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Abstract

A family of scale-mixture of epsilon Birnbaum-Saunders (SEBS) distributions is intro-
duced and studied. This new family is based on the epsilon-skew-normal (ESN) distri-
bution and provides more flexibility in terms of skewness and kurtosis (heavy tails).
We discuss some of its probabilistic and inferential properties. We perform maximum
likelihood estimation by the use of EM algorithm and then evaluate the performance
of the estimators through a Monte Carlo simulation study. A bias-reduction method is
suggested for reducing the bias of some estimators. Finally, the analysis of two data sets
is performed for illustrative purposes.

Keywords: Birnbaum-Saunders distribution · Epsilon-skew-normal distribution
· Maximum likelihood · Order statistics · Monte Carlo simulation.
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1. Introduction

The epsilon-skew-normal (ESN) family of distributions was introduced by
Mudholkar and Hutson (2000) by splicing two half-normal distributions with differ-
ent scales. The ESN family provides more flexible models, in terms of skewness, as
compared with the normal model. We say that a random variable (RV) X follows a
standard ESN distribution with asymmetry parameter |ε| < 1, denoted by X ∼ ESN(ε),
if its probability density function (PDF) is given by

fESN(x; ǫ) = φ

(
x

1 + ε

)
I{x< 0} + φ

(
x

1− ε

)
I{x≥ 0}, (1)

where φ(·) is the standard normal PDF and I{A} is an indicator function of a set A. The
limits of (1) as ε → ±1 are the half-normal distributions. The standard normal distribution
is obtained when ε = 0. In terms of stochastic representation, we have

X = (1− Uε)(1− ε)|N1| − Uε(1 + ε)|N2|,
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with Uε, N1 and N2 being independent and

P (Uε = 1) = (1 + ε)/2 = 1− P (Uε = 0),

where N1 and N2 are standard normal variables; see Mudholkar and Hutson (2000). A
parametric extension of the ESN family which allows the construction of bimodal asym-
metric distributions has been studied by Arellano-Valle et al. (2010). Arellano-Valle et al.
(2005) generalized the model in (1) by considering a symmetric density Fang et al. (1990)
fS(·) instead of φ(·), thus yielding the epsilon skew symmetric family of distributions.
Recently, Castro et al. (2012) used this family Arellano-Valle et al. (2005) to extend the
half-normal distribution.
A widely studied and used distribution is the two-parameter Birnbaum-Saunders (BS)

distribution Birnbaum and Saunders (1969), which is positively skewed with nonnegative
support and is related to the normal distribution by means of the stochastic representation

T =
β

4

[
αZ +

√
(αZ)2 + 4

]2
, (2)

where Z ∼ N(0, 1) and T is BS distributed with the notation T ∼ BS(α, β). The PDF of
T is given by

fBS(t;α, β) = φ(a(t))A(t), t > 0,

where

a(t) = a(t;α, β) =
1

α

(√
t

β
−
√

β

t

)
, A(t) =

d

dt
a(t) =

t−3/2[t+ β]

2αβ1/2
, (3)

and α > 0 and β > 0 are the shape and scale parameters, respectively. The BS distribution
was originally used to describe the failure time due to fatigue under cyclic loading when
some kind of accumulating damnification exceeds a threshold. However, this distribution
has been widely studied and applied in many fields, for example, Rieck and Nedelman
(1991) proposed a log-linear model based on the BS distribution; Bhatti (2010) studied
the BS autoregressive conditional duration model; Balakrishnan et al. (2011) studied some
mixture models based on BS the distribution; Paula et al. (2012) proposed a robust statis-
tical modeling using a BS-t regression model; and Leiva et al. (2014) studied autoregressive
conditional duration models based on scale mixture BS (SBS) distributions proposed by
Balakrishnan et al. (2009).
The scale-mixtures of normal (SMN) distributions Andrews and Mallows (1974) is a

prominent class which provides flexible heavy-tailed distributions and is usually used to
develop robust inference for symmetrical data. It includes the Student-t, slash and contam-
inated normal distributions as special cases. Branco and Dey (2001) proposed a general
class of multivariate skew-elliptical distributions which contains the multivariate normal,
Student’s t, exponential power, and Pearson type II distributions as special cases but with
an extra parameter to regulate skewness. Labra et al. (2012) discussed an extension of
some standard likelihood based procedures to heteroscedastic nonlinear regression models
under scale mixtures of skew-normal (SMSN) distributions. Zeller et al. (2011) studied
robust estimation and local influence for linear regression models with scale mixtures of
multivariate skew-normal distributions. Contreras-Reyes and Arellano-Valle (2013) intro-
duced a robust and flexible statistical model of the age-length relationship of cardinalfish
(Epigonus crassicaudus) based on a non-linear regression model in which the error dis-
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tribution allows for heteroskedasticity and belongs to the scale mixtures of skew-normal
(SMSN) distributions.
Recently, Castillo et al. (2011) introduced an extension of the BS distribution based

on the epsilon skew symmetric family of distributions discussed by Arellano-Valle et al.
(2005), which includes the generalized BS (GBS) distributions discussed by Vilca and Leiva
(2006) as a special case when ε = 0.
In this paper, we take the ESN, BS and SMN models to introduce scale-mixture epsilon

Birnbaum-Saunders (SEBS) models. The main aim here is to develop a statistical method-
ology based on the SEBS model. This methodology includes model formulation, estima-
tion and inference for its parameters based on the maximum likelihood (ML) estimation
method tackled via the expectation-maximization (EM) algorithm; see Dempster et al.
(1977). Furthermore, we propose a bias correction technique for the shape parameter and
apply it to the ML estimators. We evaluate the performance of the proposed methodology
by Monte Carlo (MC) simulations and illustrate it with two real data sets. The approach
developed here results in a class of distributions that provides (P1) higher flexibility in
terms of skewness and kurtosis (heavy tails), (P2) robust estimation of parameters such
as the SMN class, (P3) computation of the ML estimates of the model parameters by
using the EM algorithm, and (P4) a generalization of the SBS distributions proposed by
Balakrishnan et al. (2009).
The rest of the paper proceeds as follows. In Section 2, we introduce the family of SEBS

distributions, discuss some properties such as moments and stochastic representations,
and present some special cases of SEBS distributions. In Section 3, we discuss the ML
estimation of the parameters of SEBS models by using the EM algorithm. Numerical
results from a simulation study as well as an analysis of real data are presented and
discussed in Section 4. Finally, in Section 5, we present some concluding remarks.

2. Scale-mixture epsilon Birnbaum-Saunders distributions

A random variable (RV) Y follows a SMN distribution with location and scale parameters
µ ∈ R and σ2 > 0, respectively, denoted by Y ∼ SMN(µ, σ2, H), if its PDF is given by

fSMN(y;µ, σ
2, H) =

∫ ∞

0
φ(y;µ, κ(u)σ2) dH(u;ϑ), y ∈ R, (4)

where φ(·;µ, κ(·)σ2) is the PDF of the normal distribution with mean and variance µ
and κ(·)σ2, respectively, and H(·;ϑ) is the cumulative distribution function (CDF) of a
positive RV variable U and is indexed by the parameter vector ϑ. In terms of stochastic
representation, we have

Y = µ+
√

κ(U)Z, (5)

where Z ∼ N(0, σ2) independently of U , and κ(·) is a strictly positive function. When
µ = 0 and σ2 = 1, the simplified notation Y ∼ SMN(H) will be used.
If we assume that Z in (5) has a ESN(ε) distribution with PDF in (1), then we obtain

a new class of scale-mixture of epsilon-skew-normal (SMEN) distributions, denoted by
Y ∼ SMEN(H), with µ = 0 and σ2 = 1. Particular cases of the SMEN distributions in-
clude the epsilon-Student-t, epsilon-slash and epsilon-contaminated-normal distributions.
Furthermore, if we consider (2) such that

T =
β

4

[
α
√

κ(U)Z +

√
(α
√

κ(U)Z)2 + 4

]2
, (6)
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where Y =
√

κ(U)Z ∼ SMEN(H), with Z ∼ ESN(ε), then the RV T has a scale-mixture
epsilon Birnbaum-Saunders distribution, denoted by T ∼ SEBS(α, β, ε,H).
A random variable T has a SEBS distribution if its PDF is given by

fSEBS(t;α, β, ε,H) =

{
fSMN

(
a(t)

1 + ε

)
I{t<β} + fSMN

(
a(t)

1− ε

)
I{t≥β}

}
A(t), t > 0, (7)

where fSMN(·) is the SMN PDF in (4), with µ = 0 and σ2 = 1, and a(t) and A(t) are as
given in (3). Let T ∼ SEBS(α, β, ε,H). Then, the failure rate of T is

rSEBS(t;α, β, ε,H) =

{
fSMN

(
a(t)
1+ε

)
I{t<β} + fSMN

(
a(t)
1−ε

)
I{t≥β}

}
A(t)

FSMN

(
− a(t)

1+ε

)
I{t<β} + FSMN

(
− a(t)

1−ε

)
I{t≥β}

, t > 0,

where a(t) and A(t) are as given in (3) and FSMN(·) is the CDF of the SMN model.

2.1 Properties of SEBS distributions

We now provide some useful properties of SEBS distributions.

Proposition 2.1 Let T ∼ SEBS(α, β, ε,H). Then,

(a) cT ∼ SEBS(α, cβ, ε,H), c > 0;
(b) T−1 ∼ SEBS(α, β−1, ε,H);
(c) If fSEBS(t;α, β, ε = 0, H), then T ∼ SBS(t;α, β,H) Balakrishnan et al. (2009);

(d) limε→1 fSEBS(t;α, β, ε,H) =
{
fSMN

(
a(t)
2

)
I{0<t<β}

}
A(t);

(e) limε→−1 fSEBS(t;α, β, ε,H) =
{
fSMN

(
a(t)
2

)
I{t≥β}

}
A(t).

Proof. The properties in (a), (b), (c), (d) and (e) and directly obtained by the change-of-
variable method and from the definition of the model.

Proposition 2.2 Let T ∼ SEBS(α, β, ε,H). Then, the random variable T , given U = u,
denoted by T |(U = u), follows the EBS distribution Castillo et al. (2011) with parameters

α
√

κ(u), β and ε, that is, T |(U = u) ∼ EBS(α
√

κ(u), β, ε).

Proposition 2.3 Let T ∼ SEBS(α, β, ε,H). If the random variable κ(U) in (5) has finite
moments of all order, then the rth moment of T is given by

E[T r] = βr
r∑

i=0

(
2r

2i

) i∑

j=0

(
i

j

)(α
2

)2(r+j−i)
E[κ(U)r], r = 1, 2, . . . .

Proof. This result is obtained from the stochastic representation in (6) and by repeatedly
using the binomial theorem.

Proposition 2.4 Let T ∼ SEBS(α, β, ε,H). Then:

(a) The random variable, U , given T = t, that is, U |(T = t), has its PDF as

hU |T (u|t) =
fEBS(t;α

√
κ(u), β, ε)h(u;ϑ)

fSEBS(t;α, β, ε,H)
;
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(b) The moments of the random variable κ(U)|(T = t) are given by

E[{κ(U)}r|(T = t)] =

∫ ∞

0
[κ(u)]r

fEBS(t;α
√

κ(u), β, ε)

fSEBS(t;α, β, ε,H)
dH(u;ϑ), r ∈ R.

2.2 Examples of SEBS distributions

2.2.1 Epsilon Student-t-Birnbaum-Saunders distribution (EtBS)

Let U ∼ Gamma(ν/2, ν/2), with ν > 0 degrees of freedom, and κ(U) = 1/U . Then, it is

possible to obtain the epsilon Student-t (Et) distribution, namely, Y =
√

κ(U)Z ∼ Et(ν, ε),
with Z ∼ ESN(ε). Since Y ∼ Et(ν, ε), its PDF is given by

fEt(y; ν, ε) = ς(ν)

{(
1 +

y2

ν(1 + ε)2

)− ν+1
2

I{y < 0} +

(
1 +

y2

ν(1− ε)2

)− ν+1
2

I{y≥ 0}

}
, (8)

where ς(ν) = Γ((ν+1)/2)√
νπΓ(ν/2)

, ν > 0 and −1 < ε < 1. From (7) and (8), we can write the PDF

of the RV T ∼ EtBS(α, β, ν, ε) as

fEtBS(t;α, β, ν, ε) = ς(ν)

{(
1 +

1

να2(1 + ε)2

[
t

β
+

β

t
− 2

])− ν+1

2

I{t<β}

+

(
1 +

1

να2(1− ε)2

[
t

β
+

β

t
− 2

])− ν+1

2

I{t≥β}

}
t−3/2[t+ β]

2αβ1/2
,

with α > 0, β > 0, ν > 0 and −1 < ε < 1. Note that if T ∼ EtBS(α, β, ν, ε), we have

E[U |T = t] =
ν + 1

ν + a2(t)
(1+ε)2

I{t<β} +
ν + 1

ν + a2(t)
(1−ε)2

I{t≥β}.

2.2.2 Epsilon contaminated-normal-Birnbaum-Saunders distribution
(ECNBS)

Let κ(U) = 1/U with U have the PDF hU = νI{u=γ}+(1−ν)I{u=1}. We then obtain the

epsilon contaminated-normal (ECN) distribution as Y =
√

κ(U)Z ∼ ECN(ν, γ, ε), with
Z ∼ ESN(ε), and its PDF given by

fECN(y; ν, γ, ε) =

{
νφ

(
y

1 + ε
; 0,

1

γ

)
+ (1− ν)φ

(
y

1 + ε
; 0, 1

)}
I{y < 0} (9)

+

{
νφ

(
y

1− ε
; 0,

1

γ

)
+ (1− ν)φ

(
y

1− ε
; 0, 1

)}
I{y≥ 0}.

From (7) and (9), we obtain the PDF of the RV T ∼ ECNBS(α, β, ν, γ, ε) as

fECNBS(t;α, β, ν, γ, ε) =

{[
νφ

(
a(t)

1 + ε
; 0,

1

γ

)
+ (1− ν)φ

(
a(t)

1 + ε
; 0, 1

)]
I{t<β}

+

[
νφ

(
a(t)

1− ε
; 0,

1

γ

)
+ (1− ν)φ

(
a(t)

1− ε
; 0, 1

)]
I{t≥β}

}
t−3/2[t+ β]

2αβ1/2
,
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with α > 0, β > 0, 0 < ν < 1, 0 < γ < 1 and −1 < ε < 1, where a(t) is as in (3). If
T ∼ ECNBS(α, β, ν, γ, ε), then

E[U |T = t] =
1− ν + νγ3/2 exp

(
(1−γ)a2(t)
2(1+ε)2

)

1− ν + νγ1/2 exp
(
(1−γ)a2(t)
2(1+ε)2

) I{t<β}

+
1− ν + νγ3/2 exp

(
(1−γ)a2(t)
2(1−ε)2

)

1− ν + νγ1/2 exp
(
(1−γ)a2(t)
2(1−ε)2

) I{t≥β}.

2.2.3 Epsilon slash-Birnbaum-Saunders distribution (ESLBS)

Now, let κ(U) = 1/U and U be a Beta(ν, 1) distributed RV, with 0 < u < 1 and
ν > 0. Then, it follows that a RV Y following an epsilon slash (ESL) distribution, that is,

Y =
√

κ(U)Z ∼ ESL(ν, ε), with Z ∼ ESN(ε), has its PDF as

fESL(y; ν, ε) =

{
ν

∫ 1

0
uν−1φ

(
y

1 + ε
; 0,

1

u

)
du

}
I{y < 0}

+

{
ν

∫ 1

0
uν−1φ

(
y

1− ε
; 0,

1

u

)
du

}
I{y≥ 0}, (10)

From (7) and (10), the PDF of the RV T ∼ ESLBS(α, β, ν, ε) is obtained as

fESLBS(t;α, β, ν, ε) = ν

{[∫ 1

0
uν−1φ

(
a(t)

1 + ε
; 0,

1

u

)
du

]
I{t<β}

+

[∫ 1

0
uν−1φ

(
a(t)

1− ε
; 0,

1

u

)
du

]
I{t≥β}

}
t−3/2[t+ β]

2αβ1/2
,

with α > 0, β > 0, ν > 0 and −1 < ε < 1, where a(t) is as in (3). Note that if
T ∼ ESLBS(α, β, ν, ε), we have

E[U |T = t] =
(2ν + 1)

a2(t)/(1 + ε)2

P1

(
ν + 3

2 ,
a2(t)

2(1+ε)2

)

P1

(
ν + 1

2 ,
a2(t)

2(1+ε)2

) I{t<β}

+
(2ν + 1)

a2(t)/(1− ε)2

P1

(
ν + 3

2 ,
a2(t)

2(1−ε)2

)

P1

(
ν + 1

2 ,
a2(t)

2(1−ε)2

) I{t≥β},

where Px(m,n) is the CDF of the gamma distribution at x. The PDFs of EtBS, ECNBS
and ESLBS distributions are displayed in Figure 1 for several choices of skewness (ε)
parameter values. These PDFs are all positively skewed and unimodal. Note that the
skewness parameter permits greater flexibility. Note also that if ε = 0, we get the tBS,
CNBS and SLBS distributions; see Dı́az-Garćıa and Leiva (2005) and Balakrishnan et al.
(2009).
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(a) EtBS(α = 0.5, β = 1, ν = 4, ε)
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(c) ESLBS(α = 0.75, β = 1, ν = 1, ε)

Figure 1. Plots of PDFs of various distributions for different values of parameters.

3. Estimation procedures

3.1 Maximum likelihood estimation

Let t(1) ≤ t(2) ≤ · · · ≤ t(n) denote the order statistics from a random sample
T1, T2, . . . , Tn from the SEBS(α, β, ε,H) distribution. Considering ϑ known, let τ ≡
τ(t(1), t(2), . . . , t(n), β), where t(0) = 0 and t(n+1) = ∞, be such that t(τ) < β < t(τ+1).
The log-likelihood function can be expressed as

ℓ(θ) ∝ −n log(α)− n

2
log(β) +

n∑

i=1

log(t(i) + β) +

τ∑

i=1

log

(
fSMN

(
a(t(i))

1 + ε

))

+

n∑

i=τ+1

log

(
fSMN

(
a(t(i))

1− ε

))
, (11)

where θ = (α, β, ε)⊤ and a(t(i)) =
1
α

(√
t(i)
β −

√
β
t(i)

)
. The ML estimate is obtained as the

value of θ̂τ = arg max ℓ(θ̂τ ), for τ = 0, 1, . . . , n. Note that if τ = 0, the log-likelihood in
(11) becomes

ℓ(θ) ∝ −n log(α)− n

2
log(β) +

n∑

i=1

log(t(i) + β) +
n∑

i=1

log

(
fSMN

(
1

α(1− ε)

[√
t(i)

β
−
√

β

t(i)

]))
,

and the maximum, in terms of ε, occurs at ε̂0 = −1. Therefore, β < t(1), which implies

that β̂0 = t(1), and α̂0 turns out to be the solution of

∂ℓ(θ)

∂α
= −n

α
+

n∑

i=2

∂

∂α
log

(
fSMN

(
1

α(1− ε)

[√
t(i)

t(1)
−
√

t(1)

t(i)

]))
= 0.

On the other hand, if τ = n, the log-likelihood in (11) reduces to

ℓ(θ) ∝ −n log(α)− n

2
log(β) +

n∑

i=1

log(t(i) + β) +

n∑

i=1

log

(
fSMN

(
1

α(1 + ε)

[√
t(i)

β
−
√

β

t(i)

]))
.

Its maximum, in terms of ε, is obtained when ε̂n = 1. Hence, β > t(n), which implies

that β̂n = t(n), and from this we get α̂n as the solution of the equation

∂ℓ(θ)

∂α
= −n

α
+

n−1∑

i=1

∂

∂α
log

(
fSMN

(
1

α(1 + ε)

[√
t(i)

t(n)
−
√

t(n)

t(i)

]))
= 0.
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Generally, if 1 ≤ τ < n, then the ML estimates α̂, β̂ and ε̂ of α, β and ε are obtained
from the maximization of (11) as the solution to the following system of equations:

∂ℓ(θ)

∂α
= −n

α
+

τ∑

i=1

∂

∂α
log

(
fSMN

(
a(t(i))

1 + ε

))
+

n∑

i=τ+1

∂

∂α
log

(
fSMN

(
a(t(i))

1− ε

))
= 0,

∂ℓ(θ)

∂β
= − n

2β
+

n∑

i=1

1

t(i) + β
+

τ∑

i=1

∂

∂β
log

(
fSMN

(
a(t(i))

1 + ε

))

+

n∑

i=τ+1

∂

∂β
log

(
fSMN

(
a(t(i))

1− ε

))
= 0,

∂ℓ(θ)

∂ε
=

τ∑

i=1

∂

∂ε
log

(
fSMN

(
a(t(i))

1 + ε

))
+

n∑

i=τ+1

∂

∂ε
log

(
fSMN

(
a(t(i))

1− ε

))
= 0.

Proposition 3.1 The ML estimator of θ, θ̂τ , is obtained for a τ such that ℓ(θ̂τ ) > ℓ(θ̂l),
for l ∈ {0, 1, . . . , n}.

3.2 Estimation through the EM algorithm

We now discuss the ML estimation of the model parameters by using the EM algorithm.
Let t = (t1, . . . , tn) denote the observed data and u = (u1, . . . , un) be the unobserved data,
so that the complete data tc = (t⊤,u⊤)⊤ corresponds to the original data augmented with
u. Let t(1) ≤ t(2) ≤ · · · ≤ t(n) be the order statistics from a random sample T1, T2, . . . , Tn,
where Ti ∼ SEBS(α, β, ε), for i = 1, . . . , n. From Proposition 2.2, it follows that

Ti|Ui = ui
ind∼ EBS(α

√
κ(ui), β, ε),

Ui
ind∼ h(ui;ϑ), i = 1, . . . , n, (12)

where ϑ is assumed to be known. Then, the complete log-likelihood associated with tc is
given by

ℓ(θ|tc) ∝ −n log(α)− n

2
log(β) +

n∑

i=1

log(t(i) + β)− 1

2(1 + ε)2α2

τ∑

i=1

1

κ(u(i))

[
t(i)

β
+

β

t(i)
− 2

]

− 1

2(1− ε)2α2

n∑

i=τ+1

1

κ(u(i))

[
t(i)

β
+

β

t(i)
− 2

]
,

where u(1) ≤ u(2) ≤ · · · ≤ u(n) are the order statistics from the random sample

U1, U2, . . . , Un, θ = (α, β, ε)⊤, and τ is as defined in Subsection 3.1. The expected value
of the complete data log-likelihood function, conditioned on the observed data, given the
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current estimate θ̂
(k)

= (α̂(k), β̂(k), ε̂(k))⊤ , is given by

Q(θ|θ̂(k)
) = E[ℓ(θ|tc)|t, θ̂

(k)
]

= −n log(α̂(k))− n

2
log(β̂(k)) +

n∑

i=1

log(t(i) + β̂(k))− 1

2(1 + ε̂(k))2α̂2(k)

τ∑

i=1

κ̂
(k)
(i)

[
t(i)

β̂(k)
+

β̂(k)

t(i)
− 2

]
− 1

2(1− ε̂(k))2α̂2(k)

n∑

i=τ+1

κ̂
(k)
(i)

[
t(i)

β̂(k)
+

β̂(k)

t(i)
− 2

]
,

with θ = (α, β, ε)⊤ and κ̂
(k)
(i) = E[κ−1(U(i))|t(i), θ̂

(k)
].

For determining the ML estimates of the SEBS model parameters by using the EM
algorithm, we proceed as follows:

• E-step. Given θ̂ = θ̂
(k)

= (α̂(k), β̂(k), ε̂(k))⊤, compute for i = 1, . . . , n, k = 1, 2, . . .,

κ̂
(k)
i = E[κ−1(Ui)|ti, θ̂

(k)
];

• M-step. Update θ̂
(k+1)

by maximizing Q(θ|θ̂(k)
) over θ. In this step, we have two cases

as follows:

Case 1) If τ = 0 or τ = n, we have

(α̂(k+1), β̂(k+1), ε̂(k+1)) =

{
(α̂

(k+1)
0 , t(1),−1) if τ = 0,

(α̂
(k+1)
n , t(n), 1) if τ = n,

where

α̂
(k+1)
0 =

(
1

4n

n∑

i=2

κ̂
(k)
(i)

[
t(i)

t(1)
+

t(1)

t(i)
− 2

])1/2

and

α̂(k+1)
n =

(
1

4n

n−1∑

i=1

κ̂
(k)
(i)

[
t(i)

t(n)
+

t(n)

t(i)
− 2

])1/2

;

Case 2) If 1 ≤ τ < n, we maximize Q(θ|θ̂(k)
) over θ, yielding the equations

α̂2(k+1) = 1
(1+ε̂(k))2n

∑τ
i=1 κ̂

(k)
(i)

[
t(i)

β̂(k)
+ β̂(k)

t(i)
− 2
]
+ 1

(1−ε̂(k))2n

∑n
i=τ+1 κ̂

(k)
(i)

[
t(i)

β̂(k)
+ β̂(k)

t(i)
− 2
]
,

−
∑

τ

i=1 κ̂
(k)

(i)

(
1

t(i)
− t(i)

β̂2(k)

)

2α̂2(k)(1+ε̂(k))2 −
∑

n

i=τ+1 κ̂
(k)

(i)

(
1

t(i)
− t(i)

β̂2(k)

)

2α̂2(k)(1−ε̂(k))2 +
∑n

i=1
1

β̂(k)+t(i)
− n

2β̂(k)
= 0,

ε̂(k+1) = 1−Ψ̂(k)

1+Ψ̂(k)
,
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where

Ψ̂(k) =



∑n

i=τ+1 κ̂
(k)
(i)

(
β̂(k)

t(i)
+

t(i)

β̂(k)
− 2
)

∑τ
i=1 κ̂

(k)
(i)

(
β̂(k)

t(i)
+

t(i)

β̂(k)
− 2
)




1/3

.

Proposition 3.2 The ML estimator of θ is given by θ̂
(k+1)

τ , where τ is such that

Q(θ|θ̂(k)

τ ) > Q(θ|θ̂(k)

l ), for l ∈ {0, 1, . . . , n}.

In the EM algorithm, the iterations are carried out successively until a certain con-

vergence criterion is satisfied, for instance, when ||θ̂(k+1) − θ̂
(k)|| is sufficiently small. As

starting values α̂(0) and β̂(0), we can use, for example, the modified moment estimates
Ng et al. (2003), and ε̂(0), the moment estimates Mudholkar and Hutson (2000), given by

ε̂(0) ≈ −0.5835
√

b1 − 0.5861(
√

b1)
3 + 1.0763(

√
b1)

5 − 0.9226(
√

b1)
7,

where
√
b1 is the sample coefficient of skewness.

We use the profile likelihood for finding the values of ϑ. For example, for the EtBS
distribution, we have the following two steps to find an estimate of ν:

i) Let νi = i and for each i = 1, . . . , 50 compute the ML estimates of α, β and ε by using
the EM algorithm, and then compute the corresponding likelihood function;

ii) Choose the final estimate of ν as the one which maximizes the likelihood function and
then select the associated estimates of α, β and ε as the final estimates.

3.3 Residual analysis

In order to assess goodness-of-fit and departures from the assumptions of the model, a
residual analysis is performed. In particular, we consider the generalized Cox-Snell (GCS)
residual, which is given by

rGCS
i = − log(Ŝ(xi)), i = 1, . . . , n,

where Ŝ is the survival function fitted to the data. If the model is correctly specified, then
the GCS residual will have a unit exponential distribution, EXP(1) in short, whatever the
model specification; see Leao et al. (2017).

4. Empirical evaluation

The ML computations through the EM algorithm for the SEBS distributions are discussed
in this section. We present the results of a simulation study and then use a real data set
to illustrate the proposed methodology.

4.1 Simulation study

We carried out a simulation study for evaluating the behavior of the ML estimates obtained
by the EM algorithm. We consider the simpler case, that is, when τ ∈ {0, n}; see Case #1
of Section 3.2. For illustrative purpose, we focus on the EtBS model, but in the next
section we consider all the models. The simulation scenario assume the sample sizes n ∈
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{10, 50, 100}, values of the shape parameter as α ∈ {0.10, 0.25, 0.50, 1.00, 1.25, 1.50}, 10,000
MC replications, and without loss of generality the value of β and ν were set as 1.00 and
4.00, respectively. Note that the values of the shape parameter α were chosen so as order
to study the performance under low, moderate and high skewness.
By analyzing the results of several MC simulation studies and upon inspecting the

pattern of the bias of the estimators of α, α̂0 and α̂n (Case #1 of Section 3.2), we observed
that

Bias(α̃0) ≈ Bias(α̃n) ≈ − 10n

(26n− 20)
α.

Then, by implementing a standard bias-reduction method, we propose bias-reduced ML
estimators of α, denoted by α̃∗

0 and α̃∗
n, as

α̃∗
0 = −(26n− 20)

(16n− 20)
α̃0 and α̃∗

n = −(26n− 20)

(16n− 20)
α̃n.

For each combination of parameters and sample size, we present the bias and mean
squared error (MSE) of the ML estimates in Table 1. From this table, we note that, as
the sample size increases, the ML estimates become more efficient, as expected. Also, in
general, as the value of the shape parameter α increases, we observe that the performance
of the estimators of β deteriorate. It is also worth noting that the bias-reduced estimators
outperform the ML estimates by providing estimators with smaller biases.
In Figures 2 and 3, we show the empirical distributions of the estimators of α = 0.5 from

the MC simulation study presented in Table 1. We consider the ML estimators, α̂0 and
α̂n, and their bias-reduced counterparts, α̂∗

0 and α̂∗
n. Similar behaviour was observed for

other values of α as well. Generally, the empirical distributions of all the estimators tend to
normal, as n increases. Note, however, that the mean of the empirical distributions of the
bias-reduced estimators converge to the true mean. Figures 2 and 3 also provide confidence
intervals (CIs) for the corresponding parameters, for several values of the sample size (n)
and confidence level (ξ).

Table 1. Empirical bias and MSE (within parentheses) of the ML estimators (via the EM algorithm) for the EtBS
model parameters by using the indicated sample sizes and parameter values with simulated data.

EtBS(β = 1.0, ε = −1.0, ν = 4.0) EtBS(β = 1.0, ε = 1.0, ν = 4.0)

τ = 0 τ = n

n α α̂0 α̂∗
0 β̂0 α̂n α̂∗

n β̂n

10 0.10 −0.0427 (0.0024) −0.0018 (0.0017) 0.0125 (0.0003) −0.0425 (0.0024) −0.0015 (0.0017) −0.0122 (0.0003)
0.25 −0.1078 (0.0146) −0.0062 (0.0089) 0.0325 (0.0020) −0.1094 (0.0150) −0.0089 (0.0091) −0.0295 (0.0016)
0.50 −0.2223 (0.0606) −0.0239 (0.0336) 0.0649 (0.0084) −0.2233 (0.0606) −0.0256 (0.0322) −0.0577 (0.0059)
1.00 −0.4714 (0.2553) −0.0939 (0.1060) 0.1359 (0.0383) −0.4725 (0.2574) −0.0957 (0.1096) −0.1114 (0.0213)
1.25 −0.6105 (0.4183) −0.1537 (0.1577) 0.1779 (0.0668) −0.6079 (0.4158) −0.1492 (0.1582) −0.1330 (0.0298)
1.50 −0.7523 (0.6270) −0.2183 (0.2269) 0.2243 (0.1098) −0.7508 (0.6228) −0.2157 (0.2200) −0.1558 (0.0406)

50 0.10 −0.0385 (0.0016) 0.0009 (0.0003) 0.0026 (<0.0001) −0.0382 (0.0016) 0.0013 (0.0003) −0.0026 (<0.0001)
0.25 −0.0970 (0.0101) 0.0010 (0.0018) 0.0065 (0.0001) −0.0972 (0.0101) 0.0007 (0.0017) −0.0066 (0.0001)
0.50 −0.1988 (0.0419) −0.0057 (0.0063) 0.0133 (0.0004) −0.1986 (0.0418) −0.0055 (0.0063) −0.0129 (0.0003)
1.00 −0.4224 (0.1856) −0.0522 (0.0221) 0.0270 (0.0015) −0.4224 (0.1855) −0.0522 (0.0218) −0.0253 (0.0012)
1.25 −0.5431 (0.3048) −0.0899 (0.0348) 0.0336 (0.0023) −0.5422 (0.3040) −0.0885 (0.0348) −0.0315 (0.0019)
1.50 −0.6695 (0.4620) −0.1371 (0.0560) 0.0403 (0.0033) −0.6697 (0.4615) −0.1374 (0.0539) −0.0383 (0.0028)

100 0.10 −0.0379 (0.0015) 0.0014 (0.0001) 0.0013 (<0.0001) −0.0377 (0.0015) 0.0017 (0.0001) −0.0013 (<0.0001)
0.25 −0.0953 (0.0094) 0.0029 (0.0009) 0.0033 (<0.0001) −0.0953 (0.0094) 0.0025 (0.0009) −0.0033 (<0.0001)
0.50 −0.1960 (0.0396) −0.0036 (0.0031) 0.0067 (0.0001) −0.1955 (0.0394) −0.0027 (0.0032) −0.0066 (0.0001)
1.00 −0.4136 (0.1748) −0.0425 (0.0117) 0.0134 (0.0004) −0.4140 (0.1752) −0.0431 (0.0119) −0.0129 (0.0003)
1.25 −0.5337 (0.2898) −0.0803 (0.0197) 0.0166 (0.0006) −0.5321 (0.2884) −0.0777 (0.0201) −0.0162 (0.0005)
1.50 −0.6577 (0.4395) −0.1246 (0.0341) 0.0202 (0.0008) −0.6580 (0.4398) −0.1251 (0.0339) −0.0197 (0.0008)
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Figure 2. Empirical distributions of α̂0 (left) and α̂n (right) and their corresponding (1 − ξ) × 100% CI for the
indicated n and ξ with α = 0.50.
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Figure 3. Empirical distributions of α̂∗
0 (left) and α̂∗

n (right) and their corresponding (1 − ξ) × 100% CI for the
indicated n and ξ with α = 0.50.
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4.2 Illustrative examples

We now illustrate the proposed methodology by applying the SEBS distributions de-
scribed in Section 2 to two real data sets. For comparison, the results of the BS
Birnbaum and Saunders (1969) and EBS Castillo et al. (2011) distributions, are given as
well.

4.2.1 Example 1

The first data set consists of fatigue lifetimes in cycles (×10−3) of aluminum specimens
of type 6061-T6, subject to a pressure with maximum stress of 21,000 psi (psi21). This data
set was previously analyzed by Birnbaum and Saunders (1969), Balakrishnan et al. (2009)
and Castillo et al. (2011). Some descriptive statistics of these data, including measures of
central tendency, standard deviation (SD), coefficient of variation (CV), skewness (CS)
and kurtosis (CK), are presented in Table 2.

Table 2. Summary statistics for the psi21 data.
n Min. Median Mean Max. SD CV CS CK
101 370 1416.00 1400.84 2440 391.01 27.91% 0.14 −0.28

We have given the parameter estimates for the five models in Table 3. The standard errors
(SEs) were computed by using the observed information matrix given in Appendix. The

values of the maximized log-likelihood and the likelihood ratio (LR) test LR = −2(ℓ(θ̂BS)−
ℓ(θ̂SEBS)), based on the 5% critical value from the chi-square distribution with one degree
of freedom (χ2

1 = 3.84), reveals that the SEBS distributions (EtBS and ECNBS) provide
better adjustments compared to the other models.

Table 3. ML estimates (with SE in parentheses) determined from the EM algorithm for the indicated parameters
with the psi21 data.

Existing models Proposed models
Parameter BS EBS EtBS ECNBS
α 0.310 0.298 0.278 0.270

(0.022) (0.021) (0.022) (0.020)
β 1336.037 1679.145 1625.638 1631.23

(40.749) (48.031) (45.088) (42.640)
ε – 0.483 0.413 0.417

– (0.056) (0.056) (0.052)
ν – – 13 0.03
γ – – – 0.13

ℓ(θ̂) −751.332 −746.727 −745.970 −745.368
LR – 9.21 10.724 11.928

Figure 4 displays the QQ plots with simulated envelope of the GCS residuals for the
distributions considered in Table 3. From this figure, observe that the GCS residuals show
better agreement with the EXP(1) distribution distribution in the EtBS and ECNBS
models.

4.2.2 Example 2

The second data set corresponds to the number of successive failures for the air con-
ditioning system of each member in a fleet of 13 Boeing 720 jet airplanes; see Proschan
(1963). Table 4 provides descriptive statistics for the Boeing data set. From this table,
note the right skewed nature and high kurtosis level of the data distribution.

Table 4. Summary statistics for the Boeing data.
n Min. Median Mean Max. SD CV CS CK
188 1 54 92.074 603 107.916 117.205% 2.122 4.938

Table 5 reports the ML estimates, computed by the EM algorithm and SEs for the
BS, EBS, EtBS and ECNBS model parameters. In addition, we report the log-likelihood
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Figure 4. QQ plot and its envelope for the GCS in the indicated distribution with the psi21 data.
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(d) ECNBS

Figure 5. QQ plot and its envelope for the GCS in the indicated distribution with the Boeing data.

and LR values. From Table 5, note that the EtBS and ECNBS models provide better
adjustments compared to the other models based on the values of log-likelihood and LR.
The QQ plots with simulated envelope of the GCS residuals for the models considered in
Table 5 are shown in Figure 5. This figure shows the good agreement of the GCS residuals
with the EXP(1) distribution.
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Table 5. ML estimates (with SE in parentheses) determined from the EM algorithm for the indicated parameters

with the Boeing data.
Existing models Proposed models

Parameter BS EBS EtBS ECNBS
α 1.5147 1.5147 1.3254 1.2988

(1.2397) (1.2397) (1.0081) (1.0605)
β 41.3240 41.3240 45.2541 46.9091

(33.8373) (33.8398) (37.0704) (38.4346)
ε – 0.0030 0.0010 0.0010

– (0.0009) (0.0008) (0.0008)
ν – – 7.0000 0.0400
γ – – – 0.1100

ℓ(θ̂) −1041.845 −1041.843 −1036.124 −1034.526
LR – 0.004 11.496 14.638

5. Concluding remarks

In this work, we have introduced an asymmetric generalization of the scale-mixture
Birnbaum-Saunders distribution. The new family of distributions is based on the epsilon-
skew-normal distribution and provides more flexibility in terms of skewness and kurtosis
(heavy tails). Moreover, it allows the computation of the maximum likelihood estimates
of the model parameters by using the EM algorithm. A Monte Carlo simulation study
was carried out to evaluate the behaviour of the maximum likelihood estimators of the
corresponding parameters. We have applied the proposed scale-mixture epsilon Birnbaum-
Saunders models to two real-world data sets. We have also derived analytically the observed
information matrix, which facilitates the computation of the standard errors of the esti-
mates. As part of future work, it would be of interest to extend the proposed models to
the multivariate case. Moreover, regression models based on the proposed distributions
with right-censored survival data can be considered; see Lachos et al. (2017). Work on
these problems is currently under progress and we hope to report these findings in a future
paper.
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Appendix. Observed information matrix

Let ISEBS(θ) be the observed information matrix of the SEBS(α, β, ε,H) model, where
θ = (α, β, ε)⊤. Now, let T = t be an observation from a T ∼ SEBS(α, β, ε,H) RV with
log-likelihood

ℓ(θ) ∝ − log(α)−1

2
log(β)+log(t+β)+log

(
fSMN

(
a(t)

1 + ε

))
I{t<β}+log

(
fSMN

(
a(t)

1− ε

))
I{t≥β}.

Then, ISEBS(θ) is given by

ISEBS(θ) =




Iθ1θ1 Iθ1θ2 Iθ1θ3
Iθ2θ2 Iθ2θ3

Iθ3θ3


 ,



60 Leão, Balakrishnan, Saulo and Tomazella

where Iθiθj = −∂2ℓ(θ)/∂θiθj , i, j = 1, 2, 3, with θ1 = α, θ2 = β and θ3 = ε. Next, we
provide the second derivatives for each distribution discussed in Section 2.2.

EtBS model

Let T = t be an observation from an EtBS(α, β, ν, ε) distribution. Then, its log-likelihood
function is

ℓ(θ, t) = −3

2
log(t) + log(t+ β)− log(2)− log(α)− 1

2
log(β)

+ log{Γ(ν + 1)/2} − 1

2
log(ν)− 1

2
log(π)− log{Γ(ν/2)}

− ν + 1

2
log

(
1 +

1

να2(1 + ε)2

[
t

β
+

β

t
− 2

])
I{t< β}

− ν + 1

2
log

(
1 +

1

να2(1− ε)2

[
t

β
+

β

t
− 2

])
I{t≥ β},

where θ = (α, β, ν, ε), so that its second partial derivatives are given by

∂2ℓ(θ, t)

∂α2
=

1

α2
−

(
ν + 1

2

){
2(t− β)2(3α2νβt+ 6α2νβεt+ 3α2ε2νβt+ (t− β)2)

α2(α2νβt+ 2α2νβεt+ α2ε2νβt+ (t− β)2)

}
I{t< β}

−
(
ν + 1

2

){
2(t− β)2(3α2νβt− 6α2νβεt+ 3α2ε2νβt+ (t− β)2)

α2(α2νβt− 2α2νβεt+ α2ε2νβt+ (t− β)2)

}
I{t≥ β},

∂2ℓ(θ, t)

∂α∂β
=

(
ν + 1

2

){
2ανt(β2 − t2)(ε+ 1)2

(α2νβt+ 2α2νβεt+ α2ε2νβt+ (t− β)2)2

}
I{t< β}

+

(
ν + 1

2

){
2ανt(β2 − t2)(ε− 1)2

(α2νβt− 2α2νβεt+ α2ε2νβt+ (t− β)2)2

}
I{t≥ β},

∂2ℓ(θ, t)

∂α∂ε
=−

(
ν + 1

2

){
4ανβt(ε+ 1)(t− β)2

(α2νβt+ 2α2νβεt+ α2ε2νβt+ (t− β)2)2

}
I{t< β}

−
(
ν + 1

2

){
4ανβt(ε− 1)(t− β)2

(α2νβt− 2α2νβεt+ α2ε2νβt+ (t− β)2)2

}
I{t≥ β},

∂2ℓ(θ, t)

∂β2
=−

(
ν + 1

2

){
2t3α2νβ + 4t3α2νβε+ 2t3α2ε2νβ + t4 + 4t2β2 − 4t3β − β4

β2(α2νβt+ 2α2νβεt+ α2ε2νβt+ (t− β)2)2

}
I{t< β}

−
(
ν + 1

2

){
2t3α2νβ − 4t3α2νβε+ 2t3α2ε2νβ + t4 + 4t2β2 − 4t3β − β4

β2(α2νβt− 2α2νβεt+ α2ε2νβt+ (t− β)2)2

}
I{t≥ β}

− 1

(t+ β)2
+

1

2β2
,

∂2ℓ(θ, t)

∂β∂ε
=

(
ν + 1

2

){
2α2νt(ε+ 1)(β2 − t2)

(α2νβt+ 2α2νβεt+ α2ε2νβt+ (t− β)2)2

}
I{t< β}

+

(
ν + 1

2

){
2α2νt(ε− 1)(β2 − t2)

(α2νβt− 2α2νβεt+ α2ε2νβt+ (t− β)2)2

}
I{t≥ β},

∂2ℓ(θ, t)

∂ε2
=−

(
ν + 1

2

){
2(t2 − 2βt+ β2)(3α2νβt+ 6α2νβεt+ 3α2ε2νβt+ (t− β)2)

(α2νβt+ 2α2νβεt+ α2ε2νβt+ (t− β)2)2

}
I{t< β}

−
(
ν + 1

2

){
2(t2 − 2βt+ β2)(3α2νβt− 6α2νβεt+ 3α2ε2νβt+ (t− β)2)

(α2νβt− 2α2νβεt+ α2ε2νβt+ (t− β)2)2

}
I{t≥ β}.
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ECNBS model

Let T = t be an observation from an ECNBS(α, β, ε, γ) distribution. Then, its log-
likelihood function is

ℓ(θ, t) = −3

2
log(t) + log(t+ β)− log(2)− log(α)− 1

2
log(β)

+ log

(
νφ

(
a(t)

(1 + ε)
; 0,

1

γ

)
+ (1− ν)φ

(
a(t)

(1 + ε)
; 0, 1

))
I{t< β}

+ log

(
νφ

(
a(t)

(1− ε)
; 0,

1

γ

)
+ (1− ν)φ

(
a(t)

(1− ε)
; 0, 1

))
I{t≥ β},

where θ = (α, β, ε, ν, γ), φ
(

a(t)
(1+ε) ; 0,

1
γ

)
= φ(α, β, ε, γ) and φ

(
a(t)
(1−ε) ; 0, 1

)
= φ(α, β, ε). The

second partial derivatives are given by

∂2ℓ(θ, t)

∂α2
=−

(
νφ(1,0,0,0)(α, β, ε, γ) + (1− ν)φ(1,0,0)(α, β, ε)

)2

(νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε))2
I{t≥ β}

+
νφ(2,0,0,0)(α, β, ε, γ) + (1− ν)φ(2,0,0)(α, β, ε)

νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε)
I{t≥ β}

+
νφ(2,0,0,0)(α, β, ε, γ) + (1− ν)φ(2,0,0)(α, β, ε)

νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε)
I{t< β}

−
(
νφ(1,0,0,0)(α, β, ε, γ) + (1− ν)φ(1,0,0)(α, β, ε)

)2

(νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε))2
I{t< β} +

1

α2
,

∂2ℓ(θ, t)

∂α∂β
=−

(
νφ(0,1,0,0)(α, β, ε, γ) + (1− ν)φ(0,1,0)(α, β, ε)

) (
νφ(1,0,0,0)(α, β, ε, γ) + (1− ν)φ(1,0,0)(α, β, ε)

)

(νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε))2
I{t≥ β}

+
νφ(1,1,0,0)(α, β, ε, γ) + (1− ν)φ(1,1,0)(α, β, ε)

νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε)
I{t≥ β}

+
νφ(1,1,0,0)(α, β, ε, γ) + (1− ν)φ(1,1,0)(α, β, ε)

νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε)
I{t< β}

−
(
νφ(0,1,0,0)(α, β, ε, γ) + (1− ν)φ(0,1,0)(α, β, ε)

) (
νφ(1,0,0,0)(α, β, ε, γ) + (1− ν)φ(1,0,0)(α, β, ε)

)

(νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε))2
I{t< β},

∂2ℓ(θ, t)

∂α∂ε
=

(
νφ(0,0,1,0)(α, β, ε, γ) + (1− ν)φ(0,0,1)(α, β, ε)

) (
νφ(1,0,0,0)(α, β, ε, γ) + (1− ν)φ(1,0,0)(α, β, ε)

)

(νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε))2
I{t≥ β}

+
−νφ(1,0,1,0)(α, β, ε, γ)− (1− ν)φ(1,0,1)(α, β, ε)

νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε)
I{t≥ β}

+
νφ(1,0,1,0)(α, β, ε, γ) + (1− ν)φ(1,0,1)(α, β, ε)

νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε)
I{t< β}

−
(
νφ(0,0,1,0)(α, β, ε, γ) + (1− ν)φ(0,0,1)(α, β, ε)

) (
νφ(1,0,0,0)(α, β, ε, γ) + (1− ν)φ(1,0,0)(α, β, ε)

)

(νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε))2
I{t< β},

∂2ℓ(θ, t)

∂β2
=−

(
νφ(0,1,0,0)(α, β, ε, γ) + (1− ν)φ(0,1,0)(α, β, ε)

)2

(νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε))2
I{t≥ β}

+
νφ(0,2,0,0)(α, β, ε, γ) + (1− ν)φ(0,2,0)(α, β, ε)

νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε)
I{t≥ β}

+
νφ(0,2,0,0)(α, β, ε, γ) + (1− ν)φ(0,2,0)(α, β, ε)

νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε)
I{t< β}

−
(
νφ(0,1,0,0)(α, β, ε, γ) + (1− ν)φ(0,1,0)(α, β, ε)

)2

(νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε))2
I{t< β} +

1

2β2
− 1

(β + t)2
,
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∂2ℓ(θ, t)

∂β∂ε
=

(
νφ(0,0,1,0)(α, β, ε, γ) + (1− ν)φ(0,0,1)(α, β, ε)

) (
νφ(0,1,0,0)(α, β, ε, γ) + (1− ν)φ(0,1,0)(α, β, ε)

)

(νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε))2
I{t≥ β}

+
−νφ(0,1,1,0)(α, β, ε, γ)− (1− ν)φ(0,1,1)(α, β, ε)

νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε)
I{t≥ β}

+
νφ(0,1,1,0)(α, β, ε, γ) + (1− ν)φ(0,1,1)(α, β, ε)

νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε)
I{t< β}

−
(
νφ(0,0,1,0)(α, β, ε, γ) + (1− ν)φ(0,0,1)(α, β, ε)

) (
νφ(0,1,0,0)(α, β, ε, γ) + (1− ν)φ(0,1,0)(α, β, ε)

)

(νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε))2
I{t< β},

∂2ℓ(θ, t)

∂ε2
=−

(
−νφ(0,0,1,0)(α, β, ε, γ)− (1− ν)φ(0,0,1)(α, β, ε)

)2

(νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε))2
I{t≥ β}

+
νφ(0,0,2,0)(α, β, ε, γ) + (1− ν)φ(0,0,2)(α, β, ε)

νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε)
I{t≥ β}

+
νφ(0,0,2,0)(α, β, ε, γ) + (1− ν)φ(0,0,2)(α, β, ε)

νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε)
I{t< β}

−
(
νφ(0,0,1,0)(α, β, ε, γ) + (1− ν)φ(0,0,1)(α, β, ε)

)2

(νφ(α, β, ε, γ) + (1− ν)φ(α, β, ε))2
I{t< β}.

ESLBS model

Let T = t be an observation from an ESLBS(α, β, ε, ν) distribution. Then, its likelihood
function is

ℓ(θ, t) = log(ν)− 3

2
log(t) + log(t+ β)− log(2)− log(α)− 1

2
log(β)

+ log

(∫ 1

0
uν−1φ

(
a(t)

1 + ε
; 0,

1

u

)
du

)
I{t< β}

+ log

(∫ 1

0
uν−1φ

(
a(t)

1− ε
; 0,

1

u

)
du

)
I{t≥ β}

where θ = (α, β, ε, ν, γ), φ
(

a(t)
1+ε ; 0,

1
u

)
= φ(α, β, ε, u) and φ

(
a(t)
1−ε ; 0,

1
u

)
= φ(α, β, ε, u).

The second partial derivatives are given by

∂2ℓ(θ, t)

∂α2
=−

(∫ 1
0 νuν−1φ(1,0,0,0)(α, β, ε, u) du

)
2

(∫ 1
0 νuν−1φ(α, β, ε, u) du

)
2

I{t≥ β} +

∫ 1
0 νuν−1φ(2,0,0,0)(α, β, ε, u) du

∫ 1
0 νuν−1φ(α, β, ε, u) du

I{t≥ β}

+

∫ 1
0 νuν−1φ(2,0,0,0)(α, β, ε, u) du

∫ 1
0 νuν−1φ(α, β, ε, u) du

I{t< β} −

(∫ 1
0 νuν−1φ(1,0,0,0)(α, β, ε, u) du

)
2

(∫ 1
0 νuν−1φ(α, β, ε, u) du

)
2

I{t< β} +
1

α2
,

∂2ℓ(θ, t)

∂α∂β
=−

(∫ 1
0 νuν−1φ(0,1,0,0)(α, β, ε, u) du

) ∫ 1
0 νuν−1φ(1,0,0,0)(α, β, ε, u) du

(∫ 1
0 νuν−1φ(α, β, ε, u) du

)
2

I{t≥ β}

+

∫ 1
0 νuν−1φ(1,1,0,0)(α, β, ε, u) du

∫ 1
0 νuν−1φ(α, β, ε, u) du

I{t≥ β} +

∫ 1
0 νuν−1φ(1,1,0,0)(α, β, ε, u) du

∫ 1
0 νuν−1φ(α, β, ε, u) du

I{t< β}

−

(∫ 1
0 νuν−1φ(0,1,0,0)(α, β, ε, u) du

) ∫ 1
0 νuν−1φ(1,0,0,0)(α, β, ε, u) du

(∫ 1
0 νuν−1φ(α, β, ε, u) du

)
2

I{t< β},
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∂2ℓ(θ, t)

∂α∂ε
=−

(∫ 1
0 ν

(
−uν−1

)
φ(0,0,1,0)(α, β, ε, u) du

) ∫ 1
0 νuν−1φ(1,0,0,0)(α, β, ε, u) du

(∫ 1
0 νuν−1φ(α, β, ε, u) du

)
2

I{t≥ β}

+

∫ 1
0 ν

(
−uν−1

)
φ(1,0,1,0)(α, β, ε, u) du

∫ 1
0 νuν−1φ(α, β, ε, u) du

I{t≥ β} +

∫ 1
0 νuν−1φ(1,0,1,0)(α, β, ε, u) du

∫ 1
0 νuν−1φ(α, β, ε, u) du

I{t< β}

−

(∫ 1
0 νuν−1φ(0,0,1,0)(α, β, ε, u) du

) ∫ 1
0 νuν−1φ(1,0,0,0)(α, β, ε, u) du

(∫ 1
0 νuν−1φ(α, β, ε, u) du

)
2

I{t< β},

∂2ℓ(θ, t)

∂β2
=−

(∫ 1
0 νuν−1φ(0,1,0,0)(α, β, ε, u) du

)
2

(∫ 1
0 νuν−1φ(α, β, ε, u) du

)
2

I{t≥ β} +

∫ 1
0 νuν−1φ(0,2,0,0)(α, β, ε, u) du

∫ 1
0 νuν−1φ(α, β, ε, u) du

I{t≥ β}

+

∫ 1
0 νuν−1φ(0,2,0,0)(α, β, ε, u) du

∫ 1
0 νuν−1φ(α, β, ε, u) du

I{t< β} −

(∫ 1
0 νuν−1φ(0,1,0,0)(α, β, ε, u) du

)
2

(∫ 1
0 νuν−1φ(α, β, ε, u) du

)
2

I{t< β}

+
1

2β2
− 1

(β + t)2
,

∂2ℓ(θ, t)

∂β∂ε
=−

(∫ 1
0 ν

(
−uν−1

)
φ(0,0,1,0)(α, β, ε, u) du

) ∫ 1
0 νuν−1φ(0,1,0,0)(α, β, ε, u) du

(∫ 1
0 νuν−1φ(α, β, ε, u) du

)
2

I{t≥ β}

+

∫ 1
0 ν

(
−uν−1

)
φ(0,1,1,0)(α, β, ε, u) du

∫ 1
0 νuν−1φ(α, β, ε, u) du

I{t≥ β} +

∫ 1
0 νuν−1φ(0,1,1,0)(α, β, ε, u) du

∫ 1
0 νuν−1φ(α, β, ε, u) du

I{t< β}

−

(∫ 1
0 νuν−1φ(0,0,1,0)(α, β, ε, u) du

) ∫ 1
0 νuν−1φ(0,1,0,0)(α, β, ε, u) du

(∫ 1
0 νuν−1φ(α, β, ε, u) du

)
2

I{t< β},

∂2ℓ(θ, t)

∂ε2
=−

(∫ 1
0 ν

(
−uν−1

)
φ(0,0,1,0)(α, β, ε, u) du

)
2

(∫ 1
0 νuν−1φ(α, β, ε, u) du

)
2

I{t≥ β} +

∫ 1
0 νuν−1φ(0,0,2,0)(α, β, ε, u) du

∫ 1
0 νuν−1φ(α, β, ε, u) du

I{t≥ β}

+

∫ 1
0 νuν−1φ(0,0,2,0)(α, β, ε, u) du

∫ 1
0 νuν−1φ(α, β, ε, u) du

I{t< β} −

(∫ 1
0 νuν−1φ(0,0,1,0)(α, β, ε, u) du

)
2

(∫ 1
0 νuν−1φ(α, β, ε, u) du

)
2

I{t< β}.
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