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Abstract

In this paper, we propose a simple method, based on the coefficient of determination,
to estimate the change points in the Beer-Lambert law problems. We run Monte Carlo
simulation studies in different scenarios in order to evaluate the performance of the
method. Furthermore, we illustrate the approach with real datasets where we estimate
the appropriate change points that yield the interval where the compound concentration
and absorbance have linear relationship. In both cases, simulation and application, it is
possible to see good performances of the method, that can be easily implemented.
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1. INTRODUCTION

This paper is motivated by an Analytical Chemistry problem, where the Beer-Lambert
law dictates the relation between absorbance and a compound concentration, which can
be described as

A:/BC7

where A corresponds to the absorbance, C' the concentration and 8 = ab, with a being
the absorptivity and b the optical path. Flame atomic absorption spectrometry (FAAS)
is an analytical technique widely used to measure this relation. In FAAS, the value of
b corresponds to the flame width, which is defined according to the spectrometer model
(see, e.g., Skoog et al., 2013). Some applications of the Beer-Lambert law can be seen, for
example, in Rodriguez-Marin et al. (2012), Dias et al. (2015) and Icelli et al. (2014).

It is well known that there is an interval where the Beer-Lambert law holds. Therefore,
the goal is to find the minimum and maximum concentrations that provide the range where
the analytical response (absorbance) is linearly related to the compound concentration.

A typical experiment can be observed in Figure 1. One can see that the relationship
between zinc concentration and absorbance is almost linear for concentrations between
around 0.1 and 1.7. Furthermore, it seems that the slope of a linear relationship changes
around 0.3. Thus, there is an interval where the pair zinc concentration and absorbance
holds due to the Beer-Lambert law.
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Figure 1. Scatter plot of absorbance versus zinc concentration.

In practice, one usually takes predetermined intervals depending on the chemical el-
ement, where the Beer-Lambert law must hold, or one defines the interval simply by
observing the scatter plot between compound concentration and absorbance. However,
the amplitude and location of the interval where the Beer-Lambert law holds may vary
according to environmental conditions and even the device that is being used. Thus, pre-
determined intervals will likely be inappropriate. Although it may be possible to make a
decision by graphical analysis, sometimes subjective choices may be a problem, and an
automatic method based on the data would be of substantial interest, avoiding wasting
material and time.

The choice of the interval where the Beer-Lambert law holds is clearly a typical change
point situation. The change point problem has been widely studied for a long time. Pettitt
(1979) introduced nonparametric techniques for the change point problem with binomial
and continuous observations. Barry and Hartigan (1993) proposed a Bayesian model for the
change point detection — when there is an unknown partition of a set into contiguous blocks
where the observations are independent with normal distribution. Erdman and Emerson
(2008) implemented this method in R Core Team (2017), allowed in the bcp package.
Liu et al. (2013) proposed a change point detection algorithm based on nonparametric
divergence estimation between time-series samples from two retrospective segments. In
linear regression models, we can highlight Quandt (1958), Quandt (1960), Worsley (1983),
Kim and Siegmund (1989), Chen (1998), Pastor and Guallar (1998), Julious (2001), Osorio
and Galea (2006) and Chen et al. (2011) just to mention few. A comprehensive survey of
this topic can be found in Chen and Gupta (2012).

On the other hand, our experience is that practitioners, despite their good performance,
seldom accept sophisticated statistical techniques. This by itself can be interpreted as a
challenge, which is in line with the classic saying that states “Research is to realize the
obvious”. This is used as a motivation in this paper. Furthermore, although there is a
wide range of methods for change point detection, to the best of our acknowledge, there
is not any approach in the literature that is capable of detecting the interval where the
Beer-Lambert law holds.
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In this paper, we propose a simple method to estimate the change point in partially
linear models. Although we focus on the Beer-Lambert law, this method may also be
used in other situations because of the interesting numerical results presented in the next
sections.

This paper is organized as follows. In Section 2, we present the model, propose a sim-
ple method for efficiently estimating change points in partially linear models and discuss
some features of our approach. In Section 3, we describe some simulation results. Typical
applications, based on the Beer-Lambert law, illustrate the method in Section 4. Some
conclusions and additional remarks are presented in Section 5.

2. PARTIALLY LINEAR MODELS WITH CHANGE POINT

Most of the studies to estimate change points in regression models consider that these
points are limits for variations of the intercept or the slope (or both) of linear models. In
this paper, we consider that part of the data (an interval) is linear, and outside the interval
the relationship changes while not necessarily linear it presents a regression function that
may assume any kind of functional behavior.

2.1 THE PARTIALLY LINEAR MODEL

In this paper, we assume that the relationship between the dependent and the independent
variable is partially linear satisfying

g(x;) + &, z; < Cp
Yi={Bo+frzi+e, co<zi < (1)
f(zg) + e, T; > cp,
where Y; denotes the response (dependent) variable in the experiment; z; < zg < -+ <

r,, are values of the explanatory (independent) variable; 8 = (8o, 51)" is a 2 x 1 fixed
parameter vector that defines the linear relationship between Y and z, for ¢y < x < ¢q;
and g and f are arbitrary univariate (regression) functions that quantify the effect of the
explanatory variable x; on the response Y;, for x; < ¢y and x; > c¢1, respectively. We
also assume that the errors ¢; are independent and identically distributed (iid) random
variables with Normal distribution, whose mean and standard deviation are zero and o,
respectively. For the error term ¢;, we suppose it has zero mean and standard deviation 7,
not necessarily following a Normal distribution.

Observe that the error terms € and € do not need to have the same distribution. Fur-
thermore, since our method focus only on the linear term, the regression functions g and f
may be different. This allows the model to be more flexible, with a wider range of different
(possible) features. We approach different scenarios (including the heteroscedastic case) in
the Section 3.

2.2 ESTIMATION OF THE CHANGE POINT

This simple procedure is based on the coefficient of determination, which is well known
in the literature, used in many different fields. Since we are considering the relationship
between two variables (in a simple linear regression model), the coefficient of determination
corresponds to the square of the coefficient of correlation, which is implemented in a wide
range of computational packages.



22 Montoril and Ferreira

The main idea behind the use of the coefficient of determination to detect change points
relies on the consistency of this estimator. In other words, in a (simple) linear regres-
sion case, the estimator of the coefficient of determination converges almost surely to its
population coefficient (see, e.g., Theorems 2.3.4 and 2.3.13 in Sen and Singer, 2000).

The arguments above mean that the more one adds pairs (x,Y) to the dataset, the closer
the estimator of the coefficient of determination tends to be to the population coefficient.
Thus, as long as the (linear) relationship between two variables does not change, the
estimates of the coefficient of determination tend to increase (although not monotonically)
to the population value.

For the sake of clarity, we develop by separating the problem into three cases, from the
linear situation to the general model (1).

FIRST CASE: ¢g = x1 AND ¢ = Zp,

Consider initially that ¢g = x1 and ¢; = x,, i.e., the relationship between (x,Y) is
completely linear. Let us denote

R (St - j)Y")Q
WO S - S (- V)

the estimator of the coefficient of determination based on the sample from the 1st to k-th
pair. An illustration of how R%Lk) tends to converge as k increases can be observed in a
simulated example presented in Figure 2. Each gray point corresponds to the coefficient of
determination R% . estimated with respect to the data, where k = 20,21, ...,100, and the
horizontal line co7rresponds to the true (population) coefficient of determination. In this

example, we used a sample size n = 100.
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Figure 2. Typical simulated example that shows how the coefficient of determination increases as we increase the
amount of data in the estimation.



Chilean Journal of Statistics 23

SECOND CASE: ¢y = 1 AND ¢1 < Zp,

Now, consider the case where ¢y = x1 and ¢; < x,,. Thus, the first part of the data has a
linear relationship and it changes after some point ¢;. Since the estimates of R?Lk) tends
to increase as long as the data is linear, it makes sense to think that, if the coefficient of
determination starts to decrease as k increases, then the relationship is no longer linear.
Therefore, a change point estimator for ¢; corresponds to the value xj with index k that
maximizes R%l,k)’ ie.,

¢1 =1z, where k' =argmax; R%l k)

THIRD CASE: ¢y > x1 AND ¢1 < Zp,

This is the most general case. The data is assumed to have all the three components
(nonlinear-linear-nonlinear relationships) presented in (1). Thus, we must adapt R%l g to

a more general scenario, where we consider the estimator R%j k) which is based only on the

data from the j-th to the k-th pair. For each different value of j, we set ¢y = x; and estimate
c1 as in the second case above. Thus, for each j we will have an adequate pair denoted by

(égj ), R%j k(j))), which corresponds to the estimated value of ¢; and the maximum coefficient

of determination estimate obtained, based on the sample from the j-th pair to the kU)-th
pair. Observe that we use the superscript (j) for the k value selected, because it may vary
for different values of j. Since the greater the R? the better the fitting is, the appropriate

value of j will be the one that maximizes R?j k) which can provide the estimator of c¢g.

Therefore, it is easy to see that the estimator of the pair (¢, c1) corresponds to
N . 2
(Co, 1) = (zjr,xp:), where (j/,k) = arg max; j R(j,k)- (2)

Besides the third case above can be easily implemented, it will work properly as long as
the data have a linear relationship for some interval. In other words, it is important that
we have a minimum interval where the dependence between dependent and independent
variables is linear, which can be even the full range of the independent variable. This
means that our approach is able to detect not only the scenario of model (1), but also
its variations. For example, the situation of the second case above (see the second dataset
application, in Section 4).

2.3 ON THE CANDIDATE INDEXES

With respect to the indexes (j,k) to be used during the estimation, we highlight the
importance of being careful on the choice of the grid that must be used to estimate (co, ¢1)
in (2). Observe that the estimate R?-,k is based on a sample with size k — j + 1. Thus,

depending on the choice of k and j, the sample size may be too small and, then, Rik may
not be considered a reliable estimate. Although it is not reported here, we have observed
that our method works well with grids of the form I;, ;, = {1,...,i0} x {i1,...,n}, where
ip and 71 are such that i1 —ig > 5.

An advantage of considering grids as above is that it allows our method to work with
variations of (2) (e.g., the second case above). Therefore, if for some reason the researcher
has knowledge about the value of any change point, this restriction can be imposed in the
grid of candidates. For example, the second case above will be used if we consider the grid
of candidates I ;, = {1} x {i1,...,n}.
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2.4 DECISION RULE TO TEST FULL LINEARITY

Our proposal does not need that the nonlinear terms in model (1) exist (as discussed
above). This means that there is no requirement about the sample size of the nonlinear
terms, which can be seen as an advantage, if compared to other change point methods
proposed in the literature (see, e.g., Chen, 1998; Osorio and Galea, 2006; Chen et al., 2011).
Thus, we can think on testing the hypothesis that the data have only linear relationship,
against an alternative hypothesis which states that there is also an interval where the
regression function is nonlinear.
The hypothesis to be tested could be written as

Hy:co=x1 and ¢1 =z,

Hy :cop > x1 and/or ¢1 < .

The null hypothesis Hy states that the relationship between both variables is totally linear,
while the alternative H; says that there is also a nonlinear relationship between the data,
which can be before and/or after the linear term.

The null hypothesis can be rejected based on the decision rule R?Ln) < max{R%jyk) :
(j, k) € I, }. This procedure is clearly similar to the Schwarz Information Criterion
(SIC), that has been used in several papers related to change point selection in partially
linear models (PLM) (see, e.g., Chen, 1998; Chen and Gupta, 2001; Osorio and Galea,
2006).

It is important to mention that the model (1) and PLM considered in the afore men-
tioned papers are different. In the PLM used in these papers, it is assumed that there are
deterministic relationships in subintervals separated by the change points. In this work,
since we focus specially on cases similar to the Beer-Lambert law, out main interest is
on the interval where the relationship between variables is linear, and we do not need to
worry about the functional behavior of the regression function outside the linear interval.
This can be seen as a powerful feature in our approach, because the regression function
does not need to have a previously specified behavior that is not linear.

3. SIMULATION STUDY

In order to evaluate the performance of the approach in Section 2.2, we run Monte Carlo
simulations using different sample sizes and different situations. We approach both, the
second and third cases in Section 2.2.

Based initially on the second case, where ¢y = z1, we consider four different partially
linear models, which are enumerated and presented in Table 1. It is important to mention
that, in model 4, ® corresponds to the cumulative distribution function of a standard
Normal distribution. For the sake of simplicity, we used as covariate a sequence of equally
spaced points between zero and one, with a change point in the middle, i.e., ¢; = 0.5.
Moreover, in order to make sure that the two parts of the model (the linear and nonlinear
terms) have the same amount of data, we chose odd numbered sample sizes. Therefore, we
took 1,000 replicas for each model and for each sample size n = 51,101,251, 501.

Considering a sample with size n = 51, we illustrate typical examples with their regres-
sion functions in Figure 3. With respect to the indexes (j, k) to be used in R%j,k)? we fixed
j =1 to ensure that ¢ = z1 = 0, and we tested each value of k such that zj > 0.4.

We compute the average (and standard deviation) of the change point estimates based
on the replicas. The results are presented in Table 2, where it can be observed that the
method tends to provide estimates very close to the real change point, including for data
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Table 1. Models used for detecting the change point in the Monte Carlo simulations.

Model  Linear term o f(z) v
1 T 0.015 T 0.085
2 1+ 0.030 1.5+ 6z 0.090
3 2 0.030 1+ cos(27w(z — 0.75)) 0.060
4 —1.49+3.99z  0.015 (1 —1/(16z)sin(167w(z —0.5)))® (£522) 0.030
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Figure 3. Examples of each model used in the Monte Carlo simulations with sample size n = 51. In the top, datasets
from models 1 (letf) and 2 (right); in the bottom, datasets from models 3 (left) and 4 (right).

sets with the smallest sample size n = 51. It is also important to mention the ability of the
method to successfully estimate the change point even in the heteroscedastic case (model
1), which highlights the efficiency of the approach. Furthermore, in Figure 4, it is also
possible to observe good indicatives that the estimates are converging on the real change
point ¢; = 0.5 as n increases.

Table 2. Average (standard deviation) of the change point estimates of ¢; for the models presented in Table 1.

n
Model 51 101 251 501
1 0.4835 (0.0315) 0.4912 (0.0149) 0.4970 (0.0049) 0.4985 (0.0023)
2 0.4883 (0.0240) 0.4961 (0.0158) 0.5003 (0.0079) 0.5007 (0.0048)
3 0.4933 (0.0253) 0.5016 (0.0170) 0.5050 (0.0092) 0.5048 (0.0068)
4 0.4917 (0.0268) 0.4993 (0.0142) 0.5021 (0.0067) 0.5028 (0.0047)
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Figure 4. Boxplots of the change point estimates of c¢; for the models presented in Table 1. The dashed lines
correspond to the real value of cj.

In a more general framework, we extended the models presented in Table 1 to the case
where the linear relationship is in an interval inside of the data range, i.e., cg > 0 and
c1 < 1, where ¢y = 0.16 and ¢; = 0.84. This corresponds to the third case of Section 2.2.
Models 5-8 presented in Table 3 are similar to models 1-4, respectively, and can be seen
as generalizations. In this case, we have also generated 1,000 replicas for each model and
each sample size n = 51,101, 251, 501. The indexes (j, k) used to calculate R%j,k) were the

values of j such that z; < 0.3 and the values of k such that z; > 0.7.

Table 3. Models used for detecting the change point in the Monte Carlo simulations. The standard deviations o
and v for models 5-8 are the same used for models 1-4, respectively.

Model g(z) Linear term fx)
5 T T x
6 0.2 + 6z 1+z —3.2+ 6x
7 1.03 + cos(32(z — 2.16))/3 14 1.97 — cos(32(z + 1.16))/3
8 221+ (1.52+52)sin(80z)/5  2+2z  4.03+ (5.36 — 2z) sin(80z)/10

Illustrations of typical examples for each model, with sample size n = 51 are presented
in Figure 5. Averages (and standard deviations) for the estimated values of ¢y and ¢; are
calculated based on the 1,000 replicas of each model in Table 3. The results are presented
in Table 4, where we can observe, as in the first simulation results, good performances in
estimating the change points, in this case, ¢y and c¢;. Boxplots are presented in Figures 6
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and 7, where it is possible to see indicatives of convergence of the estimates of ¢y and c1,
respectively.
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Figure 5. Examples of each model used in the Monte Carlo simulations with sample size n = 51. In the top, datasets
from models 5 (letf) and 6 (right); in the bottom, datasets from models 7 (left) and 8 (right).

Table 4. Average (standard deviation) of the change point estimates cg and ¢1 for the models presented in Table 3.

. n
Model  Points 51 101 751 501
- co 0.1562 (0.0265) 0.1531 (0.0117) 0.1592 (0.0042) 0.1596 (0.0021)
c1 0.8426 (0.0284) 0.8418 (0.0134) 0.8407 (0.0024) 0.8405 (0.0024)
; co 0.1602 (0.0230) 0.1562 (0.0122) 0.1563 (0.0065) 0.1576 (0.0042)
c1 08394 (0.0247) 0.8434 (0.0144) 0.8432 (0.0067) 0.8424 (0.0043)
: co 0.1667 (0.0209) 0.1598 (0.0098) 0.1567 (0.0049) 0.1566 (0.0038)
¢ 0.8334 (0.0215) 0.8398 (0.0121) 0.8432 (0.0057) 0.8433 (0.0036)
. co 0.1662 (0.0185) 0.1624 (0.0075) 0.1608 (0.0026) 0.1603 (0.0014)
¢ 0.8337 (0.0197) 0.8439 (0.0112) 0.8434 (0.0060) 0.8432 (0.0044)
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Figure 6. Boxplots of the change point estimates of ¢y for the models presented in Table 3.

4. APPLICATION

Here we apply the method to two real datasets in the field of Analytical Chemistry, where
the absorbance and the compound concentrations are analyzed. In the examples, we con-
sider the zinc and iron compounds. In this context, the aim is to find the interval where the
Beer-Lambert law holds, i.e., where the relationship between absorbance and concentration
is linear.

The datasets were collected in the Analytical Chemistry Laboratory of the Department
of Chemistry, at Federal University of Juiz de Fora, Brazil.

ABSORBANCE VS. ZINC CONCENTRATION

The study was performed by using a stock solution of concentration with 1000 mg L~!
of zinc (Vetec, Sao Paulo, Brazil). By dilution, an analytic curve containing n = 40 levels
of concentration was prepared for the sequence Zn = 0.1(0.1)4.0 mg L~!. The solutions
were analyzed using FAAS (Thermo Scientific model, Solaar M5 Series). Measurements of
the absorbance were performed in triplicates, at the wavelength of 213.9 nm, with air and
acetylene flame. The resulting dataset is the same presented before in Figure 1.

In the application of the proposed method to the zinc dataset, we considered the indexes
in the range 1 < j < 5 for estimating ¢y and 10 < k < 40 for estimating ¢;. The method
provided the change point estimates ¢y = 0.5 and ¢ = 1.6, which corresponds to the



Chilean Journal of Statistics 29

Model 5 Model 6

1.00
I

0.95
I
0.85
I

!

0.80
I

0.80
I

0.75
I

0.75

0.70
I
0.70
I

51 101 251 501 51 101 251 501

n n

Model 7 Model 8

0.85
I
0.85
I

0.80
I
0.80
I

0.75
I
0.75
I

0.70
I
0.70
I

51 101 251 501 51 101 251 501

Figure 7. Boxplots of the change point estimates of ¢1 for the models presented in Table 3.

boundaries where the Beer-Lambert law holds. Furthermore, the coefficient of determina-
tion obtained from the data with zinc concentrations in the interval [0.5,1.7] is 0.9993. In
other words, it means that, in the aforementioned interval, 99.93% of the variation of the
absorbance can be linearly explained by the zinc concentration. The example is illustrated
in Figure 8, where the black points correspond to the data that, according to our approach,
is mostly linear. Their boundaries are highlighted by dashed lines, which are the change
point estimates.

According to the equipment manual, the linear working range of the analytical curve
comes from 0.2 mg L~! to 2 mg L~!. This is a standard interval, and it does not take into
account random conditions such as, for example, the environment where the equipment is
installed. In this case, absorbance values related to zinc concentrations close to 2 mg L™
must lead to unreliable results.

ABSORBANCE VS. IRON CONCENTRATION

In this study, it was considered a stock solution of concentration with 1000 mg L~ of iron
(Vetec, Sao Paulo, Brazil). n = 40 levels of iron concentration was collected, satisfying
Fe =1(1)40 mg L~!. The solutions were analyzed using FAAS (Thermo Scientific model,
Solaar M5 Series) and the absorbance measurements were performed in triplicates, at the
wavelength of 248.3 nm, with air and acetylene flame. The dataset is presented in Figure
9.
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Figure 8. Scatter plot of the absorbance versus the zinc concentration. The dashed lines correspond to the estimated
change points ég and ¢é;. The black points correspond to the data whose relationship is mostly linear (its coefficient
of determination is right below).
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Figure 9. Scatter plot of the absorbance versus the iron concentration. The dashed lines correspond to the estimated
change points ¢g and é1. The black points correspond to the data whose relationship is mostly linear (its coefficient
of determination is right below).

As in the zinc study, we considered the indexes in the range 1 < j < 5 for estimating
co and 10 < k < 40 for estimating ¢;. The change point estimates obtained are ¢y = 0.1
and ¢; = 10, which correspond to the boundaries where the Beer-Lambert law holds.
The coefficient of determination based on the data with iron concentration in the interval
[0.1,10] is 0.9975, which means that 99.75% of the variation of the absorbance can be
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linearly explained by the iron concentration. The result is illustrated in Figure 9.
The results obtained are, in this case, in agreement with the linear working range pro-
vided by the equipment manual, which states that the Beer-Lambert law holds up to 10
-1
mg L.

5. CONCLUDING AND ADDITIONAL REMARKS

In this paper, we present a simple method to detect the change points in partially linear
models, based on the well-known coefficient of determination. The approach is illustrated
by real dataset applications, and its performance is evaluated by Monte Carlo simulation
studies, where we consider different scenarios and sample sizes. The method can efficiently
detect the change of relationships.

Our proposal can also be interpreted as a way to find an interval where the data is
mostly linear. Technically, we can say that the method provides the best interval where
the variation of the dependent variable is linearly explained by the independent variable.

The figures and estimations were performed by using the statistical package R Core
Team (2017). The codes to estimate the change points are provided as supplementary
material.

We have approached the case where the relationship between dependent and independent
variables becomes linear after a change point, say cg, and then, after another change point,
say ci1, the linearity ends. The method was developed in stages, in order to be easily
understood even for practitioners from other fields.

The datasets used for illustration correspond to studies of absorbance and concentration
of chemical elements (here we evaluated two cases: the zinc and iron compounds). The idea
was to analyze the interval where the Beer-Lambert law holds (in other words, the interval
where the relationship between concentration and absorbance is linear). The Beer-Lambert
law is well known in Analytical Chemistry and, briefly speaking, it states that there is an
interval where the relationship between the absorbance and a specific chemical compound
(e.g., the zinc element) is linear.

We believe that our method, if compared to other proposals in the literature, has such a
powerful advantage, that the dataset to be analyzed does not need to have a predetermined
relationship outside the interval with linear behavior. Furthermore, the proposed approach
can detect cases that are variations of model (1). Cases like nonlinear-linear or linear-
nonlinear are some examples. Another example is the case where the regression function
is fully linear, and a decision rule to test this hypothesis was presented in Section 2.4.
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