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Abstract

The literature contains treatments of various aspects of spatial autocorrelation. With its
pervasiveness in empirical datasets, this literature focuses much more on positive spa-
tial autocorrelation. In contrast, treatments of negative spatial autocorrelation scarcely
appear in the literature. The purpose of this paper is to summarize impacts of negative
spatial autocorrelation on data frequency distributions. Selection of this data visual-
ization tool for study is because much empirical statistical research employs it in an
initial data analysis step, and because findings here extend those reported in Griffith
(2011) pertaining to positive spatial autocorrelation. This paper examines the first four
moments of spatially autocorrelated random variables studied with simulation experi-
ments. These simulations utilized a novel eigenvector spatial filtering based approach to
generate spatially autocorrelation random variables.

Keywords: Histogram · Binomial random variable · Negative spatial autocorrelation
· Normal random variable · Poisson random variable · Spatial autocorrelation.

1. Introduction

Spatial autocorrelation (SA)-the tendency for nearby values on a map to covary-has been
a topic of interest in the geospatial sciences for a number of decades. Its treatment has fol-
lowed the usual evolutionary trajectory of measurement [e.g., the Moran Coefficient (MC)
and the Geary Ratio (GR)], then hypothesis testing (e.g., see Cliff and Ord, 1973), and
finally modelling (e.g., spatial autoregression, Moran eigenvector spatial filtering, and geo-
statistical semivariogram functions). Positive SA (PSA), or the tendency for similar values
to cluster on a map, has received most of the attention, largely because spatial researchers
have found relatively few conspicuous empirical examples of negative SA (NSA), or the
tendency for dissimilar values to cluster on a map. Spatial analysts tend to believe that
NSA is a rare event; it is one of the most neglected topics in spatial statistics.

NSA refers to a geographic distribution of values, or a map pattern, in which, rela-
tively speaking, the neighbors of locations with large values tend to have small values, the
neighbors of locations with intermediate values tend to have intermediate values, and the
neighbors of locations with small values tend to have large values. A Moran scatterplot
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for this situation, constructed by graphing the pairs of z-scores (zi, sum of surrounding
zis), portrays a scatter of points that aligns along a trend line sloping from the upper
left-hand to the lower right-hand quadrants of a graph. NSA naturally materializes with
competitive locational processes, negative spatial externalities, the construction of spatial
correlograms, the spectrum (i.e., eigenvalues) of a spatial weights matrix (SWM), the cal-
culation of linear regression residuals, and the computation of LISA (local indicator of
spatial association; see Anselin, 1995) statistics.

However, Spielman (2012) argues that NSA materializes in, for example, new forms of
urban development, and that when NSA does occur, it often is of particular substantive
interest. This situation is typical of time series analyses, too, in which most serial cor-
relation empirically is found to be positive. Temporal autocorrelation exceptions include
agricultural production (e.g., the cob-web model), credit spread return series, and high fre-
quency financial data. Long-standing NSA exceptions include the regional Phillips curve
reported by Anselin (1988), and relatively few intra-county population densities reported
by Griffith et al. (2003). This situation may well be exemplified by the Wu et al. (1998)
study of 361 agricultural plant breeding field trials, in which only eight trials (i.e., 2.2%)
displayed NSA (the average value of the eight SA parameters is −0.28, for an NSA range
of [−1, 0]).

The purpose of this paper is to summarize an investigation of the impact of NSA on data
frequency distributions, extending Griffith’s (2011) findings about how PSA can distort a
frequency distribution for georeferenced data. This paper presents simulation experimental
results based upon generated spatially autocorrelated random numbers, focusing on three
popular distributions that are widely utilized in georeferenced data analyses (the normal,
binomial, and Poisson). It examines the impacts of NSA with a focus on the first four
moments (i.e., mean, variance, skewness, and kurtosis). This paper focuses on areal data
(e.g., census data), which are very common for empirical datasets in the social sciences,
including geography, regional science, economics, and demography.

2. Background

NSA is uncovered empirically by Saavedra (2000) as well as Boarnet and Glazer (2002)
in both welfare and federal grants competition among local governments, by Montgomery
and Chazdon (2001) in lowland Costa Rican second growth forest competition for light,
by Irwin and Geoghegan (2001) in the Patuxent watershed land parcel development, by
Stirböck (2002) in an index of investment specialization across Europe, by Garrett and
Marsh (2002) in cross-border lottery shopping, and by Conley et al. (2003) in the spatial
distribution of productivity in Malaysia. Furthermore, Gray and Shadbegian (2007) detect
weak NSA in 102 industrial plant emissions of sulfur dioxide and nitrogen oxides across
the medium-size United States (US) cities of St. Louis, Cincinnati, and Charlotte, whereas
NSA is observed by Garretsen and Peeters (2009) in investment across OECD countries,
by Basdas (2009) in the Turkish manufacturing industry, by both Filiztekin (2009) and
Pavlyuk (2011) in regional employment, and by Elhorst and Zigova (2014) in research
activity competition among a set of Economics Departments. Although this enumeration
of occurrences appears to be sizeable, a comprehensive listing of PSA examples would
eclipse it.

Nevertheless, the literature about NSA is still relatively scant.
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3. Methodology

This section presents methodologies employed in the simulation experiments. First, it
presents an overview of Moran eigenvector spatial filtering (MESF), and a discussion of
an adjusted Moran Coefficient (MC) to expand the narrow range for NSA compared to
PSA. Then, a MESF based approach is presented for generating SA embedded random
numbers. Griffith (2017) comments that this method provides a single formula for drawing
spatially autocorrelated random values from popular statistical distributions. In contrast,
some popular parametric models do not support all aspects of SA. Especially, the popular
auto-Poisson model can accommodate only negative spatial autocorrelation (Besag, 1974).

3.1 An overview of Moran eigenvector spatial filtering

MESF is a relatively novel methodology to handle SA contained in data (Griffith, 2003).
MESF uses a set of synthetic proxy variables, which are extracted as eigenvectors from a
n-by-n SWM, say C, that ties n geographic objects together in space (indicating which
are pairwise directly correlated), and then adds these vectors as control variables to a re-
gression model specification. These control variables identify and isolate stochastic spatial
dependencies among a set of georeferenced observations, filtering these dependencies out of
a models residuals and adding them to the models mean response, thus allowing regression
model building to proceed with observations that mimic being independent.

The MC SA index furnishes the basis for MESF; the GR or one of the other SA indices
also could furnish this basis. The MC index can be written in matrix form as follows:

n

1>C1

Y >(I − 11>/n)C(I − 11>/n)Y

Y >(I − 11>/n)Y
,

where Y is a georeferenced variable, I is an n-by-n identity matrix, 1 is an n-by-1 vector of
ones, n is the number of areal units, superscript > is the matrix transpose operator, and C
is the binary 0-1 SWM. The eigenfunctions (i.e., the paired eigenvalues and eigenvectors)
of interest are extracted from the modified SWM

(I − 11>/n)C(I − 11>/n), (1)

which appears in the numerator of this expression. When multiplied by n/1>C1, an eigen-
value of this matrix is converted to the MC measuring the SA in its associated eigenvector
(Tiefelsdorf and Boots, 1995; Griffith, 1996). The sign of an eigenvalue indicates the nature
of SA represented by its corresponding eigenvector, whereas its magnitude indicates the
degree of SA.

Extracting the eigenfunctions from SWMs constitutes a spectral decomposition of these
matrices. The extracted eigenvectors with associated eigenvalues relatively far from zero,
and hence representing other than negligible SA, may be viewed as portraying global,
regional, or local components of SA because of the particular map patterns they take on
when visualized. In other words, SA manifests itself in terms of similar (PSA) or dissimilar
(NSA) values of variable Y clustering on a map.

MESF involves only the relevant eigenvectors when analyzing georeferenced data. A
linear combination of these relevant eigenvectors is a constructed eigenvector spatial filter
(ESF). Thus, the set of n eigenvectors needs to be reduced to this much smaller subset.
The first screening is to set aside those eigenvectors portraying negligible degrees of SA;
those set aside have eigenvalue absolute values less than some threshold value. If only PSA
is of interest, then those eigenvectors with eigenvalues greater than this aforementioned
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threshold constitute a candidate set; if only NSA is of interest, then those eigenvectors with
eigenvalues less than the negative of this aforementioned threshold constitute a candidate
set. A PSA-NSA mixture would include both of these preceding subsets. Chun et al.
(2016) further discuss how a candidate set can be constructed. Once a candidate set is
determined, then the selection of eigenvectors is with a stepwise regression procedure.
This stepwise selection is legitimate because the n eigenvectors are mutually orthogonal
and uncorrelated by construction. The resulting selected eigenvectors together with their
regression coefficients allow the construction of an ESF.

3.2 The adjusted Moran Coefficient: initial developments

The MC NSA range roughly is between (−0.5,−c) and (−1.1,−c), where −c = −1/(n−1)
for a univariate case; most surface partitionings are closer to −0.5 than to −1.1. The
adjusted MC, MCadj, may be calculated as follows:

MCadj = 2
( MC−MCmin

MCmax−MCmin

)γ
− 1,

γ =
− ln(2)

ln(−1/(n− 1)−MCmin)− ln(MCmax−MCmin)
, (2)

which has a range of [−1, 1], with 0 [rather than −1/(n − 1)] denoting no SA. The ex-
treme MC values, MCmax and MCmin, are calculated with the extreme eigenvalues of
matrix expression (1) (Jong et al., 1984). The exponent γ is calculated, not estimated,
because all quantities in its definition are known. This exponent centers MCadj at 0, in
most cases stretching its NSA greatest lower bound to −1, and shrinking its PSA least
upper bound to 1. The asymptotic standard error, σMC , is

√
2/1>C1 (see Griffith, 2010).

The corresponding adjusted derivation based upon mathematical statistical theory yields
σMCadj

=
(
2
√

2/1>C1
)
/(MCmax−MCmin)γ . Figure 1 portrays sampling distribution re-

sults based on a simulation experiment with 10,000 replications using a 70-by-68 (= 4, 760)
regular square tessellation surface partitioning as well as the 2010 Dallas metroplex census
tract (2,760 areal unit polygons) surface partitioning.

The square tessellation results, whose original MC range needs little adjustment, render
γ ≈ 1; the irregular surface partitioning for Dallas renders γ ≈ 0.7. Both experiments
render a simulated mean and variance that are almost identical to their theoretical coun-
terparts (slight deviations are due to sampling error), and a normally distributed sampling
distribution.

3.3 Eigenvector spatial filtering based random number generation

Because of many intractabilities associated with spatial statistics, spatial scientists use
simulation experiments to establish many of its theoretical and conceptual properties and
generalizations. Simulation experiments utilizing the auto-normal model employ the fol-
lowing relatively simple simultaneous autoregressive (SAR) mechanism to embed SA into
univariate georeferenced data:

Y = µ1 + (I − ρW )−1ε, ε ∼ N (0, σ2I), (3)

where σ2 denotes the landscape-wide constant variance of ε, which are independent and
identically distributed (iid), and the SA parameter ρ < 0 denotes NSA. W is a row
standardized SWM; its diagonal elements are zero. (I − ρW ) is positive definite so that
the parameter space of ρ is (1/λn, 1/λ1), where λ1 and λn are the largest and smallest
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γ MCmax MCmin

1.0029876 1.0196336 -1.025495

Variable Mean Std. Dev.
MC -0.000974264 0.0204344

MCadj -0.000153346 0.0200018

γ MCmax MCmin

0.7076671 -0.715145 1.1842969

Variable Mean Std. Dev.
MC -0.0016676 0.0269278

MCadj 0.000077291 0.0267067

Figure 1. Simulation experiment results. Left (a): for a 70-by-68 regular square tessellation. Right (b): for the 2010
Dallas metroplex census tract surface partitioning

eigenvalues of matrix W . One advantage of this approach is that ρ in simulated values
can be validated easily with popular estimation methods such as maximum likelihood,
regardless of whether the SA is PSA or NSA. One weakness of this simulation approach
is that it employs a prespecified nature and degree of SA, but without controlling for its
associated map pattern (Griffith, 2017).

In contrast, MESF circumvents this pair of weaknesses. The following equation defines
the mean response:

Y = α1 +EkβEk
+ ε, (4)

where EkβEk
denotes ESF and ε denotes a vector of non-spatial random errors. For gen-

eralized linear models involving binomial and Poisson regression, equation (4) can be ex-
pressed as

µ = g−1(α1 +EkβEk
), (5)

where g(·) is a link function, with common links functions being the natural logarithm for
Poisson models, and the logit for binomial models.

ESF based spatial random number generation can begin with construction of an ESF,
EkβEk

, from a set of SAR-generated random numbers defined by equation (3), following
Griffith (2011). That is, MESF is conducted with SAR random values in which SA is
accounted for with EkβEk

. Furthermore, similar to the MCadj in equation (2), the ESFadj

can be constructed to adjust for the unequal range of NSA vis-à-vis PSA. Then, the non-
spatial random errors, ε, can be added for a normal distribution, N (0, σ2

ε I), where σ2
ε is

the standard deviation of ε̂. Meanwhile, Poisson random values are drawn with a vector
µ, with each µi calculated as follows:

µi =
exp[ln(α)] exp[c1 ESFadj,i]∑

i exp[c1 ESFadj,i]/n
. (6)

The SA level for a set of generated random values can be controlled with the weight
term for the SA, c1. Binomial random values can be drawn with a probability, pi, and the
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number of trials, ntr. The probabilty term contains the SA; this quantity can be calculated
as follows:

pi =
1

1 + exp(c0 + c1 ESFadj,i)
. (7)

The term c0 is set to 0 for a specific scenario with an overall p = 0.5, and can be set to
another value to obtain a different overall p level.

For all three of these random variables (RVs; i.e., normal, Poisson, binomial), the ad-
vantage of designing a simulation experiment with these equations is that the underlying
map pattern is preserved, and, hence, the variance is preserved. For example, a spatial
autoregressive simulation for normal RVs using the equation (3) SAR specification yields
a ρ̂ equivalent to the input ρ, a constant average map, and a corresponding non-constant
variance map (tending to decrease from the middle of this map to its periphery), whereas
using the equation (5) MESF specification yields an average map that is the ESF, and a
corresponding constant variance map.

4. Results

Simulation experiments, whose results are summarized in this paper, have been conducted
with a 70-by-70 square tessellation. A spatial weights matrix is specified with the rook
type contiguity. A total of 12 different levels of SA are employed for SAR random number
generation: 0.1, 0.3, 0.5, 0.7, 0.9, and 0.95 for PSA, and −0.1,−0.3,−0.5,−0.7,−0.9, and
−0.95 for NSA. Furthermore, 10 distinct map patterns for each of these PSA and NSA
degrees of SA were generated; Appendix A presents one of these sets for each of the extreme
cases of SA. Next, 10,000 random sets of numbers were generated for each of these distinct
map patterns.

Figure 2 illustrates a simulated outcome for the three distributions with ρ = −0.95 for
NSA (Figures 2a, 2c, and 2e), and ρ = 0.95 for PSA (Figures 2b, 2d, and 2e). Note that
remotely sensed images often contain strong PSA (e.g., Li et al., 2016; Griffith and Chun,
2016), whereas empirical data with strong NSA rarely are recognized in the literature, as
noted in the preceding background section. Figures 2a and 2b portray a simulated normal
distribution following equation (4). The range of this simulated normal distribution is
larger than that of a typical normal random set of values without SA, which indicates an
increase in variance. In addition, these simulated sets do not show a big difference between
PSA and NSA impacts. Similarly, Figures 2c and 2d portray outcomes for a simulated
binomial distribution, and Figures 2e and 2d portray outcomes for a simulated Poisson
distribution.

4.1 The normal distribution

Table 1 reports the distribution properties of spatially autocorrelated random values for
extreme positive and negative SA cases (i.e., ρ = 0.95 and ρ = −0.95). Here, the nominal
level of µ is zero and the variance is one; that is, ε was drawn from N (0, 1). These results
show that while the means are around the nominal level (i.e., zero), the variance is sub-
stantially inflated for both the PSA and the NSA cases. Overall, skewness approximately
equals its theoretical value (i.e., zero), whereas excess kurtosis overall tends to be less than
its theoretical value (i.e., zero); more specifically, negative excess kurtosis occurs in 9 out of
10 sets. This outcome means that the normal distribution with a considerable level of SA
is flatter than its iid counterpart. In general, no distinctive difference exists across the 10
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map pattern results. Hence, hereafter, reported distributional properties are based upon a
merging of results for the 10 map patterns.

Table 1. Distributional properties for spatially autocorrelated normal random values for the extreme PSA and NSA

cases.

map PSA ρ = 0.95 NSA ρ = −0.95
mean var skewness kurtosis mean var skewness kurtosis

1 -0.3215 10.7001 0.1108 -0.0255 -0.0089 7.9181 0.0057 -0.0976
2 0.2102 8.4208 -0.0839 -0.1343 0.0039 6.4695 -0.0449 -0.1171
3 -0.0894 7.8912 -0.0844 -0.2630 0.0012 7.7540 0.0406 -0.1700
4 -0.0416 8.0904 -0.1739 0.2121 0.0000 6.8903 0.0164 -0.0599
6 -0.2472 7.9979 0.0022 -0.1332 -0.0032 8.6540 0.0225 -0.1194
7 -0.0632 7.3826 -0.0495 -0.0702 0.0001 7.1643 0.0001 -0.1390
8 0.2743 7.2534 0.0389 -0.0678 0.0068 7.3301 0.0061 -0.1594
9 0.6511 6.7562 0.0497 0.0168 0.0172 7.2461 0.0131 0.0615
10 -0.0422 7.0616 -0.0651 -0.1648 -0.0010 8.4085 -0.0022 0.2237

Note: the reported values are averages from 10,000 random sets; var denotes variance.

Figure 3 presents variation in the four distributional properties of the simulated random
values as PSA and NSA change. Figure 3a confirms the unbiasedness of the mean for a
normal distribution: it closely tracks zero across the ranges of PSA and NSA. In contrast,
varince is consdierably affected by the level of SA; it is close to one, the nominal level, when
ρ is 0, but increases exponentially as the absolute value of ρ increases. Figure 3b reveals
that skewness is around zero across all levels of ρ, but that excess kurtosis decreases as
the absolute value of ρ increases. These findings are consistent with Griffith (2011), who
finds that PSA has an influence on variance and kurtosis. Of note is that these patterns
do not differ much between PSA and NSA, at least for this simulation experiment.

4.2 The binomial distribution

Employing mathematical spatial statistical theory, Griffith (2010) extends PSA results
for a normal RV to a suite of non-normal RVs. He also establishes how PSA im-
pacts upon histograms (Griffith, 2011), relating normal, Poisson/negative binomial, and
Bernoulli/binomial RVs the most commonly employed ones in the spatial sciences-
containing PSA-to particular mixture model specifications.

The expectation is that histogram impacts from PSA and NSA differ. Consider a RV
distributed across a 70-by-70 regular square tessellation. Its extreme MC values are 1.012
and −1.014 (rook’s adjacency definition), which already suggests a difference. These val-
ues dictate the maximum level of SA that can materialize on this surface. A simulation
experiment was conducted to study properties of spatially autocorrelated binomial and
Poisson RVs. The curved lines in Figure 4a demonstrate for a binomial RV that, when
p = 1/2 and SA is weighted equally with stochastic noise, this maximum level of SA is a
function of the number of trials, ntr. As ntr → ∞, a binomial distribution converges on
a normal distribution, and its ability to capture maximum SA naturally increases. The
parallel horizontal lines in Figure 4a demonstrate that when SA is weighted far more than
stochastic noise, maximum SA still can materialize when ntr is small. The most important
aspect of this graphic is that both PSA and NSA behave in the same way. Figure 4b shows
the maximum SA achieved with increasing weights, c1 in equation (7), that is explored
with a grid search of weights from 1 to 200. It shows that the extreme SA converges to that
of a normal distribution with a large weight. Figure 4b shows the average weight values
when extreme SA is achieved in Figure 4c with 100 repeated results. The weight values
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Simulated sets of random values with embedded spatial autocorrelation for a normal (a)-(b), a binomial
(c)-(d), and a Poisson distribution (e)-(f). Note: (a), (c), and (e) are for ρ = −0.95 (an NSA case), and (b), (d), and
(e) are for ρ = 0.95 (a PSA case).
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(a) (b)

Figure 3. Distributional properities of simulated spatially autocorrelated normal random values.

(a) (b) (c)

Figure 4. The range of spatial autocorrelation for a binomial distribution; blue denotes NSA, and red denotes PSA.
(a) the maximum SA by number of trials, with c1 = 1 and p = 1/2. (b) the weight values, c1, needed to achieve
extreme SA. (c) the extreme SA levels acheived with c1 values in (b).

are stable across the number of trials other than ntr = 1 or 2, which are about 34.75 for
PSA and 34.62 for NSA. Hence, binomial random values are generated with these weight
values.

Figure 5 portrays the results for a binomial distribution. Figure 5a shows that the mean
is generally not affected by the level of SA, with the dotted lines approximating the nominal
levels across all ρ values (i.e., ntrp = 5). In contrast, the variance is considerably inflated
from the nominal level, 2.5 = ntrp(1 − p). The variance is larger even when ρ = 0.1 and
−0.1, and increases as the absolute value of ρ increases. In Figure 5b, the skewness is
constant (approximately zero, the nomial level) across all ρ values. That is, skewness is
not affected by SA. In constrast, excess kurtosis, [1−6p(1−p)]/[ntrp(1−p)], is much smaller
than the nominal level of −0.2, which indicates a flattened distribution. Excess kurtosis
further descreases as ρ increases. The same patterns are observed in Figures 5c and 5d, for
which ntr = 200. That is, while the mean and skewness are not affected by SA, the variance
and the kurtosis experience a considerable impact. Specically, the variance is considerably
larger than its theoretical value of 50. This overall pattern for a binomial distribtuion is
similar to that for a normal distribution. However, although it shows excessive variance, it
also shows little excess kurtosis, for small ρ values (i.e., ρ = 0.1 and −0.1). This difference
between a binomial and a normal RV may arise with the relative weight attached to the
spatial component here, which is shown in Figure 4b.
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(a) (b)

(c) (d)

Figure 5. Distributional properities of simulated spatially autocorrelated binomial random numbers with ntr = 10
(a, b), and ntr = 200 (c, d)

4.3 The Poisson distribution

The curved lines in Figure 6a demonstrate for a Poisson RV that, when SA and stochastic
noise are weighted equally, this maximum level of SA is a function of the Poisson mean,
µ. As µ → ∞, a Poisson distribution converges on a normal distribution, and its ability
to capture maximum SA naturally increases. The dotted lines with small filled circles in
Figure 6a demonstrate that when SA is weighted far more than stochastic noise with a
high value for c1 in Equation (6), a greater degree of SA can materialize. But, unlike the
preceding binomial RV (which is symmetric because p = 1/2), maximum PSA or NSA
cannot necessarily materialize. Furthermore, a substantial difference exists between PSA
and NSA outcomes here. This finding suggests that the behavior of a binomial RV with
p 6= 1/2 may deviate from that portrayed in Figure 4a. Figures 6b and 6c show that the
weights to achieve extreme SA are negative exponentially related to µ. The non-linear
model fit in Figure 6b suggests the following equation for PSA weights:

ĉ1 = 4.07100 exp(−0.51662 log(µ)) + 0.01067,
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with R2 = 0.99998. The non-linear model fit in Figure 6c suggests the following equation
for NSA weights:

ĉ1 = 4.07674 exp(−0.51811 log(µ)) + 0.01175,

with R2 = 0.99997. Hence, Poisson random values are generated with ĉ1 from these equa-
tions, which appear to differ only by sampling error.

(a) (b) (c)

Figure 6. The range of spatial autocorrelation for a Poisson distribution; blue denotes NSA, and red denotes PSA.
(a) the maximum SA as a function of µ, with c1 = 1 (inner curves) and c1 at its maximum (outer curves). (b)
weights to acheive maximum PSA, as a function of µ. (c) weights to acheive maximum NSA, as a function of mu.

Figure 7 portrays selected properties of a set of Poisson random numbers. The overall
patterns are similar to those for a binomial distribution. Figures 7a and 7b show that the
mean of a Poisson distribution (µ = 5 here) is not affected by SA, whereas the variance
is substantially inflated. The mean and the variance of a classical Poisson distribution
are the same, µ. In this example, the variance is greater than 6.5, even for the smallest
magnitudes of ρ (i.e., ρ = 0.1 and −0.1); it increases as ρ increases. The observed skewness
is greater than its theoretical value of 0.4472 (= µ−1/2) for independent values, and the
observed excess kurtosis also is greater than its theoretical counterpart of 0.2 (= µ−1).
But the observed skewness values fall within a small range across the ρ levels. The results
for µ = 100 produce the same pattern. Figure 7c shows that the mean is around 100, the
nomial level, while the variance is greater than 100, and increases as ρ increases. Figure 7d
shows that the skewness and excess kurtosis constantly are greater than their theoretical
values, which is 0.1 for skewness and 0.01 for kurtosis. Except for the difference in the
maximum possible SA, depicted in Figure 6a, these results demonstrate that there is no
distictive difference between the impacts of PSA and NSA. Also, the parameter value, µ,
does not make a substantial difference in the patterns of the distributional properties for
Poisson random values.

5. Summary and Conclusions

This paper summarizes an investigation of the impact of NSA on the frequency distribution
of three RVs commonly employed to describe georeferenced data: the normal, binomial,
and Poisson. In this paper, random values with SA embedded are generated using MESF,
and the distributional properties of the resulting spatially autocorrelated random values
are examined.

Simulation experiment results indicate that SA has virtually no impact on the means
of the three selected probability distribution models. In contrast, SA inflates the variance,



14 Chun and Griffith

(a) (b)

(c) (d)

Figure 7. Distributional properities of simulated spatially autocorrelated Poisson random numbers with µ = 5 (a,
b) and µ = 100 (c, d)

with this inflation increasing as the level of SA increases. This increasing pattern is con-
spicuous for the normal distribution, which exhibits little inflation when ρ is small (i.e.,
ρ = 0.1 and −0.1). In contrast, binomial and Poisson distributions have a markedly in-
flated variance for ρ = 0.1 and −0.1. These findings confirm that spatially autocorrelated
binomial and Poisson values tend to have overdispersion. Meanwhile, skewness essentially
is unaffected by SA for a normal distributions, while its kurtosis decreases as the level
of SA increases. This change in kurtosis can be expected with the occurrence of variance
inflation. In contrast, skewness and kurtosis are greater than their theoretical counter-
parts for binomial and Poisson distributions. These statistics also are stable across SA
levels, unlike their behavior for a normal distribution. Interestingly, impacts of NSA are
not substantially different from those of PSA in these simulation experiments.

This paper further contributes to the literature in two ways. First, it demonstrates that
the feasible range of SA is dependent on a mean level for non-normal RVs. When a mean
is small, the feasible range of SA is small for both binomial and Poisson distributions.
This paper also shows that this feasible range can be expanded by increasing the relative
weighting of SA to random noise components. In addition, the PSA and NSA feasible
ranges for a binomial distribution with p = 0.5 are symmetric, whereas they are asymmetric
for a Poisson distribution with a small µ. This outcome implies that the feasible range
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might become asymmetric as p deviates from 0.5. Second, this paper shows how spatially
autocorrelated random values can be generally based on MESF following Griffith (2011).
This method provides a novel approach that can be used to generate non-normal as well
as normal random values.

The study upon which this paper is based can be further extended in future research.
First, the regular surface partitioning employed can be replaced with an irregular parti-
tioning, which better characterizes most empirical data, supporting a more comprehensive
exploration of PSA and NSA impacts on statistical frequency distributions. Second, rather
than studying pure PSA and NSA cases, an investigation of mixtures of PSA and NSA
should prove illuminating. Although NSA is one of the most ignored topics in spatial
statistics, it has received more attention than the mixture topic. This notion was first
introduced in a formal way by Griffith and Arbia (2010), who acknowledge that cases of
zero SA can result from these two SA components cancelling each other. A propensity
for PSA to dominate is one potential reason spatial scientists rarely detect NSA. One
of the first encountered examples of this combination was the behavior of the Anopheles
arabiensis mosquito (Jacob et al., 2009). Third, impacts of NSA or a mixture of PSA and
NSA on other statistical features need to be investigated further. These statistical features
include, especially, biasness, consistency, and robustness for regression coefficients as well
as effective sample size (Griffith, 2005).
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Appendix A. Map patterns for PSA with ρ = 0.9 and NSA with ρ = −0.95

The following maps present the 10 distinct PSA and NSA patterns that were used in the
simulation experiments.


