Laplace method
is the unique where the coverage rate is similar in all simulation scenarios. The GH method
presents the worst results in terms of coverage rate for the regression parameters in all
simulation scenarios. The coverage rate for the covariance parameters were slightly below
the nominal level for all integration methods and simulation scenarios.
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5. Data analyses

5.1 Income and life quality of Brazilian industry workers

The first dataset is from a poll realized by the Industry Social Service (Serviço Social da
Indústria - SESI) to assess important factors associated with the workers’ life quality. The
data were collected in 2010 following a sampling plan developed by SESI, using an specific
questionnaire and included eight Brazilian States and the Federal District. The dataset
corresponds to observations from 365 companies. The response variable (IQVT) is an index
that measures the worker’s life quality in the industry. This index is computed following
the same criterion adopted by the United Nations (UN) to compute Human Development
Index (HDI). The resulting values are in the unit interval and the closer to one the higher
the workers life quality.

The data analysis considers two covariates related to the companies for which the impact
on IQVT is of particular interest, namely, company’s size and average income. The first
can be related to the capability of managing and providing life quality to the workers. The
second is given by the total of salaries divided by the number of workers expressing the
capacity to fulfill individual basic needs such as food, health, housing and education. The
income is expressed in logarithmic scale centred around the average.

The main goal is to specify a suitable regression model to evaluate the influence of these
two covariates on the IQVT. The federative unit where the company is based is expected
to influence the index considering varying local legislation, taxing and further economic
and political conditions. This is accounted for by including a random effect, regarding the
eight States as a sample of the country’s federative units.

Figure 2. IQVT related to (centred log) average income, company size and federative unit.
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Plots in Figure 2 suggest that IQVT is associated with income (A), location (B) and
size (C) and the following simplex mixed model (SMM) is specified for the IQVT data:

Yij |bi ∼ S−(µij , σ
2)

g(µij) = (β0 + bi1) + β1Mediumij + β2Smallij + (β3 + bi2)Incomeij

bi ∼ N(0,Σ) with Σ =

[
σ2
I ρ(σIσS)

ρ(σIσS) σ2
S

]
.

The model is parametrised such that β0 is associated with large size companies and β1

and β2 are differential effects for medium and small size companies, respectively. A random
intercept bi1 and slope bi2 associated with income account for the effect of the federative
units. Model parameters to be estimated are the regression coefficients (β0, β1, β2, β3), the
random effects covariance parameters (σ2

I , σ
2
S , ρ) and the dispersion parameter σ2.

The final model is chosen after fitting and comparing a sequence of nested models.
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Model 1 has only the intercept. The covariates size, income, the random intercept and the
random slope associated to income are sequentially added defining Models 2 to 5. The
models with random effects are initially fitted using Laplace approximation and a logit

link function. We also fit similar models using the beta mixed model (BMM) proposed by
Bonat et al. (2015), the orthodox linear mixed model (LMM) and the non-linear mixed
model (NLMM) using a logit function. Table 3 shows parameter estimates for the SMM and
the maximised log-likelihood values for BMM, LMM and NLMM.

Table 3. Parameter estimates and standard errors for the simplex models (top) and maximised log-likelihood for
the alternative models (bottom) for the IQVT data.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5
β0 0.3474 0.4468 0.4551 0.4213 0.4230
β1 −0.1071 −0.0879 −0.0704 −0.0710
β2 −0.1632 −0.1446 −0.1335 −0.1355
β3 0.4213 0.4726 0.4680
σ2 0.3262 0.3095 0.2404 0.1814 0.2313
σ2
I 0.0161 0.0164
σ2
S 0.0004
ρ 0.9832
Model Maximised log-likelihood
SMM 473.0003 482.5772 528.6662 570.3376 570.4720
BMM 472.1979 481.5058 526.9421 561.7935 561.7954
LMM 470.4207 479.9673 523.8509 558.8973 558.9004
NLMM 470.4207 479.9673 523.7791 558.9608 558.9608

The results in Table 3 show that Model 4 provides the best fit. The gain in likelihood
values from model 4 to model 5 do not justify the addition of the random slope. This
result is reassured by the estimates of σ2

S and ρ. These estimates indicate that the random
intercept alone captures the extra variability induced by the repeated measures structure.
Model 4 shows that the covariates size and income have a significant effect on the response
variable IQVT. In general the IQVT increases when the income increases and decreases
2.89% and 5.66% for medium and small companies, respectively, in comparison with large
companies.

The maximised log-likelihood values also show that the SMM provides a better fit than
the alternative BMM, LMM and NLMM. The difference is more pronounced for models
with random effects. All modelling strategies identify Model 4 as the best fit.

In order to check the effect of different numerical integration methods and link functions,
we refit Model 4 using Laplace, Gauss-Hermite (GH) and Quasi-Monte Carlo (QMC) methods
combined with four link functions, logit, probit, clog-log and Cauchy. To reach the
required accuracy for GH and QMC methods we used n = 380 integration points. The max-
imised log-likelihood values are given in Table 4 and show that all numerical integration
methods provide similar results. The GH method seems to be more sensible to the choice of
the link function, while the Laplace and QMC present similar values for all link functions.
The choice of the link function has no effect for this data set.

Finally, Table 5 presents estimates and standard errors obtained by using the LAPLACE,
GH and QMC methods for the Model 4.

The results in Table 5 show that the Laplace and QMC methods provide virtually the
same estimates and standard errors. The GH method present smaller estimates and stan-
dard errors for the regression parameters and larger estimate and standard error for the
variance of the random effect, although the differences are small in their magnitude. The
standard error computed by the GH method for the intercept (β0) is 43.15% smaller than
the ones computed by the Laplace method. These results agree with our simulation study
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Table 4. Maximised log-likelihood values by different numerical integration methods and link functions fitting the

Model 4 for the IQVT data.

Link
functions

Methods
Laplace GH QMC

logit 570.3376 571.9386 570.5104
probit 570.3349 570.7279 570.4370
clog-log 570.2071 572.5328 570.2071
cauchy 570.2286 565.1114 570.3773

Table 5. Estimates and standard errors obtained by different integration methods for model 4 - IQVT data.

Parameter
Methods

Laplace GH QMC

β0 0.4213(0.0482) 0.4026(0.0208) 0.4232(0.0476)
β1 −0.0704(0.0265) −0.0655(0.0262) −0.0706(0.0265)
β2 −0.1335(0.0290) −0.1304(0.0285) −0.1338(0.0289)
β3 0.4726(0.0377) 0.4651(0.0350) 0.4718(0.0377)
σ 0.1814(0.0134) 0.1813(0.0134) 0.1814(0.0134)
σI 0.0161(0.0082) 0.0215(0.0102) 0.0162(0.0083)

showing that in general the GH method underestimate the standard error for the regression
parameters. We highlight that for this data analysis such underestimation is weak, since
the proportion of the variance coming from the Gaussian random effect is small.

5.2 Water quality on power plant reservoirs

This example is concerned with water quality indicators measured quarterly at 16 operating
hydroelectric power plants during 2004 in Paraná State, Brazil. The water quality indi-
cators are: dissolved oxygen, temperature, faecal coliform, water pH, biochemical oxygen
demand (DBO), total nitrogen, total phosphorus, turbidity and total solids. The indica-
tors are combined to produce a single water quality index (IQA, acronym in Portuguese)
based upon a study conducted in the 70’s by the US National Sanitation Foundation and
adapted by the Brazilian company CETESB - Companhia de Tecnologia de Saneamento
Ambiental.

Monitoring aims to detect changes in water quality, possibly attributable to the presence
of the dams. Water quality measurements taken at locations considered directly affected
and unaffected by the reservoir are compared. More specifically, measurements taken up-
stream the main river are considered unaffected reference values whereas measurements
taken at the reservoir and downstream are considered potentially affected by the water
contention and passage throughout the power plant. The main interest is the covariate
LOCAL, with levels upstream, reservoir and downstream controlled for the effects of the
power plant and the QUARTER of data collection. The dataset has 190 observations with
12 measurements (4 quarters × 3 locations) for each of the 16 power plants with only two
missing data.

Plots in Figure 3 summarises and relate the IQA data to the potential covariates. Fig-
ure 3(A) shows a left asymmetry typical for this kind of data. Figure 3(B) suggests a
significant variation between power plants. In a similar way Figure 3(C) suggests that
observations upstream present smaller values than at the reservoir and downstream. Fi-
nally, Figure 3(D) shows smaller values on the first and fourth quarters (warmer periods),
a pattern expected to be repeated over the years. Based on this exploratory analysis we
propose that IQA at the ith relative location, jth power plant and tth quarter be modelled
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Figure 3. Summaries for the IQA data.

by the following simplex mixed model:

Yijt|bj ∼ S−(µijt, φ)

g(µijt) = β0 + β1i + β2t + bj

bj ∼ N(0, σ2
U ).

Under the adopted parametrization, β1i, i = 2, 3 quantifies the changes from upstream to
reservoir and downstream, respectively. Likewise β2t, t = 2, 3, 4 are differences between
the first quarter and the others. The random intercept bj captures the deviations of each
power plant from the overall mean. Following the previous example, we fitted a sequence
of nested models. Model 1 is the null model with just the intercept. Model 2 includes the
covariate LOCAL and Model 3 the covariate QUARTER. Model 4 adds a random intercept
associated with the power plants. We fitted the Model 4 using the Laplace approximation
and logit link function. Furthermore, we fitted the same set of models using the BMM, LMM
and NLMM, using the logit link function where applicable. Table 6 shows the parameter
estimates for the SMM along with the maximised log-likelihood values for the BMM, LMM and
NLMM.

Table 6. Parameter estimates and standard errors for the simplex models (top) and maximised log-likelihood by

alternative models (bottom) for the IQA data.

Parameter Model 1 Model 2 Model 3 Model 4
β0 1.3934 1.2599 1.1028 1.1497
β12 0.2517 0.2518 0.2128
β13 0.1614 0.1622 0.1712)
β22 0.2393 0.1518
β23 0.3519 0.3146
β24 0.0710 −0.0127
σ2 1.9496 1.8654 1.7183 1.4130
σ2
U 0.0269

Model Maximised log-likelihood
SMM 220.9769 224.9744 232.4383 246.3474
BMM 215.3817 218.9064 224.6237 231.0469
LMM 198.2386 202.1282 208.6868 213.6839
NLMM 198.2386 202.1282 208.7399 214.8852

The results in Table 6 show that the two covariates LOCAL and QUARTER have a significant
effect on IQA levels. It is also clear that the random effect associated with the power
plant improves the model fit. Based on Model 4 we conclude that the IQA increases
from upstream to reservoirs and downstream by 4.83% and 3.5%, respectively. The
IQA increases from the first to second and third quarters and decreases from the first to
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the fourth quarter, although the last difference is not significant. These results are also
confirmed by the alternative models.

The maximised log-likelihood values indicate that the SMM provides the best fit among
the fitted models. It is interesting to highlight that the simplex regression model without
random effects already provides a better fit than BMM, LMM and NLMM. Table 7 presents the
maximised log-likelihood values obtained by fitting Model 4, using different link functions
and numerical integration methods. For this dataset we used n = 160 integration points.
As in the previous example, all numerical integration methods provide similar values for
the maximised log-likelihood function. The GH method seems to be more sensible to the
choice of the link function while Laplace andQMC methods always return similar values.
Yet again, the link function, has no effect.

Table 7. Maximised log-likelihood values by numerical integration methods and link functions fitting the Model 4

for the IQA data.

Link
functions

Methods
Laplace GH QMC

logit 246.3474 246.9509 246.7217
probit 246.2955 247.7303 246.6783
clog-log 246.2094 248.4117 246.5769
cauchy 246.4287 246.7981 246.8354

Table 8 presents estimates and standard errors obtained by the different integration
methods for the Model 4.

Table 8. Estimates and standard error for Model 4 by different integration methods for the IQA data.

Parameter
Methods

Laplace GH QMC

β0 1.1497(0.1046) 1.1564(0.0990) 1.1521(0.1059)
β1 0.2128(0.0884) 0.2086(0.0882) 0.2126(0.0886)
β2 0.1713(0.0827) 0.1688(0.0821) 0.1704(0.0828)
β3 0.1518(0.1073) 0.1462(0.1069) 0.1509(0.1075)
β4 0.3146(0.0960) 0.3122(0.0953) 0.3142(0.0963)
β5 −0.0127(0.1027) −0.0163(0.1026) −0.0120(0.1035)
σ 1.4130(0.1449) 1.4078(0.1444) 1.4059(0.1444)
σI 0.0269(0.0147) 0.0295(0.0158) 0.0297(0.0161)

Similarly we have seen for the IQVT data, the results in Table 8 show that the three
integration methods provide similar estimates, but differ slightly in standard errors. The
GH method provides smaller estimates (except for the intercept) and standard errors for
the regression parameters than the Laplace method, but such differences are really small
in their magnitude.

6. Discussion

This paper reports results of analysis using simplex mixed models under likelihood based
inference. We have described how to specify, fit and compare simplex mixed models by
analysing two datasets. Model specification includes the choice of a link function for which
we consider the logit, probit, complement-log log and Cauchy. The choice of the link
function has no effect on the model fitting measures and related inferences.

The estimation of simplex mixed models involves solving an intractable integral when
evaluating the likelihood function. Three numerical approaches to solve such integral were
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considered, the Laplace, Gauss-Hermite and Quasi-Monte Carlo methods. Such choices
are justified by the fact that each of these methods use different ways to solve the in-
tegral. The first approximates the integrand, the second uses a finite sum and the third
is based on the concept of the expectation of a function. In spite of all numerical inte-
gration methods providing similar results in our data examples, the convenience of using
each one is not the same. In our data analyses the Gauss-Hermite method proved hard to
be tuned in terms of the number of integration points, resulting in substantially different
values for the maximised log-likelihood according to the number of integration points. It
is important to highlight that in the context of simplex mixed models is not possible to
obtain a closed-form expression for the Fisher information matrix. Thus, we replace it
by the observed information matrix obtained numerically using the Richardson method
(Lindfield and Penny, 1989; Gilbert and Varadhan, 2012). However, when computing such
approximation by using the Gauss-Hermite and Monte Carlo methods to approximate the
log-likelihood function, we detected that for the number of integration points and sam-
ples used, the numerical approximations were not accurate, mainly for the components
associated with the regression coefficients. It implies that the standard errors associated
with the regression coefficients are underestimated. Furthermore, the simulation study also
confirmed that the Gauss-Hermite and Monte Carlo methods can strongly underestimate
the standard errors associated with the regression parameters.

For the IQVT analysis, we needed n = 380 integration points to reach a value compara-
ble to the Laplace method. In general this method seems to underestimate the maximised
log-likelihood value. Similar issues appear in the Quasi-Monte Carlo method with the ad-
ditional problem that in our data analyses this method showed to be really sensitive to the
initial values. Furthermore, we combined different integration methods with different link
functions. The issues above appear more frequently when combining probit link function
with Gauss-Hermite and Quasi-Monte Carlo methods. Based on our experience fitting the
models shown here, we recommend to use the combination Laplace approximation and
logit link function when fitting simplex mixed models. An additional advantage of the
Laplace approximation is that it can be used when the dimension of the random effects is
high, for example in the case of times series or spatial data (Bonat and Ribeiro Jr, 2016).

We compared the simplex mixed models with the recently proposed beta mixed models
and also with linear and non-linear mixed models using the logit link function. Maximised
log-likelihood values are substantially higher for the simplex mixed models. For maximiza-
tion of the approximated log-likelihood function we used the BFGS algorithm implemented
in the R function optim. We have also used alternative numerical maximization methods
such as Nelder-Mead and Conjugate Gradient with similar results.

The estimation of simplex mixed models is a complex numerical problem, since many
numerical algorithms are involved in the procedure. For all models presented in this paper
we used the strategy of obtaining the profile likelihood. Although such technique is not a
convergence check, in the present case it provides a more detailed exploration of the log-
likelihood function preventing against local maximum or non-convergence. Details about
how to implement the profile likelihood in R can be found in (Bolker and R Core Team,
2014). We provide the R code and the data sets in the supplementary material.

Possible topics for further investigation and extensions include designing simulation stud-
ies comparing the simplex and beta mixed models. The simulation studies presented in
Section 3 showed that the maximum likelihood estimators are slightly biased for the vari-
ance parameters. Thus, a topic for future investigation is to extend the restricted maximum
likelihood method (Noh and Lee, 2007) to the class of simplex mixed models presented
in this paper. Another interesting point for future reasearch is to propose tools for model
checking as the quantile-quantile plots with simulated envelopes (Moral et al., 2017).
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