
Chilean Journal of Statistics
Vol. 8, No. 2, September 2017, 65-91

The Odd Exponentiated Half-Logistic-G Family: Properties,
Characterizations and Applications

Ahmed Z. Afify1, Emrah Altun2,∗, Morad Alizadeh3, Gamze Ozel2 and G.G. Hamedani4

1Department of Statistics, Mathematics and Insurance, Benha University, Egypt
2Department of Statistics, Hacettepe University, Ankara, Turkey

3Department of Statistics, Faculty of Sciences, Persian Gulf University, Bushehr, Iran
4Department of Mathematics, Statistics and Computer Science, Marquette University, USA

(Received: February 15, 2017 · Accepted in final form: July 26, 2017)

Abstract

We introduce a new class of continuous distributions called the odd exponentiated half-
logistic-G family. Some special models of the new family are provided. These special
models are capable of modeling various shapes of aging and failure criteria. Some of its
mathematical properties including explicit expressions for the ordinary and incomplete
moments, generating function, Rényi and Shannon entropies, order statistics, probability
weighted moments and characterizations are obtained. The maximum likelihood method
is used for estimating the model parameters. The flexibility of the generated family is
illustrated by means of three applications to real data sets.

Keywords: Generating Function · Maximum Likelihood · Order Statistic · T-X
Family · Characterization.

Mathematics Subject Classification: 62E10 · 60E05.

1. Introduction

In many practical situations, classical distributions do not provide adequate fits to real
data. Therefore, there has been an increased interest in developing more flexible distri-
butions through extending the classical distributions via introducing additional shape
parameters to the baseline model. Many generalized families of distributions have been
proposed and studied over the last two decades for modeling data in many applied areas
such as economics, engineering, biological studies, environmental sciences, medical sciences
and finance. Some well-known families are the Marshall-Olkin-G by Marshall and Olkin
(1997), the beta-G by Eugene et al. (2002), odd log-logistic-G by Gleaton and Lynch (2004,
2006), the transmuted-G by Shaw and Buckley (2009), the gamma-G by Zografos and Bal-
akrishnan (2009), the Kumaraswamy-G by Cordeiro and de Castro (2011), the logistic-G
by Torabi and Montazeri (2014), exponentiated generalized-G by Cordeiro et al. (2013),
the McDonald-G by Alexander et al. (2012), T-X family by Alzaatreh et al. (2013), the
Weibull-G by Bourguignon et al. (2014), the exponentiated half-logistic generated family
by Cordeiro et al. (2014), the beta odd log-logistic generalized by Cordeiro et al. (2015), the
generalized transmuted-G by Nofal et al. (2017), the Kumaraswamy transmuted-G by Afify
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et al. (2016a), the beta transmuted-H by Afify et al. (2016b), generalized odd log-logistic-
G by Cordeiro al. (2017). Several mathematical properties of the extended distributions
may be easily explored using mixture forms of exponentiated-G (exp-G) distributions.

One of the probability distributions which is a member of the family of the logistic
distribution is the half logistic distribution. The probability density function (pdf) and
cumulative density function (cdf) of the half-logistic (HL) distribution are, respectively,
given by

f (x) =
2λ exp (−λx)

(1 + exp (−λx))2 ,

F (x) =
1− exp (−λx)

1 + exp (−λx)
,

where x > 0 and λ > 0 is a shape parameter.
The HL distribution has not receive much attention from researchers in terms of gener-

alization. Furthermore, the density function of HL distribution has unimodal or reversed
J-shaped and this property is a disadvantage of the HL distribution since the empirical
approaches to real data are often non-monotone hazard rate function shapes such as uni-
modal, bathtub and various shaped, specifically in the lifetime applications. Hence, in this
research work, we present a new generalization of the HL distribution.

The goal of this study is to propose a new flexible family of distributions called the
odd exponentiated half logistic-G (OEHL-G for short) family of distributions using the HL
distribution as the generator and study its mathematical properties. This way, we will
utilize the flexibility of the baseline distribution for modelling the data.

The cdf and pdf of the OEHL-G family are given, respectively, by

F (x;α, λ, ξ) =

1− exp
[
−λ G(x;ξ)
Ḡ(x;ξ)

]
1 + exp

[
−λ G(x;ξ)
Ḡ(x;ξ)

]

α

, x ∈ R, (1)

and

f(x;α, λ, ξ) =
2αλ g(x, ξ) exp

[
−λ G(x;ξ)
Ḡ(x;ξ)

]{
1− exp

[
−λ G(x;ξ)
Ḡ(x;ξ)

]}α−1

Ḡ(x; ξ)2
{

1 + exp
[
−λ G(x;ξ)
Ḡ(x;ξ)

]}α+1 , x ∈ R, (2)

where g(x; ξ) = dG(x; ξ)/dx, α and λ are positive shape parameters and ξ is the vector
of parameters for the baseline cdf G. Henceforth, a random variable with density (2) is
denoted by X ∼OEHL-G(α, λ, ξ).

The reliability function, hazard rate function (hrf) and cumulative hazard rate function
(chrf) of X are, respectively, given by

R(x;α, λ, ξ) = 1−

1− exp
[
−λG(x;ξ)
Ḡ(x;ξ)

]
1 + exp

[
−λG(x;ξ)
Ḡ(x;ξ)

]

α

,
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h(x;α, λ, ξ) =
2αλ g(x, ξ)Ḡ(x; ξ)−2

{
1 + exp

[
−λG(x;ξ)
Ḡ(x;ξ)

]}−1 {
1− exp

[
−λG(x;ξ)
Ḡ(x;ξ)

]}α−1

exp
[
λG(x;ξ)
Ḡ(x;ξ)

] ({
1 + exp

[
−λG(x;ξ)
Ḡ(x;ξ)

]}α
−
{

1− exp
[
−λG(x;ξ)
Ḡ(x;ξ)

]})
(3)

and

H(x;α, λ, ξ) = − log

1−

1− exp
[
−λG(x;ξ)
Ḡ(x;ξ)

]
1 + exp

[
−λG(x;ξ)
Ḡ(x;ξ)

]

α .

An interpretation of the OEHL-G family can be given as follows: Let T be a random
variable with cdf G (·) describing a stochastic system. Let the random variable X represent
the odds, the risk that the system following the lifetime T will be not working at time x
is given by G(x; ξ)/[1 − G(x; ξ)]. If we are interested in modeling the randomness of the

odds by the exponentiated half-logistic cdf Π(t) =
[

1−e−λ t

1+e−λ t

]α
(for t > 0), the cdf of X is

given by

Pr(X ≤ x) = Π

(
G(x; ξ)

1−G(x; ξ)

)
=

[
1− e

−λG(x;ξ)

Ḡ(x;ξ)

1 + e
−λG(x;ξ)

Ḡ(x;ξ)

]α
.

Furthermore, the basic motivations for using the OEHL-G family in practice are the fol-
lowing:

(1) to make the kurtosis more flexible compared to the baseline model;
(2) to produce a skewness for symmetrical distributions;
(3) to construct heavy-tailed distributions that are not longer-tailed for modeling real

data;
(4) to generate distributions with symmetric, left-skewed, right-skewed and reversed-J

shaped;
(5) to define special models with all types of the hrfs;
(6) to provide consistently better fits than other generated models under the same

baseline distribution.

The rest of the paper is organized as follows. In Section 2, we give a very useful linear
representation for the density function of the family. In Section 3, we present three special
models and plots of their pdfs and hrfs. In Section 4, we obtain some of its general mathe-
matical properties including asymptotics, ordinary and incomplete moments, skewness and
kurtosis, quantile and generating functions, quantile power series, entropies, order statis-
tics and probability weighted moments (PWMs). Section 5 is devoted to characterizations
of the OEHL-G family. The maximum likelihood estimation of the model parameters is
addressed in Section 6. In Section 7, we provide two applications to real data to illus-
trate the flexibility of the new family. Simulation results to assess the performance of the
maximum likelihood estimation method are reported in Section 8. Finally, we give some
concluding remarks in Section 9.
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2. Linear representation

In this section, we provide a useful representation for the OEHL-G pdf. The pdf (2) can
be expressed as

f(x) =
2αλg(x)

Ḡ(x)2
e
−λ G(x)

Ḡ(x)

{
1− exp

[
−λG(x)

Ḡ(x)

]}α−1

︸ ︷︷ ︸
A

{
1 + exp

[
−λG(x)

Ḡ(x)

]}−α−1

︸ ︷︷ ︸
B

. (4)

Using the generalized binomial series, we have

A =

∞∑
j=0

(−1)j
(
α− 1

j

)
exp

[
−λjG(x)

Ḡ(x)

]
and B =

∞∑
i=0

(
−α− 1

i

)
exp

[
−λiG(x)

Ḡ(x)

]
. (5)

Combining equations (4) and (5), we obtain

f(x) =
2αλg(x)

Ḡ(x)2

∞∑
j,i=0

(−1)j
(
−α− 1

i

)(
α− 1

j

)
exp

[
−λ (j + i+ 1)G(x)

Ḡ(x)

]
.

From the exponential series, we can write

f(x) = 2αλg(x)

∞∑
j,i,k=0

(−1)j+k

k!
[λ (j + i+ 1)]k

(
−α− 1

i

)(
α− 1

j

)
G(x)kḠ(x)−k−2. (6)

Consider the power series

(1− z)−q =

∞∑
k=0

(−1)k
(
−q
k

)
zk. (7)

Using the power series in (7), equation (6) can be expressed as

f(x) = 2αλg(x)
∑∞

j,i,k,l=0
(−1)j+k+l

k! [λ (j + i+ 1)]k
(
α−1
j

)
×
(−α−1

i

)(−k−2
l

)
G(x)k+l,

or, equivalently, we can write

f(x) =

∞∑
k,l=0

ak,l hk+l+1 (x) , (8)

where

ak,l = 2αλ

∞∑
j,i=0

(−1)j+k+l [λ (j + i+ 1)]k

k! (k + l + 1)

(
−α− 1

i

)(
α− 1

j

)(
−k − 2

l

)

and hk+l+1 (x) = (k + l + 1) g(x)G(x)k+l is the Exp-G density with power parameter
(k + l + 1). Thus, several mathematical properties of the OEHL-G family can be obtained
simply from those properties of the Exp-G family.



Chilean Journal of Statistics 69

The cdf of the OEHL-G family can also be expressed as a mixture of Exp-G cdfs. By
integrating (8), we obtain the same mixture representation

F (x) =

∞∑
k,l=0

ak,l Hk+l+1 (x) ,

where Hk+l+1 (x) is the cdf of the Exp-G family with power parameter (k + l + 1).

3. Special models

In this section, we provide three special models of the OEHL-G family. The pdf (2) will be
most tractable when the cdf G(x; ξ) and the pdf g(x; ξ) have simple analytic expressions.

3.1 The OEHL-Weibull (OEHL-W) distribution

By taking G(x; ξ) and g(x; ξ) in (2) to be the cdf and pdf of the Weibull (W) distribution

with cdf and pdf G(x; a, b) = 1 − e−(x/b)
a

and g(x; a, b) = ab−axa−1e−(x/b)
a

, respectively,
where a > 0 is a shape parameter and b > 0 is a scale parameter. The pdf of the OEHL-W
reduces (for x > 0) to

f(x) =
2αλab−axa−1exp

[
(x/b)

a] (
1− exp

{
−λ
[
e(x/b)

a

− 1
]})α−1

exp
{
−λ
[
e(x/b)a − 1

]} (
1 + exp

{
−λ
[
e(x/b)a − 1

]})α+1 .

For b = 1, we have the OEHL-exponential (OEHL-E) distribution and for b = 2, we
obtain the OEHL-Rayleigh (OEHL-R) distribution. Plots of the pdf and hrf of OEHL-W
distribution for selected parameter values are shown in Figure 1. Figure 1 demonstrates
that the OEHL-W ensures rich shaped distributions with various shapes for modeling. It
brings unimodal, bathtub and decreasing shape properties. Figure 1 also reveals that this
family can produce flexible hrf shapes such as decreasing, increasing, bathtub, upside-down
bathtub, firstly unimodal. Other shapes can be obtained using another distribution. These
shape properties show that the OEHL-W family can be very useful to fit different data
sets with various shapes.
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Figure 1. Plots of the pdf and hrf of the OEHL-W distribution for the selected parameter values.
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3.2 The OEHL-gamma (OEHL-Ga) distribution

By taking G(x; ξ) and g(x; ξ) in (2) to be the cdf G(x; a, b) = γ (a, x/b) /Γ (a) and the pdf
g(x; a, b) = xa−1e−x/b/baΓ (a) of the gamma distribution, where a > 0 is a shape parameter
and b > 0 is a scale parameter, the pdf of the OEHL-Ga (for x > 0) reduces to

f(x) =
2αλxa−1 exp (−x/b) exp

[
−λγ(a,x/b)/Γ(a)
1−γ(a,x/b)/Γ(a)

]{
1− exp

[
−λγ(a,x/b)/Γ(a)
1−γ(a,x/b)/Γ(a)

]}α−1

baΓ (a)
[
1− −λγ(a,x/b)/Γ(a)

1−γ(a,x/b)/Γ(a)

]2 {
1 + exp

[
−λγ(a,x/b)/Γ(a)
1−γ(a,x/b)/Γ(a)

]}α+1 .

Plots of the pdf and hrf of the OEHL-Ga distribution for selected parameter values are
shown in Figure 2. Figure 2 shows that the pdf of the OEHL-Ga is right-skewed and nearly
symmetric. As seen in Figure 2, a characteristic of the OEHL-Ga distribution is that its hrf
can be monotonically increasing or bathtub depending basically on the parameter values.
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Figure 2. Plots of the pdf and hrf of the OEHL-Ga distribution for the selected parameter values.

3.3 The OEHL-normal (OEHL-N) distribution

The OEHL-N distribution is defined from (2) by taking G(x;µ, σ2) = Φ
(x−µ

σ

)
and

g(x;µ, σ2) = σ−1φ
(x−µ

σ

)
for the cdf and pdf of the normal (N) distribution with a lo-

cation parameter µ ∈ R and a scale positive parameter σ2, where Φ (.) and φ (.) are the
pdf and cdf of the standard N distribution, respectively. The OEHL-N pdf is given (for
x ∈ R) by

f(x) =

2αλφ
(x−µ

σ

)
exp

[
−λΦ( x−µσ )
1−Φ( x−µσ )

]{
1− exp

[
−λΦ( x−µσ )
1−Φ( x−µσ )

]}α−1

σ
[
1− Φ

(x−µ
σ

)]2{
1 + exp

[
−λΦ( x−µσ )
1−Φ( x−µσ )

]}α+1 .

For µ = 0 and σ = 1, we obtain the standard OEHL-N distribution. Plots of the OEHL-
N density for selected parameter values are shown in Figure 3. Figure 3 reveals that the
density function of OEHL-N has left-skewed, nearly symmetric and non-monotonic shapes.
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Figure 3. Plots of the density function of the OEHL-N distribution for the selected parameter values.

4. Properties

In this section, we obtain some general properties of the OEHL-G family including the
ordinary and incomplete moments, generating function, entropies, order statistics and
probability weighted moments (PWMs).

4.1 Asymptotics

Let a = inf {x|G(x) > 0}, then, the asymptotics of equations (1), (2) and (3) as x→ a are
given by

F (x) ∼ λα

2α
G(x)α as x→ a,

f (x) ∼ αλα

2α
g(x)G(x)α−1 as x→ a,

h (x) ∼ αλα

2α
g(x)G(x)α−1 as x→ a.
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The asymptotics of equations (1), (2) and (3) as x→∞ are given by

1− F (x) ∼ 2αe
−λ
Ḡ(x) as x→∞,

f (x) ∼ 2αλg(x)e
−λ
Ḡ(x)

Ḡ(x)2
as x→∞,

h (x) ∼ 2αλg(x)

Ḡ(x)2
as x→∞.

4.2 Ordinary and incomplete moments

Henceforth, Tk+l+1 denotes the Exp-G random variable with power parameter k + l + 1.
The rth moment of X, say µ′r, follows from (8) as

µ′r = E (Xr) =

∞∑
k,l=0

ak,l E
(
T rk+l+1

)
. (9)

The nth central moment of X is given by

µn =

n∑
r=0

(
n

r

)(
−µ′1

)n−r
E (Xr) =

n∑
r=0

∞∑
k,l=0

ak,l

(
n

r

)(
−µ′1

)n−r
E
(
T rk+l+1

)
.

The cumulants (κn) of X follow recursively from

κn = µ′n −
n−1∑
r=0

(
n− 1

r − 1

)
κr µ

′
n−r,

where κ1 = µ′1, κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2µ
′
1 + µ′31 , etc. The measures of skewness and

kurtosis can be calculated from the ordinary moments using well-known relationships.
The sth incomplete moment of X can be expressed from (8) as

ϕs (t) =

∫ t

−∞
xsf (x) dx =

∞∑
k,l=0

ak,l

∫ t

−∞
xs hk+l+1 (x) dx. (10)

ϕ1 (t) can be applied to construct Bonferroni and Lorenz curves defined for a given prob-
ability π by B(π) = ϕ1 (q) /(πµ′1) and L(π) = ϕ1 (q) /µ′1, respectively, where µ′1 given by
(9) with r = 1 and q = Q(π) is the qf of X at π. These curves are very useful in economics,
reliability, demography, insurance and medicine.

Now, we provide two ways to determine ϕ1 (t). First, a general equation for ϕ1 (t) can
be derived from (10) as

ϕ1 (t) =

∞∑
k,l=0

ak,l Jk+l+1 (t) ,

where Jk+l+1 (t) =
∫ t
−∞ xhk+l+1 (x) dx is the first incomplete moment of the Exp-G dis-

tribution.
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A second general formula for ϕ1 (t) is given by

ϕ1 (t) =

∞∑
k,l=0

ak,l vk+l+1 (t) ,

where vk+l+1 (t) = (k + l + 1)
∫ G(t)

0 QG (u) uk+ldu which can be computed numerically

and QG(u) is the qf corresponding to G (x; ξ), i.e., QG(u) = G−1(u; ξ).
Figures 4 and 5 display the mean and variance measures of OEHL-N and OEHL-W

distributions. Based on these figures, we conclude that: when parameter α increases, mean
increases and variance decreases; when parameter λ increases, mean and variance decrease.
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Figure 4. Plots of the mean and variance of the OEHL-N distribution for µ = 0, σ = 1.
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Figure 5. Plots of the mean and variance of the OEHL-W distribution for a = 2, b = 2.

4.3 Quantile and generating functions

The quantile function (qf) of the OEHL-G distribution follows, by inverting (1), as

XU = QG

[
− log(1− u

1

α ) + log(1 + u
1

α )

λ− log(1− u
1

α ) + log(1 + u
1

α )

]
, (11)
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where QG(.) denote the qf of X and u ∼ U (0, 1).
Here, we provide two formulae for the moment generating function (mgf) MX (t) =

E
(
etX

)
of X which can be derived from equation (8).The first one is given by

MX (t) =

∞∑
k,l=0

ak,lMk+l+1 (t) ,

where Mk+l+1 (t) is the mgf of Tk+l+1. Hence, MX (t) can be determined from the Exp-G
generating function.

The second formula for MX (t) can be expressed as

MX (t) =

∞∑
k,l=0

ak,l τ (t, k) ,

where τ (t, k) =
∫ 1

0 exp [tQG (u)] uk+ldu. The skewness and kurtosis plots of the OEHL-Ga
and OEHL-W are given in Figure 4. These plots indicate that the members of the this
family can model various data types in terms of skewness and kurtosis.

Figure 6. Plots of skewness and kurtosis of OEHL-Ga (left panel) and OEHL-W (right panel) distribution for
several values of parameters.

4.4 Quantile power series

In this subsection, we derive a power series for the qf x = Q(u) = F−1(u) of X by
expanding (11). If QG(u) does not have a closed-form expression, it can expressed as a
power series

QG(u) =

∞∑
i=0

ai u
i, (12)
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where the coefficients a′is are suitably chosen real numbers. They depend on the parameters
of the baseline G distribution. For several important distributions, such as the normal,
Student t, gamma and beta distributions, QG(u) does not have explicit expressions but
it can be expanded as in equation (12). As a simple example, for the normal N(0, 1)
distribution, ai = 0 for i = 0, 2, 4, . . . and a1 = 1, a3 = 1/6, a5 = 7/120 and a7 =
127/7560, . . .

Throughout the paper, we use a result of Gradshteyn and Ryzhik (2000) for a power
series raised to a positive integer n (for n ≥ 1)

QG(u)n =

( ∞∑
i=0

ai u
i

)n
=

∞∑
i=0

cn,i u
i, (13)

where cn,0 = an0 and the coefficients cn,i (for i = 1, 2, . . .) are determined from the recur-
rence equation

cn,i = (i a0)−1
i∑

m=1

[m(n+ 1)− i] am cn,i−m. (14)

Next, we derive an expansion for the argument of QG(·) in (11), namely

A =
− log(1− u

1

α ) + log(1 + u
1

α )

λ− log(1− u
1

α ) + log(1 + u
1

α )
.

First, we have

− log(1− u
1

α ) =

∞∑
i=1

u
i

α

i
=

∞∑
i=1

∞∑
j=0

(−1)j (1− u)j

i

( i
α

j

)

=

∞∑
i=1

∞∑
j=0

j∑
k=0

(−1)j+k

i

( i
α

j

)(
j

k

)
uk =

∞∑
k=0

ak u
k,

where ak =
∞∑
i=1

∞∑
j=k

(−1)j+k

i

( i
α

j

)(
j
k

)
.

Also, we can write

log(1 + u
1

α ) = −
∞∑
i=1

(−1)i u
i

α

i
=

∞∑
i=1

∞∑
j=0

(−1)i+j+1 (1− u)j

i

( i
α

j

)

=

∞∑
i=1

∞∑
j=0

j∑
k=0

(−1)i+j+k+1

i

( i
α

j

)(
j

k

)
uk =

∞∑
k=0

bk u
k,

where bk =
∞∑
i=1

∞∑
j=k

(−1)i+j+k+1

i

( i
α

j

)(
j
k

)
.
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Then, using the ratio of two power series we can write

A =

∞∑
k=0

αk u
k

∞∑
k=0

βk uk
=

∞∑
k=0

δk u
k, (15)

where αk = ak + bk for k ≥ 0, β0 = λ+ α0 and βk = αk for k ≥ 1 and δ0 = α0/β0 and for
k ≥ 1, we have

δk =
1

β0

[
αk −

1

β0

k∑
r=1

βrδk−r

]
.

Then, the qf of X can be expressed using (11) as

Q(u) = QG

( ∞∑
k=0

δk u
k

)
. (16)

For any baseline G distribution, we combine (12) and (16) to obtain

Q(u) = QG

( ∞∑
m=0

δm u
m

)
=

∞∑
i=0

ai

( ∞∑
m=0

δm u
m

)i
.

Then using (13) and (14), we have

Q(u) =

∞∑
m=0

em u
m, (17)

where em =
∑∞

i=0 ai di,m, and, for i = 0, 1, . . ., di,0 = δi0 and (for m > 1)

di,m = (mδ0)−1
m∑
n=1

[n(i+ 1)−m] δn di,m−n.

Equation (17) reveals that the qf of the OEHL-G family can be expressed as a power series.
Then, several mathematical quantities of X can be reduced to integrals over (0, 1) based
on this power series.

Let W (·) be any integrable function on the real line. We can write

∫ ∞
−∞

W (x) f(x)dx =

∫ 1

0
W

( ∞∑
m=0

em u
m

)
du. (18)

Equations (17) and (18) are the main results of this section since we can obtain various
OEHL-G mathematical properties based on them. In fact, they can follow by using the
integral on the right-hand side for special W (·) functions, which are usually simpler than
if they were based on the left-hand integral. For the great majority of these quantities, we
can adopt twenty terms in this power series.

The formulae derived throughout the paper can be easily handled in most symbolic
computation platforms such as Maple, Mathematica and Matlab.
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4.5 Entropies

The Rényi entropy of a random variable X represents a measure of variation of the uncer-
tainty. The Rényi entropy is given by

Iθ (X) = (1− θ)−1 log

(∫ ∞
−∞

f (x)θ dx

)
, θ > 0 and θ 6= 1.

Using the pdf (2), we can write

f (x)θ =
(2αλ)θ g(x)θexp

[
−λG(x)
Ḡ(x)

]{
1− exp

[
−λG(x)
Ḡ(x)

]}θ(α−1)

Ḡ(x)2θ
{

1 + exp
[
−λG(x)
Ḡ(x)

]}θ(α+1)
.

Applying the binomial series to the last term, the last equation reduces to

f (x)θ =
(2αλ)θ g(x)θ

Ḡ(x)2θ

∞∑
j,i=0

(−1)j
(
θ (α− 1)

j

)(
−θ (α+ 1)

i

)
exp

[
−λ (j + i+ 1)G(x)

Ḡ(x)

]
.

Using the exponential series and then the power series (7) , we have

f (x)θ =

∞∑
j,i,k,l=0

(−1)j+k+l (2αλ)θ g(x)θ

k! [λ (j + i+ 1)]−k

(
θ (α− 1)

j

)(
−θ (α+ 1)

i

)(
−k − 2θ

l

)
G(x)k+l.

Then, the Rényi entropy of the OEHL-G class is given by

Iθ (X) = (1− θ)−1 log

 ∞∑
k,l=0

υk,l

∫ ∞
−∞

g(x)θG(x)k+ldx

 ,
where

υk,j = (2αλ)θ
∞∑
j,i=0

(−1)j+k+l

k!
[λ (j + i+ 1)]k

(
θ (α− 1)

j

)(
−θ (α+ 1)

i

)(
−k − 2θ

l

)
.

The θ-entropy can be obtained as

Hθ (X) = (1− θ)−1 log

1−
∞∑

k,l=0

υk,l

∫ ∞
−∞

g(x)θG(x)k+ldx

 .
The Shannon entropy of a random variable X is a special case of the Rényi entropy when
θ ↑ 1. The Shannon entropy, say SI, is defined by SI = E {− [log f (X)]}, which follows
by taking the limit of Iθ (X) as θ tends to 1.

4.6 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.
Let X1, . . . , Xn be a random sample from the OEHL-G family. The pdf of Xi:n can be
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written as

fi:n (x) =
f (x)

B (i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

)
F (x)j+i−1 , (19)

where B(·, ·) is the beta function.
Using equations (1) and (2), we have

f (x)F (x)j+i−1 =
2αλg(x)

Ḡ(x)2
exp

[
−λG(x)

Ḡ(x)

]{
1− exp

[
−λG(x)

Ḡ(x)

]}α(j+i)−1

×
{

1 + exp

[
−λG(x)

Ḡ(x)

]}−α(j+i)−1

.

After applying the generalized binomial and exponential series, we obtain

f (x)F (x)j+i−1 =

∞∑
s,w,k,l=0

(−1)s+k+l 2αλg(x)

k! [λ (s+ w + 1)]−k

(
α (j + i)− 1

s

)

×
(
−α (j + i)− 1

w

)(
−k − 2

l

)
G(x)k+l. (20)

Substituting (20) in equation (19), the pdf of Xi:n can be expressed as

fi:n (x) =

∞∑
k,l=0

bk,l hk+l+1 (x) ,

where hk+l+1 (x) is the Exp-G density with power parameter (k + l + 1) and

bk,l =

n−i∑
j=0

∞∑
s,w=0

2αλ (−1)j+s+k+l [λ (s+ w + 1)]k

k! (k + l + 1) B (i, n− i+ 1)

(
n− i
j

)

×
(
α (j + i)− 1

s

)(
−α (j + i)− 1

w

)(
−k − 2

l

)
.

Then, the density function of the OEHL-G order statistics is a mixture of Exp-G densities.
Based on the last equation, we note that the properties of Xi:n follow from those of Tk+l+1.

The qth moments of Xi:n can be expressed as

E (Xq
i:n) =

∞∑
k,l=0

bk,l E (Tk+l+1) . (21)

Based on the moments in equation (21), we can derive explicit expressions for the L-
moments of X as infinite weighted linear combinations of the means of suitable OEHL-G
order statistics. The rth L-moments is given by

λr =
1

r

r−1∑
d=0

(−1)d
(
r − 1

d

)
E (Xr−d:r) , r ≥ 1.
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4.7 PWMs

The PWM is the expectation of certain function of a random variable whose mean exists.
A general theory for the PWMs covers the summarization and description of theoretical
probability distributions and observed data samples, nonparametric estimation of the un-
derlying distribution of an observed sample, estimation of parameters, quantiles of prob-
ability distributions and hypothesis tests. The PWM method can generally be used for
estimating parameters of a distribution whose inverse form cannot be expressed explicitly.

The (j, i)th PWM of X following the OEHL-G distribution, say ρj,i, is formally defined
by

ρj,i = E
{
XjF (X)i

}
=

∫ ∞
−∞

xjf (x)F (X)i dx.

From equation (20), we can write

f (x)F (x)i = 2αλg(x)

∞∑
s,w,k,l=0

(−1)s+k+l

k!
[λ (s+ w + 1)]k

×
(
α (i+ 1)− 1

s

)(
−α (i+ 1)− 1

w

)(
−k − 2

l

)
G(x)k+l.

The last equation can be expressed as

f (x)F (X)i =

∞∑
k,l=0

mk,l hk+l+1 (x) ,

where

mk,l = 2αλ

∞∑
s,w=0

(−1)s+k+l [λ (s+ w + 1)]k

k! (k + l + 1)

×
(
α (i+ 1)− 1

s

)(
−α (i+ 1)− 1

w

)(
−k − 2

l

)
.

Then, the PWM of X is given by

ρj,i =

∞∑
k,l=0

mk,l

∫ ∞
−∞

xj hk+l+1 (x) dx =

∞∑
k,l=0

mk,l E
(
T jk+l+1

)
.

5. Characterizations

This section deals with certain characterizations of OEHL-G distribution. These charac-
terizations are based on: (i) a simple relation between two truncated moments; (ii) the
hazard function ; (iii) the reverse hazard function and (iv) conditional expectation of a
function of the random variable. One of the advantages of characterization (i) is that the
cdf is not required to have a closed form. We present our characterizations (i)− (iv) in
four subsections.
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5.1 Characterizations based on ratio of two truncated moments

In this subsection we present characterizations of OEHL-G distribution in terms of a
simple relationship between two truncated moments. This characterization result employs
a theorem due to Glänzel (1987), see Theorem A.1 of Appendix A. Note that the result
holds also when the interval H is not closed. Moreover, as mentioned above, it could also
be applied when the cdf F does not have a closed form. As shown in Glänzel (1990), this
characterization is stable in the sense of weak convergence.

Proposition 5.1 Let X : Ω → R be a continuous random variable and let q1 (x) =[
1 + exp

(
−λG(x;ξ)

G(x;ξ)

)]α+1
and q2 (x) = q1 (x)

[
1− exp

(
−λG(x;ξ)

G(x;ξ)

)]α
for x ∈ R. The ran-

dom variable X has pdf (2) if and only if the function η defined in Theorem A.1 has the
form

η (x) =
1

2

{
1 +

[
1− exp

(
−λG (x; ξ)

G (x; ξ)

)]α}
, x ∈ R.

Proof Let X be a random variable with pdf (2), then

(1− F (x))E [q1 (x) | X ≥ x] = 2

{
1−

[
1− exp

(
−λG (x; ξ)

G (x; ξ)

)]α}
, x ∈ R,

and

(1− F (x))E [q2 (x) | X ≥ x] =

{
1−

[
1− exp

(
−λG (x; ξ)

G (x; ξ)

)]2α
}
, x ∈ R,

and finally

η (x) q1 (x)− q2 (x) = −1

2
q1 (x)

{
1−

[
1− exp

(
−λG (x; ξ)

G (x; ξ)

)]α}
> 0 for x ∈ R.

Conversely, if η is given as above, then

s′ (x) =
η′ (x) q1 (x)

η (x) q1 (x)− q2 (x)
=
αλg (x; ξ) exp

(
−λG(x;ξ)

G(x;ξ)

) [
1− exp

(
−λG(x;ξ)

G(x;ξ)

)]α−1

G (x; ξ)2
{

1−
[
1− exp

(
−λG(x;ξ)

G(x;ξ)

)]α} , x ∈ R,

and hence

s (x) = − log

{
1−

[
1− exp

(
−λG (x; ξ)

G (x; ξ)

)]α}
, x ∈ R.

Now, in view of Theorem A.1, X has density (2).

Corollary 5.2 Let X : Ω→ R be a continuous random variable and let q1 (x) be as in
Proposition 5.1. The pdf of X is (2) if and only if there exist functions q2 and η defined



Chilean Journal of Statistics 81

in Theorem A.1 satisfying the differential equation

η′ (x) q1 (x)

η (x) q1 (x)− q2 (x)
=
αλg (x; ξ) exp

(
−λG(x;ξ)

G(x;ξ)

) [
1− exp

(
−λG(x;ξ)

G(x;ξ)

)]α−1

G (x; ξ)2
{

1−
[
1− exp

(
−λG(x;ξ)

G(x;ξ)

)]α} , x ∈ R.

The general solution of the differential equation in Corollary 5.2 is

η (x) =

{
1−

[
1− exp

(
−λG (x; ξ)

G (x; ξ)

)]α}−1
 −

∫
αλg (x; ξ) exp

(
−λG(x;ξ)

G(x;ξ)

)
×[

1− exp
(
−λG(x;ξ)

G(x;ξ)

)]α−1
(q1 (x))−1 q2 (x) +D

 ,
where D is a constant. Note that a set of functions satisfying the above differential equation
is given in Proposition 5.1 with D = 1

2 . However, it should be also noted that there are
other triplets (q1, q2, η) satisfying the conditions of Theorem A.1.

5.2 Characterization based on hazard function

It is known that the hazard function, hF , of a twice differentiable distribution function,
F , satisfies the first order differential equation

f ′(x)

f (x)
=
h′F (x)

hF (x)
− hF (x).

For many univariate continuous distributions, this is the only characterization available
in terms of the hazard function. The following characterization establish a non-trivial
characterization of OELH-G distribution, when α = 1, which is not of the above trivial
form.

Proposition 5.3 Let X : Ω → R be a continuous random variable. The pdf of X for
α = 1, is (2) if and only if its hazard function hF (x) satisfies the differential equation

h′F (x)− g′ (x; ξ)

g (x; ξ)
hF (x) = λg (x; ξ)

d

dx

{
G (x; ξ)−2

[
1 + exp

(
−λG (x; ξ)

G (x; ξ)

)]−1
}
, x ∈ R.

Proof If X has pdf (2), then clearly the above differential equation holds. Now, this
differential equation holds, then

d

dx

{
g (x; ξ)−1 hF (x)

}
= λ

d

dx

{
G (x; ξ)−2

[
1 + exp

(
−λG (x; ξ)

G (x; ξ)

)]−1
}
, x ∈ R.

from which, we obtain

hF (x) =
λg (x; ξ)

G (x; ξ)2
[
1 + exp

(
−λG(x;ξ)

G(x;ξ)

)] , x ∈ R,

which is the hazard function of OELH-G distribution for α = 1.
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5.3 Characterizations in terms of the reverse hazard function

The reverse hazard function, rF , of a twice differentiable distribution function, F , is
defined as

rF (x) =
f (x)

F (x)
, x ∈ support of F.

This subsection deals with the characterizations of OEHL-G distribution based on the
reverse hazard function.

Proposition 5.4 Let X : Ω→ R be a continuous random variable. The random variable
X has pdf (2) if and only if its reverse hazard function rF (x) satisfies the following
differential equation

r′F (x)− g′ (x; ξ)

g (x; ξ)
rF (x) = 2αλg (x; ξ)

d

dx

{
G (x; ξ)−2

×
[
exp

(
λG (x; ξ)

G (x; ξ)

)
− exp

(
−λG (x; ξ)

G (x; ξ)

)]−1
}
, x ∈ R.

Proof If X has pdf (2) , then clearly the above differential equation holds. If this differ-
ential equation holds, then

d

dx

{
g (x; ξ)−1 rF (x)

}
= 2αλ

d

dx

{
G (x; ξ)−2

[
exp

(
λG (x; ξ)

G (x; ξ)

)
− exp

(
−λG (x; ξ)

G (x; ξ)

)]−1
}
,

from which, we have

rF (x) =
2αλg (x; ξ) exp

(
−λG(x;ξ)

G(x;ξ)

)
G (x; ξ)2

[
1− exp

(
−2λG(x;ξ)

G(x;ξ)

)] , x ∈ R.

5.4 Characterization based on the conditional expectation of certain
functions of the random variable

In this subsection we employ a single function ψ of X and characterize the distribution
of X in terms of the truncated moment of ψ (X) . The following proposition has already
appeared in Hamedani’s previous work (2013), so we will just state it as a proposition
here, which can be used to characterize OELH-G distribution.

Proposition 5.5 Let X : Ω→ (d, e) be a continuous random variable with cdf F . Let
ψ (x) be a differentiable function on (d, e) with limx→e− ψ (x) = 1. Then, for δ 6= 1,

E [ψ (X) | X ≤ x] = δψ (x) , x ∈ (d, e)

implies

ψ (x) = (F (x))
1

δ
−1 , x ∈ (d, e) .
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Remark 5.1 For (d, e) = R,

ψ (x) =
1− exp

(
−λG(x;ξ)

G(x;ξ)

)
1 + exp

(
−λG(x;ξ)

G(x;ξ)

)
and δ = α

α+1 , Proposition 5.5 provides a characterization of OELH-G distribution.

6. Maximum likelihood estimation

Several approaches for parameter estimation were proposed in the literature but the max-
imum likelihood method is the most commonly employed. The maximum likelihood esti-
mators (MLEs) enjoy desirable properties and can be used to obtain confidence intervals
for the model parameters. The normal approximation for these estimators in large samples
can be easily handled either analytically or numerically. Here, we consider the estimation
of the unknown parameters of the new family from complete samples only by maximum
likelihood method.

Let X1, ..., Xn be a random sample from the OEHL-G family with parameters α, λ and ξ.
Let θ =(α, λ, ξᵀ)ᵀ be the p×1 parameter vector. To obtain the MLE of θ, the log-likelihood
function is given by

`(θ) = n log (2α) +

n∑
i=1

log g (xi; ξ)− 2

n∑
i=1

log
[
Ḡ(xi; ξ)

]
−λ

n∑
i=1

G(xi; ξ)

Ḡ(xi; ξ)
+ (α− 1)

n∑
i=1

log

{
1− exp

[
−λG(xi; ξ)

Ḡ(xi; ξ)

]}

+n log (λ)− (α+ 1)

n∑
i=1

log

{
1 + exp

[
−λG(xi; ξ)

Ḡ(xi; ξ)

]}
.

Then, the score vector components, U (θ) = ∂`
∂θ =

(
Uα, Uλ, Uξk

)ᵀ
, are

Uα =
n

α
+

n∑
i=1

log

{
1− exp

[
−λG(xi; ξ)

Ḡ(xi; ξ)

]}
−

n∑
i=1

log

{
1 + exp

[
−λG(xi; ξ)

Ḡ(xi; ξ)

]}
,

Uλ =
n

λ
−

n∑
i=1

G(xi; ξ)

Ḡ(xi; ξ)
+ (α− 1)

n∑
i=1

G(xi; ξ)exp
[
−λG(xi;ξ)
Ḡ(xi;ξ)

]
Ḡ(xi; ξ)

{
1− exp

[
−λG(xi;ξ)
Ḡ(xi;ξ)

]}
+ (α+ 1)

n∑
i=1

G(xi; ξ)exp
[
−λG(xi;ξ)
Ḡ(xi;ξ)

]
Ḡ(xi; ξ)

{
1 + exp

[
−λG(xi;ξ)
Ḡ(xi;ξ)

]}
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and

Uξk =

n∑
i=1

g′ (xi; ξ)

g (xi; ξ)
− 2

n∑
i=1

Ḡ′(xi; ξ)

Ḡ(xi; ξ)

−λ
n∑
i=1

Ḡ(xi; ξ)G′(xi; ξ)−G (xi; ξ) Ḡ′(xi; ξ)

Ḡ(xi; ξ)2

+λ (α− 1)

n∑
i=1

[
Ḡ(xi; ξ)G′(xi; ξ)−G (xi; ξ) Ḡ′(xi; ξ)

]
exp

[
−λG(xi;ξ)
Ḡ(xi;ξ)

]
Ḡ(xi; ξ)2

{
1− exp

[
−λG(xi;ξ)
Ḡ(xi;ξ)

]}
+λ (α+ 1)

n∑
i=1

[
Ḡ(xi; ξ)G′(xi; ξ)−G (xi; ξ) Ḡ′(xi; ξ)

]
exp

[
−λG(xi;ξ)
Ḡ(xi;ξ)

]
Ḡ(xi; ξ)2

{
1 + exp

[
−λG(xi;ξ)
Ḡ(xi;ξ)

]} ,

where g′ (xi; ξ) = ∂g (xi; ξ) /∂ξk, G′ (xi; ξ) = ∂G (xi; ξ) /∂ξk and Ḡ′ (xi; ξ) =
∂Ḡ (xi; ξ) /∂ξk.

Setting the nonlinear system of equations Uα = Uλ = 0 and Uξk
= 0 and solving them

simultaneously yields the MLE θ̂ = (α̂, λ̂, ξ̂
ᵀ
)ᵀ. To do this, it is usually more convenient to

adopt nonlinear optimization methods such as the quasi-Newton algorithm to maximize
` numerically. For interval estimation of the parameters, we obtain the p × p observed
information matrix J(θ) = { ∂2`

∂r ∂s} (for r, s = α, λ, ξ), whose elements are given in appendix
A and can be computed numerically.

Under standard regularity conditions when n→∞, the distribution of θ̂ can be approx-
imated by a multivariate normal Np(0, J(θ̂)−1) distribution to obtain confidence intervals

for the parameters. Here, J(θ̂) is the total observed information matrix evaluated at θ̂. The
method of the re-sampling bootstrap can be used for correcting the biases of the MLEs of
the model parameters. Good interval estimates may also be obtained using the bootstrap
percentile method. Improved MLEs can be obtained for the new family using second-order
bias corrections. However, these corrected estimates depend on cumulants of log-likelihood
derivatives and will be addressed in future research.

7. Applications

In this section, we provide applications to three real data sets to illustrate the importance
of the OEHL-W and OEHL-Ga distributions presented in Section 2. The goodness-of-fit
statistics for these distributions and other competitive distributions are compared and
the MLEs of their parameters are provided. In order to compare the fitted distributions,
we consider goodness-of-fit measures including −̂̀, Anderson-Darling statistic (A∗) and

Cramér-von Mises statistic (W ∗), where ̂̀denotes the maximized log-likelihood, Generally,
the smaller these statistics are, the better the fit.

7.1 Relief times of twenty patients

The first real data set is taken from Gross and Clark (1975, p.105), which gives the re-
lief times of 20 patients receiving an analgesic. The data are as follows: 1.1, 1.4, 1.3, 1.7,
1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2. We compare the fits
of the OEHL-W distribution with other competitive distributions, namely: the Weibull
(W), odd log-logistic Weibull (OLL-W), generalized odd log-logistic Weibull (GOLL-W),



Chilean Journal of Statistics 85

Kumaraswamy Weibull (Kum-W), exponentiated generalized Weibull (EG-W) and expo-
nentiated half-logistic Weibull (EHL-W) distributions. The MLEs of the model parameters,

their corresponding standard errors (in parentheses) and the values of −̂̀, A∗ and W ∗ are
given in Table 1. Table 1 compares the fits of the OEHL-W distribution with the EHL-W,
EG-W, Kum-W, GOLL-W, OLL-W and W distributions. The results in Table 1 show that
the OEHL-W distribution has the lowest values for the −̂̀, A∗ and W ∗ statistics among
the fitted models. So, the OEHL-W distribution could be chosen as the best model.

Table 1. MLEs, their standard errors and goodness-of-fit statistics for the relief times data.

Model α λ a b −̂̀ A∗ W ∗

W 2.787 2.130 20.586 1.092 0.185

(0.427) (0.182)

OLL-W 47.157 0.09 103 16.525 0.318 0.053

(19.915) (0.034) (159.847)

GOLL-W 528.735 1.483 1.691 0.58 16.479 0.310 0.051

(0.32) (0.003) (0.0008) (0.368)

Kum-W 1.047 0.146 2.422 0.93 20.477 0.994 0.168

(0.565) (0.034) (0.002) (0.002)

EG-W 0.19 4.442 1.566 0.413 17.486 0.609 0.102

(0.041) (1.769) (0.002) (0.002)

EHL-W 4.857 0.213 1.304 0.261 17.113 0.541 0.091

(1.986) (0.038) (0.002) (0.002)

OEHL-W 4.452·106 549.547 0.242 3.651·106 15.414 0.165 0.029

(4.750) (0.121) (0.0009) (5.295)
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Figure 7. (a) Estimated densities of the best four models and (b) fitted functions of the OEHL-W model for
strengths of glass fibers data set.

7.2 Time to failure (103h) of turbocharger

The second data set (n = 40) below is from Xu et al. (2003) and it represents the time to
failure (103h) of turbocharger of one type of engine. The data are: 1.6, 3.5, 4.8, 5.4, 6.0,
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6.5, 7.0, 7.3, 7.7, 8.0, 8.4, 2.0, 3.9, 5.0, 5.6, 6.1, 6.5, 7.1, 7.3, 7.8, 8.1, 8.4, 2.6, 4.5, 5.1, 5.8,
6.3, 6.7, 7.3, 7.7, 7.9, 8.3, 8.5, 3.0, 4.6, 5.3, 6.0, 8.7, 8.8, 9.0. For these data, we compare
the fits of the OEHL-Ga distribution with the gamma (Ga), odd log-logistic gamma (OLL-
Ga), generalized odd log-logistic gamma (GOLL-Ga), Kumaraswamy gamma (Kum-Ga),
exponentiated generalized gamma (EG-Ga) and exponentiated half-logistic gamma (EHL-
Ga) distributions.

Table 2 lists the MLEs of the model parameters, their corresponding standard errors
(in parentheses) and the values of −̂̀, A∗ and W ∗. Table 2 compares the fits of the
OEHL-Ga distribution with the EHL-Ga, EG-Ga, Kum-Ga, GOLL-Ga, OLL-Ga and Ga
distributions. The OEHL-Ga distribution has the lowest values for goodness-of-fit statistics
among all fitted models. So, the OEHL-Ga distribution can be chosen as the best model.

Table 2. MLEs, their standard errors and goodness-of-fit statistics for time to failure data.

Model α λ a b −̂̀ A∗ W ∗

Ga 7.718 1.234 87.410 1.361 0.205

(1.689) (0.279)

OLL-Ga 3.114 1.271 0.153 86.639 1.119 0.165

(2.942) (1.888) (0.298)

GOLL-Ga 0.3007 0.037 589.539 76.756 80.479 0.369 0.055

(0.139) (0.024) (201.293) (25.720)

Kum-Ga 0.735 42.666 6.173 0.245 83.721 0.77 0.107

(1.104) (51.630) (9.102) (0.301)

EG-Ga 38.098 0.16 27.473 2.077 80.192 0.384 0.049

(0.236) (0.025) (0.002) (0.003)

EHL-Ga 0.157 39.734 28.772 2.319 79.336 0.269 0.033

(0.026) (14.270) (0.002) (0.002)

OEHL-Ga 0.345 0.054 14.136 2.621 78.126 0.139 0.023

(0.189) (0.095) (11.466) (1.819)
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Figure 8. (a) Estimated densities of the best four models and (b) fitted functions of the OEHL-Ga model for time
to failure (103h) of turbocharger data set.
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7.3 Strengths of 1.5 cm glass fibers

The third data set (n = 63) consists of 63 observations of the strengths of 1.5 cm
glass fibers, originally obtained by workers at the UK National Physical Laboratory.
The data are: 0.55, 0.74, 0.77, 0.81, 0.8,4 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28,
1.29, 1.3, 1.36, 1.39, 1.42, 1.48, 1.48, 1.49, 1.49, 1.5, 1.5, 1.51, 1.52, 1.53, 1.54, 1.55,
1.55, 1.58, 1.59, 1.6, 1.61, 1.61, 1.61, 1.61, 1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67,
1.68, 1.68, 1.69, 1.7, 1.7, 1.73, 1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2, 2.01, 2.24.

Table 3 lists the MLEs of the model parameters, and corresponding standard errors (in

parentheses) with estimated −̂̀, A∗ and W ∗ statistics. Based on the figures in Table 3,
OEHL-Ga distribution provides the best fit among others.

Table 3. MLEs, their standard errors and goodness-of-fit statistics for strengths of 1.5 cm glass fibers

Models α λ a b A? W ? −̂̀
Ga 17.437 11.572 3.117 0.568 23.952

(3.078) (2.072)
OLL-Ga 5.605 1.087 0.509 2.336 0.423 20.421

(4.794) (1.452) (0.925)
GOLL-Ga 3.616 0.293 6.911 2.464 2.258 0.409 19.894

(2.171) (0.117) (0.935) (1.725)
Kum-Ga 1.111 8.471 9.402 3.852 2.173 0.396 18.999

(0.537) (6.974) (4.758) (2.118)
EG-Ga 43.418 0.429 18.134 5.959 1.339 0.243 15.368

(12.492) (0.235) (12.454) (6.130)
EHL-Ga 0.797 15.302 10.527 3.926 1.390 0.254 15.238

(0.342) (16.298) (5.181) (2.813)
OEHL-Ga 0.618 35.427 11.606 3.703 1.142 0.207 14.423

(0.253) (12.088) (4.659) (1.959)
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Figure 9. (a) Estimated densities of the best four models and (b) fitted functions of the OEHL-Ga model for
strengths of glass fibers data set.

Moreover, Table 4 shows the Akaike Information Criteria (AIC) for all fitted models
and for three data sets. Table 4 reveals that the OEHL-G family provides better fits for
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these three data sets than other all competitive models. It is clear from Tables 1, 2, 3
and 4 that the OEHL-W and OEHL-Ga distributions provide the best fits among others.
The histograms of the fitted distributions for the OEHL-W and OEHL-Ga models are
displayed in Figures 7(a), 8(a) and 9(a), respectively. Figures 7(b), 8(b) and 9(b) display
the fitted pdf, estimated hrf, fitted survival functions and probability-probability (P-P)
plots for the OEHL-W and OEHL-Ga models, respectively. It is evident from these plots
that the OEHL-G distributions provide superior fit to the three data sets.

Table 4. AIC values of fitted models for all used data sets.

First data set Second data set Third data set
Models AIC Models AIC Models AIC

W 45.172 Ga 178.820 Ga 51.903
OLL-W 39.050 OLL-Ga 179.278 OLL-Ga 46.843

GOLL-W 40.958 GOLL-Ga 168.958 GOLL-Ga 47.788
Kum-W 48.954 Kum-Ga 175.442 Kum-Ga 45.998
EG-W 42.972 EG-Ga 168.384 EG-Ga 38.736

EHL-W 42.226 EHL-Ga 166.672 EHL-Ga 38.476
OEHL-W 38.828 OEHL-Ga 164.252 OEHL-Ga 36.846

8. Simulation study

In this section, we evaluate the performance of the maximum likelihood method for esti-
mating the OEHL-N parameters using a Monte Carlo simulation study with 10, 000 repli-
cations. We calculate biases, the mean square errors (MSEs) of the parameter estimates,
estimated average lengths (ALs) and coverage probabilities (CPs) using the R package.
The MSEs, ALs and CPs can be calculated by using following equations:

B̂iasε(n) =
1

N

N∑
i=1

(ε̂i − ε),

M̂SEε(n) =
1

N

N∑
i=1

(ε̂i − ε)2,

CPε(n) =
1

N

N∑
i=1

I(ε̂i − 1.95996sε̂i , ε̂i + 1.95996sε̂i),

ALε(n) =
3.919928

N

N∑
i=1

sε̂i .

for ε = α, λ, µ, σ.
We generate N = 1, 000 samples of sizes n = 50, 55, . . . , 1000 from the OEHL-N distri-

bution with α = λ = 0.5 and µ = σ = 2. The numerical results for the above measures
are shown in the plots of Figure 9. It is noted, from Figure 9, that the estimated biases
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decrease when the sample size n increases. Further, the estimated MSEs decay toward zero
as n increases. This fact reveals the consistency property of the MLEs. The CPs are near
to 0.95 and approach to the nominal value when the sample size increases. Moreover, if
the sample size increases, the ALs decrease in each case.
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Figure 10. Estimated CPs, biases, MSEs and ALs of the selected parameter vector.

9. Conclusions

We proposed a new odd exponentiated half-logistic-G (OEHL-G) family of distributions
with two extra shape parameters. Many well-known distributions emerge as special cases
of the OEHL-G family. The mathematical properties of the new family including explicit
expansions for the ordinary and incomplete moments, quantile and generating functions,
entropies, order statistics and probability weighted moments have been provided. The
model parameters have been estimated by the maximum likelihood estimation method. It
has been shown, by means of two real data sets, that special cases of the OEHL-G family
can provide better fits than other competitive models generated using well-known families.
A graphical simulation to assess the performance of the maximum likelihood estimators is
provided. We hope that the OEHL-G family may be extensively used in statistics.
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Appendix A.

Theorem A.1 Let (Ω,F ,P) be a given probability space and let H = [a, b] be an
interval for some d < b (a = −∞, b =∞ might as well be allowed) . Let X : Ω→ H be
a continuous random variable with the distribution function F and let q1 and q2 be two
real functions defined on H such that

E [q2 (X) | X ≥ x] = E [q1 (X) | X ≥ x] η (x) , x ∈ H,

is defined with some real function η. Assume that q1, q2 ∈ C1 (H), η ∈ C2 (H) and F
is twice continuously differentiable and strictly monotone function on the set H. Finally,
assume that the equation ηq1 = q2 has no real solution in the interior of H. Then F is
uniquely determined by the functions q1, q2 and η , particularly

F (x) =

∫ x

a
C

∣∣∣∣ η′ (u)

η (u) q1 (u)− q2 (u)

∣∣∣∣ exp (−s (u)) du,

where the function s is a solution of the differential equation s′ = η′ q1
ηq1−q2 and C is the

normalization constant, such that
∫
H dF = 1.
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