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Abstract

In this paper, we proposed a regression model in the form location-scale based on

the Poisson-Weibull distribution. This distribution arises on the competitive risk sce-

nario. The new regression model was proposed for modeling data which has a increas-

ing, decreasing and unimodal failure rate, and presented as particular cases the new

exponential-Poisson regression model and the Weibull regression model. Assuming cen-

sored data, we considered the maximum likelihood approach for parameters estimation.

For different parameter values, sample sizes and censoring percentages, various simula-

tion studies were performed to study the means, bias relative and mean square error

of the maximum likelihood estimative, and to compare the performance of the Poisson-

Weibull regression model and their particular cases. The selection criteria AIC and

likelihood ratio test were used for selection of regression model. Besides, we used the

sensitivity analysis to detect influential or outlying observations and residual analy-

sis was used to check assumptions in the model. The relevance of the approach was

illustrated with a data set.

Keywords: Poisson-Weibull Distribution · Censored Data · Regression Model

· Residual Analysis · Sensitivity Analysis.

1. Introduction

The Weibull distribution has been widely used for analysis of survival data in medical and

engineering applications. However, the Weibull distribution does not provide a reasonable

parametric fit for phenomenon modeling with non-monotone failure rates, such as the

bathtub-shaped and unimodal failure rates, which are common in reliability and biological

studies. In the last decade, new classes of models have been proposed for data modeling

of this kind, based on extended forms of the Weibull distribution.
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Besides, in many applications it is not possible to observe the exact value of survival

time, but it can only be observed the minimum or maximum value of this time. This

occurs, for instance, when the interest is to observe the lifetime of a system in series or

in parallel. In this case, the lifetime duration depends on a set of components. On the

other hand, in a context of competing risks, there is no information about which the risk

was responsible for the component failure and only the minimum lifetime value among

all risks is observed. In recent years, several authors proposed probability distributions

which properly accommodate survival data in presence of latent competing risks. For

example, Adamidis and Loukas (1998) that propose a compounding distribution, denoted

by exponential geometric (EG) distribution; Kus (2007) proposed the exponential-Poisson

distribution (EP ); and Louzada et al. (2011b) proposed the complementary exponential

geometric distribution. There are others works, such as Tahmasbi and Rezaei (2008), who

introduced the logarithmic exponential distributions, and Chahkandi and Ganjali (2009),

introduced the exponential power series (EPS), which contains the distributions cited

(EG, EP , and logarithmic exponential) as special cases.

Additionally, lifetimes are affected by variables, which are referred as explanatory vari-

ables or covariates. In industry, for example, the survival time of a given device can be

influenced by the voltage level at which the equipment is subjected. In this case, an ap-

proach based on a regression model can be used. There are two classes of regression mod-

els proposed in the literature: parametric and semiparametric models. More details in

Cox and Oakes (1984), Kalbfleisch and Prentice (2002), Lawless (2003), among others. In

this paper, we shall be concerned only with parametric forms. So, a location-scale regres-

sion model based on the Poisson-Weibull distribution (Louzada et al., 2011a), denoted as

Poisson-Weibull regression model, is proposed as an alternative for data modeling with

a increasing, decreasing and unimodal failure rate function. This distribution arises on a

latent complementary risk problem base and is obtained by compounding of the Weibull

and Poisson distributions. Some regression models have been proposed with this objec-

tive, among them: log-Burr XII regression model (Silva et al., 2008); log-extended Weibull

regression model (Silva et al., 2009); Kumaraswamy-logistic regression model (Santana

et al., 2012); log-beta Weibull regression model (Kattan et al., 2013); log-Kumaraswamy

generalized gamma regression model (Pascoa et al., 2013); log-McDonald Weibull regres-

sion model (Cordeiro et al., 2014); and extended Burr XII regression model (Lanjoni et al.,

2016).

The new regression model, due to its flexibility in accommodating various forms of the

risk function, seems to be an important model that can be used in a variety of problems

in the survival data modeling. In addition to that, the Poisson-Weibull regression model is

also suitable for testing goodness-of-fit of some special sub-models, such as the exponential-

Poisson and Weibull regression models. We demonstrate by means of an application to real

data that the Poisson-Weibull regression model can produce better fits than some known

models. Hence, it represents a good alternative for lifetime data analysis, and we hope this

generalization may attract wider applications in survival analysis. The inferential part of

this model is carried out using the asymptotic distribution of the maximum likelihood

estimators. Considering that the Poisson-Weibull model is embedded in the exponential-
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Poisson and Weibull regression models, the likelihood ratio test can be used to discriminate

such models. Studies were conducted via Monte Carlo simulation in order to evaluate the

performance of the Poisson-Weibull regression model by means, bias relative and mean

squared error for the maximum likelihood estimates (MLEs) and the size and power of

the likelihood ratio test for model selection.

After modelling, it is important to check assumptions in the model and to conduct a

robustness study to detect influential or extreme observation that can cause distortions

to the results of the analysis. Numerous approaches have been proposed in the litera-

ture to detect influential or outlying observations. An efficient way to detect influential

observations, proposed by Cook (1986), is the local influence approach, where one again

investigates how the results of an analysis are changed under small perturbations in the

model, and where these perturbations can be specific interpretations. Using this general

method and also applying the method of Poon and Poon (1999), in this paper we develop

a local influence approach for Poisson-Weibull regression models with censored data.

In survival analysis, there are various papers exploring new distributions, such as the

Ortega et al. (2003) that considered the problem of assessing local influence in generalized

log-gamma regression models with censored observations, Silva et al. (2008) that considered

the problem of assessing local influence in log-Burr regression models with censored data,

Ortega et al. (2010) who considered local influence for the generalized log-gamma regression

models with cure fraction, Hashimoto et al. (2012) that discussed local influence for the

log-Burr XII regression model for grouped survival data, Hashimoto et al. (2013) who

investigated local influence in the new Neyman type A beta Weibull regression model.

Recently Fachini et al. (2014) who considered local influence for the bivariate regression

model with cure fraction and Ortega et al. (2014) derive the appropriate matrices for

assessing local influence on the parameter estimates under different perturbation schemes

for the odd Weibull regression model.

Another important step after the formulation of the model is the residuals analysis.

Starting from this analysis, we can make evaluations if the proposed model is appropriate,

to identify outliers and to observe whether there are differences in the assumptions made

in the proposed model. In the survival analysis various residuals were proposed (see, for

example, Collet, 1994). Additionally, the examination of Cox-Snell residual (Cox and Snell,

1968) was used to check assumptions in the model.

This paper was organized as follows. In the sections 2 and 3 we presented the Poisson-

Weibull distribution and the Poisson-Weibull regression model. In the sections 4 and 5 we

presented the inferential procedure based on maximum likelihood approach, the selection

criteria AIC, BIC and the likelihood ratio test to select the best model. In the section 6 we

presented the results of a simulation study conducted to assess the performance of the new

regression model. In the section 7 we used several diagnostic measures considering three

perturbation schemes in Poisson-Weibull regression model with censored observations. We

also used the Cox-Snell residual to verify the goodness of fit in section 8. Finally, in section

9 the data set was analyzed and the final considerations appear in section 10.
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2. The Poisson-Weibull Distribution

The Poisson-Weibull (PW ) distribution inserted in the latent competitive risk scenario,

where there is no information about which factor was responsible for the component failure,

only the minimum lifetime value among all risks was observed. The PW density function

(Louzada et al., 2011a) is given by,

f(t) =
α exp {α exp [− (βt)γ ]− (βt)γ}βγtγ−1γ

exp(α)− 1
, (1)

where t > 0, β > 0 is scale parameter, α > 0 and γ > 0 are shape parameters.

The survival and hazard functions corresponding to (1) are given by, respectively,

S(t) =
exp {α exp [− (βt)γ ]} − 1

exp (α)− 1
,

and

h(t) =
α exp {α exp [− (βt)γ ]− (βt)γ}βγtγ−1γ

exp {α exp [− (βt)γ ]} − 1
. (2)

Figure 1 illustrates some of the possible shapes of the hazard function (2) for selected

parameter values. We noted from this figure that the hazard function is quite flexible and

can accommodate various forms, such as increasing, decreasing and unimodal. Applications

of the PW distribution in survival studies were investigated by Louzada et al. (2011a).
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Figure 1. Plots of the failure rate function for Poisson-Weibull distribution.

Now, we define the random variable Y = log(T ), log Poisson-Weibull distribution, pa-

rameterized in terms of γ = 1/σ and β = exp(−µ) by the density function

f(y) =
α

(exp(α)− 1)σ
exp

{
α exp

[
−
(

exp

(
y − µ
σ

))]
+

(
y − µ
σ

)}
×

× exp

{
−
[
exp

(
y − µ
σ

)]}
,

(3)

where −∞ < y < ∞, α > 0 is shape parameter, σ > 0 is scale parameter and −∞ <

µ < ∞ is location parameter. In addition, it can be viewed as a location-scale model for
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Y = log(T ). Plots of the density function (3) for some parameter values are given in Figure

2.
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Figure 2. Plot of the density function for log Poisson-Weibull distribution.

The survival function of Y is given by

S(y) =
exp

{
α exp

[
−
(
exp

(y−µ
σ

))]}
− 1

exp(α)− 1
.

3. The Poisson-Weibull Regression Model

In many pratical applications, lifetimes are affected by explanatory variables such as

voltage, temperature and many others. The explanatory variable vector is denoted by

x = (x1, x2, ..., xp)
T which is related to response Y = log(T ) through a regression model.

The location-scale regression model is given by

Y = log(T ) = µ+ σZ, (4)

where Y follows the distribution in (3). Hence, Z has the density function

f(z) =
α exp {z + α exp [− exp(z)] + exp [− exp (z)]}

exp(α)− 1
, −∞ < z <∞. (5)

Thus, the regression model based on the PW distribution (1) relating to the response

Y and the covariate vector x, can be expressed as

yi = xTi β + σzi, i = 1, . . . , n, (6)

where β = (β0, β1, . . . , βp)
T and σ > 0 are unknown parameters, xTi = (xi0, xi1, . . . , xip)

is the explanatory vector and the random error zi follows the density function (5). Hence,

the linear predictor vector µ = (µ1, µ2, . . . , µn)T of the PW regression model is simply

µ = Xβ, where X = (x0,x1,x2, . . . ,xn)T is a known model matrix.

In this case, the survival function of Y |x is given by

S(y|x) =
exp{α exp[− exp((y − xTi β)/σ))]} − 1

exp(α)− 1
. (7)
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The Poisson-Weibull regression model (6) opens new possibilities for several types of

fitted data. It is observed that when α→ 0 in equation (7) the Poisson-Weibull regression

model is reduced to the Weibull regression model. For σ = 1 in equation (7) the Poisson-

Weibull regression model is reduced to new exponential-Poisson regression model.

For the interpretation of the estimated coefficients, a possible proposal is based on the

ratio of median times (Hosmer and Lemeshow, 1999). Therefore, when the covariable is

binary (1 or 0), and considering the ratio of median times with x = 1 in the numerator, if

β̂ is negative (positive), it implies that the individuals with x = 1 decrease (increase) the

median survival time in exp(β̂)×100% as compared to those individuals in the group with

x = 0 by fixing the other covariables. This interpretation can be extended to continuous

or categorical covariables.

4. Estimation by maximum likelihood

Given a random sample of size n composed by (y1,x1), (y2,x2), . . . , (yn,xn), where yi is

the logarithm of the survival time that has distribution (3), and xi is the covariate vector

associated with the ith individual. The log-likelihood function of the parameter vector

θ = (α, σ,βT )T can be written as

l(θ) ∝
n∑
i=1

δi ln(α)−
n∑
i=1

δi exp

(
yi − xTi β

σ

)
+

n∑
i=1

δi

[
α exp

{
− exp

(
yi − xTi β

σ

)}
+
yi − xTi β

σ

]

−
n∑
i=1

δi ln [(exp(α)− 1)σ]−
n∑
i=1

(1− δi) ln

[
exp

{
α exp

(
− exp

(
yi − xTi β

σ

))}
− 1

]

−
n∑
i=1

(1− δi) ln(exp(α)− 1), (8)

where δi is equal to 0 or 1, respectively, if the data is censured or observed.

Maximum likelihood estimates (MLEs) for parameter vector θ = (α, σ,βT )T can be

obtained by maximizing the log-likelihood function (8) solving the system of equations

given by

U(θ) =
∂l(θ)

∂θ
= 0.

The components of the score vector U(θ) are given by

∂l(θ)

∂α
=

1

α

n∑
i=1

δi +

n∑
i=1

δi exp {− exp (ui)} −
n∑
i=1

δi
exp(α)σ

(exp(α)− 1)σ

−
n∑
i=1

(1− δi)
exp [α exp {− exp (ui)}] exp {− exp (ui)}

exp [α exp {− exp (ui)}]− 1
−

n∑
i=1

(1− δi)
exp(α)

exp(α)− 1
,



Chilean Journal of Statistics 31

∂l(θ)

∂σ
= −

n∑
i=1

(δi) exp(ui) (−vi) +

n∑
i=1

(δi) [α exp {− exp(ui)} − exp(ui) (−vi)− vi]

−
n∑
i=1

(δi)
exp(α)− 1

(exp(α)− 1)σ
+

exp [α exp (ui)]α exp(ui)(−vi)
exp [α exp (ui)]− 1

,

∂l(θ)

∂βj
= −

n∑
i=1

(δi) exp(ui)
(
−xij
σ

)
+

n∑
i=1

(δi)
[
α exp {− exp (ui)} exp(ui)

(
−xij
σ

)(
−xij
σ

)]

−
n∑
i=1

(1− δi)
exp [α exp {− exp (ui)}]α exp {− exp (ui)} − exp (ui)

(
−xij

σ

)
exp [α exp {− exp (ui)}]− 1

,

where j = 0, 1, . . . , p, ui = (yi − xTi β)/σ and vi = (yi − xTi β)/σ2.

Since there is no closed analytical way to find these estimators, we can use numerical

methods for solving the system of equations. Thus, estimates of these parameters were

obtained by numerical methods, using an iterative process. We used the command optim

in software R through of the method BFGS. In the case where the sample size is large

and under certain conditions regularly to the likelihood function, confidence intervals and

hypothesis testing for the parameters can be obtained using the fact that the maximum

likelihood estimators, θ̂, have asymptotic multivariate normal distribution with mean θ

and variance and covariance matrix Σ, estimated by I−1(θ) = −E[L̈(θ)], where L̈(θ) =

∂2l(θ)/∂θ∂θT , this is,
√
n(θ̂ − θ) ∼ Np(0, I

−1(θ)). Whereas the calculation of the I(θ)

is not possible by the presence of censored observations, alternatively we can use the

information matrix observed, -L̈(θ), assessed in θ = θ̂, which is a consistent estimator for

Σ (Mudholkar et al., 1995).

5. Model Selection

For the selection of the model that best fits the data, it was used the AIC model selection

criteria (Akaike’s information criterion) and BIC (Bayesian information criterion), and

also the likelihood ratio test. The AIC and BIC are defined by

AIC = −2 log(L̂) + 2p; BIC = −2 log(L̂) + 2 log(n),

where L̂ is the maximized value of the likelihood function of the model, p is the number

of parameters of the model and n is the size sample. The preferred model is the one with

the smallest value on each criterion.

When testing embbed models, the likelihood ratio test (LR) can be used to discriminate

such models. We can compute the maximum values of the unrestricted and restricted log-

likelihoods to construct the LR statistics (ωn) for testing some sub-models. This statistic

converge to a chi-squared distribution with degrees of freedom equal to the difference

between the numbers of parameters in the two models. However, for comparison of non-

embbed survival model, under certain conditions of regularity, the distribution of the
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statistical likelihood ratio under H0 is a mixture with a weights (0.5 and 0.5) of distribution

χ2 with a degree of freedom, with a discrete distribution and with mass concentrated in

the value 0, this is, P (ωn ≤ w) = 1
2 + 1

2P (χ2
1 ≤ w). More details in Maller and Zhou (1995)

and Cancho et al. (2011).

6. Simulation Study

To examine the performance of Poisson-Weibull regression model compared with the

Weibull and exponential-Poisson regression models and assess the performance of MLEs

for the parameters of the new model, a simulation study was done for different values of

n with 0%, 10% and 30% censored observations in each sample, generating 1000 random

samples simulated with the support of the Software R.

For the analysis of Poisson-Weibull regression model with their particular cases, a study

was done for different values of n (60, 130, 200, 300, 400 and 500) in which the survival time

of T follow PW distribution with density function given by (1), where they were generated

from the inverse transformation method considering the following reparametrization γ =

1/σ and β = exp(−µ). The time of censure C is a random variable exponential with

parameter λ = 0.5. Besides, the logarithm of the survival time (Y ) and of censure in the

simulation were considered through yi = min(log(ti), log(ci)).

The parameter values were fixed in α = 3.5, and 5; σ = 0.80 and 0.85 and for each

analyzed sample, Poisson-Weibull regression model given by (4), exponential-Poisson and

Weibull regression models were adjusted with µi = β0 + β1xi where xi from the uniform

distribution on the interval (0, 1) with β0 and β1 fixed. Below we describe the process of

this simulation:

1. Generate ui ∼ U(0, 1);

2. Determine ti = F−1(ui) = [log(α)−log(log(exp(α)(1−ui)+ui))]σ
exp(−µi) ;

3. Generate variable of censure ci; ci ∼ exp(0.5);

4. Find yi = min(log(ti), log(ci));

5. If log(ti) < log(ci), then δi = 1, otherwise, δi = 0, to i = 1, . . . , n.

For each combination of n, parameter values and censoring percentages, 10000 samples

were generated each one being adjusted under the Poisson-Weibull regression model (6)

with µi = β0 + β1xi. For each fit, was done the likelihood-ratio test for the hypothesis

H0 : σ = 1 versus H1 : σ 6= 1, which is equivalent to compare the Poisson-Weibull

regression model with the exponential-Poisson regression model. All the statistics of the

tests were compared with the critical value χ2
1 at a significance level of 5%. The simulations

were performed for different n and different parameters values to get the simulated sizes and

powers for test. Also the proportion of times that the AIC and BIC selected the Poisson-

Weibull regression model was calculated. It is also realized the procedure for the analysis

of the Poisson-Weibull and Weibull regression models, but in this case the hypotheses for

test were H0 : α→ 0 v.s H1 : α > 0. The percentile of 95o of this distribution represented

by w0.95, is such that 1
2 + 1

2P (χ2
1 ≤ w0.95) = 0.95, so that w0.95 = 2.705543. Therefore, it

rejects H0 at a significance level of 5% to ωn > 2.705543.
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Tables 1 and 2 show the proportion of times that the AIC and BIC of Poisson-Weibull

regression model was less than the exponential-Poisson and Weibull regression models.

Furthermore, it was calculated the power of the test with 5% of the significance for different

samples sizes, percentages of the censored observations and different parameter values of

the new regression model. Through the Tables, it was noted that the AIC proportion of

the Poisson-Weibull regression model was lower than the exponential-Poisson regression

model in values between 35.01% and 99.98%. Moreover, the higher proportions of the AIC

was in the scenario in which the parameters were α = 5 and σ = 0.80, with the minimum

proportion of the 58.36%. On the other hand, lower values of the AIC occurred in the

situation that the size of n was smaller than 130, independent of the scenarios. However,

in relation to BIC, the proportion varied between 0.1% and 71.76%. This variability was

due to the change the value of σ (0.80 to 0.85). In situation that σ was equal to 0.85, the

proportion of the BIC reached a maximum of the 25.08%. For n > 200 the proportion

increased around of the 5%, in addition, the highest BIC proportions were in the scenario

in which the parameters were α = 5 and σ = 0.80, in particular, when n was increased.

It was noted as well that the AIC selection criteria was better than the BIC for Poisson-

Weibull regression model independent of the size of n and % censored observations.

In relation to the power of the test, the values varied between 14.55% and 98.81%.

However, in the situation that σ was 0.80 and α = 5.0, the power of the minimum test

was 32.25%. In most cases, the power was greater in situations where σ was 0.80. Lower

values of AIC, BIC and the power of the test occurred in the situation that the size of n

was smaller than 130, independent of the scenarios.

Analyzing the Poisson-Weibull and Weibull regression models, it was noted that the AIC

proportion of the Poisson-Weibull regression model was lower than the Weibull regression

model in values between 50.32% and 95.22%. Furthermore, the values of the proportions

were similar regardless of the σ.

But in relation to BIC, the proportion varied between 12.06% and 69.21%. For n > 200,

the proportion increased around 45%, reducing its variability. The highest proportions of

BIC occurred when the parameters were α = 5 and σ = 0.80, in particular when n

assumed values 400 and 500. We also noted that the AIC selection criteria was better

than the BIC regardless of the size of n and % censored observations. In relation to the

power of the test, regardless of the values of the parameters, the minimum value was

51.11%, which was a good power. Smaller proportions of AIC, BIC and the power of the

test occurred in the situation that the size of the n was smaller than 130. For all sample

sizes, the convergence rate was calculated for all scenarios, and it was found that the rate

was 100% in all cases.

Also in this paper, a simulation study was done to calculate the size of the test for

different values of n with 0%, 10% and 30% censored observations in each sample generat-

ing 10000 random samples simulated of Poisson-Weibull regression model, compared with

exponential-Poisson and Weibull regression models. In relation to the Poisson-Weibull and

exponential Poisson regression models, the test sizes were close to 5%, especially in situa-

tions that we increased the sample size and/or the decreased % of censored observations.

However, for the Poisson-Weibull and Weibull regression models the test sizes were around
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5% only in situations that the observations were not censored, because when we included

censored observations, the test sizes had increased considerably.

Table 1. Simulated AIC, BIC and size and powers of the likelihood-ratio test for Poisson-Weibull, exponential-

Poisson and Weibull regression models with σ = 0.80, α = 3.5 and α = 5.
exponential-Poisson model Weibull model

σ α n % of censorship AIC BIC Power of the test AIC BIC Power of the test

0% 0.5931 0.0280 0.3279 0.6919 0.3190 0.5111

60 10% 0.5520 0.0271 0.2989 0.6800 0.2343 0.6423

30% 0.5357 0.2006 0.2875 0.5032 0.3866 0.5899

0% 0.7981 0.0551 0.5981 0.5569 0.4831 0.7232

130 10% 0.7832 0.0349 0.5705 0.7645 0.4302 0.7398

30% 0.7823 0.0381 0.5771 0.6248 0.4769 0.6144

0% 0.9172 0.1231 0.7935 0.8438 0.0621 0.7830

200 10% 0.8918 0.1111 0.7489 0.7872 0.5288 0.7715

30% 0.8650 0.0982 0.7125 0.6319 0.5242 0.6227

0% 0.9789 0.2999 0.8800 0.9210 0.4701 0.8748

300 10% 0.9597 0.2010 0.8597 0.7991 0.5340 0.7842

3.5 30% 0.9261 0.2001 0.8611 0.5889 0.5261 0.5843

0% 0.9905 0.4169 0.9333 0.9516 0.6466 0.9304

400 10% 0.9722 0.3998 0.9171 0.8085 0.6619 0.8004

30% 0.9349 0.3061 0.9099 0.6441 0.5827 0.6404

0% 0.9862 0.5695 0.9722 0.9716 0.6921 0.9594

500 10% 0.9680 0.5641 0.9822 0.8102 0.6867 0.8025

30% 0.9388 0.4908 0.9668 0.6348 0.5860 0.6348

0% 0.6203 0.0285 0.3899 0.6356 0.3015 0.5645

0.80 60 10% 0.6031 0.0232 0.3656 0.6481 0.2230 0.6043

30% 0.5836 0.0111 0.3225 0.5960 0.3999 0.5745

0% 0.8401 0.0998 0.6359 0.8401 0.1153 0.7862

130 10% 0.8229 0.0579 0.6313 0.7242 0.4110 0.6985

30% 0.7931 0.0628 0.5538 0.5834 0.4503 0.5738

0% 0.9396 0.1956 0.8039 0.8978 0.3010 0.8704

5.0 200 10% 0.9069 0.1631 0.7801 0.7491 0.5121 0.7343

30% 0.8980 0.2767 0.7801 0.5915 0.4960 0.5853

0% 0.9789 0.3771 0.9162 0.8932 0.5932 0.8767

300 10% 0.9691 0.3630 0.8883 0.7571 0.5543 0.7894

30% 0.9182 0.2868 0.8773 0.5762 0.5235 0.5759

0% 0.9821 0.5811 0.9713 0.9341 0.5881 0.9099

400 10% 0.9719 0.5780 0.9660 0.7901 0.6342 0.7655

30% 0.9658 0.6324 0.9856 0.5583 0.5240 0.5548

0% 0.9982 0.7176 0.9881 0.9522 0.5398 0.9109

500 10% 0.9901 0.7001 0.9866 0.7851 0.5058 0.9069

30% 0.9781 0.6734 0.9661 0.7991 0.5001 0.8899

Additionally, the mean, relative bias and MSE (Mean Square Error) of the maximum

likelihood estimative were also calculated for simulated samples in the same conditions

of the previous simulations. A simulation study was done for 60, 130, 200 and 300 with

0%, 10% and 30% censored observations in each sample. The censure time C is a random

variable exponential with parameter λ = 4. The parameter values were fixed in α = 3,

σ = 0.3 and 0.75, with µi = β0 +β1xi, where xi is the uniform distribution on the interval

(0, 1) with β0 and β1 fixed in 0.8 and 1.5, respectively. For each combination of parameter

values with the censoring percentages, 10000 samples were generated and were obtained

the maximum likelihood estimates of Poisson-Weibull regression model.

From the simulation results, shown in Tables 3 and 4, it was observed that the estimates

of the parameters of Poisson-Weibull regression model were close to the true value of the

parameters. In addition, the MSE increased as the censoring percentages increased. On

the other hand, the MSE decreased as the values of n increased. It was also observed that

in most cases the estimates and the MSE values of the model parameters were closer of the
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Table 2. Simulated AIC, BIC and size and powers of the likelihood-ratio test for Poisson-Weibull, exponential-

Poisson and Weibull regression models with σ = 0.85, α = 3.5 and α = 5.
exponential-Poisson model Weibull model

σ α n % of censorship AIC BIC Power of the test AIC BIC Power of the test

0% 0.3602 0.0051 0.1575 0.6532 0.1242 0.5843

60 10% 0.3501 0.0010 0.1455 0.6520 0.2730 0.6082

30% 0.3695 0.0073 0.1685 0.5740 0.3409 0.5569

0% 0.5493 0.1002 0.3079 0.7756 0.0801 0.7129

130 10% 0.5382 0.0093 0.2829 0.7433 0.4159 0.7186

30% 0.5071 0.0072 0.2432 0.6050 0.4604 0.5961

0% 0.6871 0.0128 0.4409 0.8251 0.1206 0.7615

200 10% 0.6693 0.0110 0.4224 0.7673 0.5267 0.7508

30% 0.6326 0.0051 0.3699 0.6076 0.5066 0.6004

0% 0.7953 0.0429 0.5867 0.9176 0.2426 0.8672

300 10% 0.8139 0.0314 0.5897 0.7785 0.6159 0.7726

3.5 30% 0.7514 0.0253 0.5255 0.5994 0.5339 0.5939

0% 0.8932 0.0772 0.7533 0.9529 0.2470 0.9300

400 10% 0.8806 0.0815 0.7151 0.7919 0.6434 0.7836

30% 0.8443 0.0661 0.6494 0.6305 0.5721 0.6266

0% 0.9330 0.1340 0.8000 0.9596 0.5081 0.9433

500 10% 0.9236 0.1239 0.8098 0.8092 0.6819 0.8114

30% 0.9209 0.0891 0.7516 0.6165 0.5711 0.6138

0% 0.3875 0.0109 0.1818 0.6212 0.1982 0.5476

0.85 60 10% 0.3896 0.0088 0.1813 0.6290 0.2500 0.5760

30% 0.4011 0.0037 0.1862 0.5108 0.3387 0.5244

0% 0.5949 0.0219 0.3260 0.7153 0.1662 0.6799

130 10% 0.5861 0.0138 0.3305 0.7003 0.4198 0.5679

30% 0.5687 0.0160 0.3244 0.5646 0.4662 0.6177

0% 0.7345 0.0351 0.4901 0.7912 0.1780 0.7730

5.0 200 10% 0.7313 0.0242 0.4773 0.7482 0.5198 0.7001

30% 0.6942 0.0018 0.4622 0.7222 0.4843 0.5578

0% 0.8624 0.0777 0.6794 0.8093 0.2822 0.5828

300 10% 0.8077 0.0647 0.6694 0.7113 0.5697 0.7032

30% 0.7617 0.0554 0.5864 0.5433 0.4778 0.5403

0% 0.9053 0.1881 0.8022 0.9315 0.3019 0.9064

400 10% 0.8921 0.1414 0.7137 0.7587 0.6328 0.7518

30% 0.8909 0.0925 0.6228 0.5819 0.5317 0.5792

0% 0.9278 0.2508 0.8268 0.8479 0.5519 0.8009

500 10% 0.9125 0.2175 0.8021 0.7521 0.5563 0.7439

30% 0.9078 0.1939 0.7909 0.5679 0.5581 0.5466

true value for the σ = 0.3, in comparison with σ = 0.75. Higher values of MSE occurred in

the situation that the size of n was smaller than 130. In relation to the relative bias, their

values remained close when was compared to the σ = 0.3, with σ = 0.75 considering all

scenarios. The greatest impact of the relative bias occurred with the parameter α, because

their values were higher in all combinations. In contrast, the lowest occurred with the

parameter β1. Also, higher values of the relative bias occurred in the situation that the

size of n was smaller than 130 independent of the combinations.

7. Sensitivity analysis

After fitting the model, it is important to check its assumptions and to conduct a robustness

study to detect influential or extreme observations that can cause distortions to the results

of the analysis. The first tool to perform sensitivity analysis is the global influence starting

from case deletion, see, Cook (1977). Case deletion is a common approach to study the

effect of dropping the ith case from the data set. Another approach was suggested by Cook

(1986), where instead of removing observations, weights are given to them. This is a local

influence approach. Local influence calculation can be carried out in the model (6).
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Table 3. Mean, Relative bias and MSE (Mean Square Error) of the estimates of the parameters of Poisson-Weibull

regression model with α = 3, σ = 0.3, β0 = 0.8 and β1 = 1.5.
0% 10% 30%

n Parameters Mean Bias(%) M.S.E Mean Bias(%) M.S.E Mean Bias(%) M.S.E

α 2.4832 -17.2266 15.7788 2.3331 -22.2300 14.8052 2.3357 -22.1433 23.8606

60 σ 0.3033 1.1000 0.0027 0.3031 1.0333 0.0026 0.3007 0.2333 0.0028

β0 0.7164 -10.4500 0.0470 0.7059 -11.7625 0.0477 0.6929 -13.3875 0.0549

β1 1.5016 0.1066 0.0297 1.4989 -0.0733 0.0323 1.4996 -0.0266 0.0410

α 2.6869 -10.4366 4.9587 2.6555 -11.4833 5.1674 2.5867 -15.2833 8.2129

130 σ 0.3050 1.6666 0.0018 0.3047 1.5666 0.0017 0.3039 1.3666 0.0021

β0 0.7522 -5.9750 0.0321 0.7489 -6.3875 0.0325 0.7372 -8.0750 0.0383

β1 1.5001 0.0066 0.0130 1.4994 -0.0400 0.0143 1.5003 0.1933 0.0186

α 2.7916 -3.8666 3.3285 2.7768 -7.4400 3.7947 2.7152 -9.4933 5.0734

200 σ 0.3049 1.8333 0.0008 0.3047 1.5666 0.0012 0.3045 1.5000 0.0013

β0 0.7666 -3.2625 0.0242 0.7644 -4.4500 0.0264 0.7558 -5.5250 0.0298

β1 1.5007 -0.1133 0.0085 1.5008 0.0533 0.0094 1.5002 0.0133 0.0117

α 2.9398 -2.0066 2.9598 2.9194 -2.6866 3.1422 2.8611 -4.6300 3.5927

300 σ 0.3043 1.4333 0.0006 0.3047 1.5666 0.0006 0.3048 1.6000 0.0006

β0 0.7818 -2.2750 0.0202 0.7803 -2.4625 0.0215 0.7730 -3.3750 0.0235

β1 1.5012 0.0800 0.0056 1.5001 0.0066 0.0060 1.4994 -0.0400 0.0079

Table 4. Mean, Relative bias and MSE (Mean Square Error) of the estimates of the parameters of Poisson-Weibull

regression model with α = 3, σ = 0.75, β0=0.8 and β1=1.5.
0% 10% 30%

n Parameters Mean Bias(%) M.S.E Mean Bias(%) M.S.E Mean Bias(%) M.S.E

α 2.3694 -21.0200 9.9438 2.3324 -22.2533 12.8394 2.3307 -22.3100 43.0302

60 σ 0.7590 1.2000 0.0127 0.7606 1.4133 0.0121 0.7573 0.9733 0.0145

β0 0.5805 -27.4375 0.2680 0.5655 -29.3125 0.3016 0.4985 -37.6875 0.4064

β1 1.4917 -0.5533 0.1892 1.4922 -0.5200 0.2029 1.4901 -0.6600 0.2428

α 2.7220 -9.2666 4.9356 2.6392 -12.0266 5.2657 2.4662 -17.7933 8.2289

130 σ 0.7613 1.5066 0.0103 0.7663 2.1733 0.0113 0.7580 1.0666 0.0114

β0 0.6880 -14.0000 0.1917 0.6648 -16.8875 0.2121 0.6133 -23.3375 0.2383

β1 1.4968 -0.2133 0.0860 1.5034 0.2266 0.0900 1.4938 -0.4133 0.1144

α 2.7860 -7.1333 4.7776 2.7554 -8.1533 3.4372 2.6462 -11.7933 7.0821

200 σ 0.7642 1.8933 0.0091 0.7646 1.9466 0.0060 0.7620 1.6000 0.0099

β0 0.7364 -7.9500 0.1576 0.7075 -11.5625 0.1659 0.6568 -17.9000 0.2069

β1 1.4992 -0.0533 0.0501 1.5008 0.0533 0.0058 1.5368 2.4533 0.0712

α 2.9730 -0.9000 2.8928 2.9501 -1.6633 2.9796 2.9001 -3.3300 3.9553

300 σ 0.7520 0.2666 0.0040 0.7608 1.4400 0.0021 0.7604 1.3866 0.0068

β0 0.7556 -5.5500 0.1478 0.7250 -9.375 0.1678 0.6911 -13.6125 0.1684

β1 1.5004 0.0266 0.0360 1.5056 0.3733 0.0376 1.5120 0.80000 0.0871

Consider a perturbation vector ω = (ω1, . . . , ωn)T varying in an open region Ω ⊂ Rn.

If likelihood displacement LD(ω) = 2{l(θ̂)− l(θ̂ω)} is used, where θ̂ω denotes the MLE

under the perturbed model, the normal curvature for θ at direction d, ‖ d ‖= 1, is given by

Cd(θ) = 2|dT∆T
[
L̈(θ)

]−1
∆d|. Here, ∆ is a k×n matrix that depends on the perturbation

scheme, and whose elements are given by ∆ji = ∂2l(θ|ω)/∂θj∂ωi, for i = 1, 2, . . . , n and

j = 1, 2, . . . , k, evaluated at θ̂ and ω0, where ω0 is the no perturbation vector.

We can calculate normal curvatures Cd(θ), Cd(β), Cd(σ) and Cd(α) to perform various

index plots, for instance, the index plot of dmax, the eigenvector corresponding to Cdmax ,

the largest eigenvalue of the matrix B = −∆T
[
L̈(θ)

]−1
∆ and the index plots of Cdi , called

the total local influence (see, for example, Lesaffre and Verbeke (1998)), where di denotes

an n × 1 vector of zeros with one at the ith position. Thus, the curvature at direction di

assumes the form Ci = 2|∆T
i

[
L̈(θ)

]−1
∆i|, where ∆T

i denotes the ith row of ∆.

There is some inconvenience when using the normal curvature to decide about the influ-

ence of the observations, since Cd(θ) may assume any value and it is not invariant under a

uniform change of scale. Based on the work of Poon and Poon (1999), using the following
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conformal normal curvature:

Bd(θ) =
Cd(θ)

trace
[(

∆T
[
L̈(θ)

]−1
∆
)T (

∆T
[
L̈(θ)

]−1
∆
)] ,

evaluated at θ̂ and ω0, whose computation is quite simple and also has the property that

0 ≤| Bd(θ) |≤ 1. This influence measure possesses an one-to-one relationship with the

normal curvature proposed by Cook (1986). So, we can also calculate conformal normal

curvatures to perform various index plots, for instance, the index plot of dmax, the eigen-

vector corresponding to Bdmax , the largest eigenvalue of the matrix

B =
∆T
[
L̈(θ)

]−1
∆

trace
[(

∆T
[
L̈(θ)

]−1
∆
)T (

∆T
[
L̈(θ)

]−1
∆
)] .

The conformal normal curvature gives reference values that allow one to evaluate the

magnitude of a certain curvature. In this case, the conformal normal curvature influence

BEi of the basic perturbation vector Ei is given by BEi =
∑n

i=1 µ̂ja
2
ji, where µj denotes

the absolute value of the jth normalized eigenvalue of the matrix B, aji denotes the ith

element of the normalized eigenvector corresponding to µj and µ̂j = µj/
√

(
∑n

k=1 µ
2
k).

Poon and Poon (1999) suggest using 2b as cut point of the aggregate contribution of all

the BEi , where b = trace(B)/[trace(BTB)](1/2). Then, those cases when BEi > 2b are

considered like potentially influential. For more details about this technique, see, Poon

and Poon (1999).

More generally, we can analyse the influence of basic perturbation vectors to all in-

fluential eigenvectors. We arrange the absolute values of the normalized eigenvalues by

µmax ≥ µ1 ≥ · · ·µk ≥ q/
√

(n) > µk+1 ≥ · · ·µn. The aggregate contribution of the jth

basic perturbation vector to all q influential eigenvectors is m(q)j =
√

(
∑k

i=1 µia
2
ij). So, in

those cases when m(q) > m(q)j =
√

( 1
n

∑k
i=1 µi) are considered like potentially influential.

For more details about this technique, see Poon and Poon (1999).

Now, we evaluate the following perturbation schemes: case-weight perturbation to detect

observations with outstanding contribution of the log-likelihood function and that can

exercise high influence on the maximum likelihood estimates; response perturbation of the

response values, which can indicate observations with large influence on their own predicted

values; and finally explanatory variables perturbation. The matrix ∆ = (∆α,∆σ,∆β)T

can be obtained numerically.

Case-weight perturbation

In this case, for the Poisson-Weibull regression model, the log-likelihood function takes

the form l(θ|ω) =
∑n

i=1 ωi l(θ), where 0 ≤ ωi ≤ 1, ω0 = (1, . . . , 1)T . The elements of

matrix ∆ = (∆α,∆σ,∆β)T are given in Appendix A.

Response perturbation

For the Poisson-Weibull regression model, each yi is perturbed as yiw = yi+ωiSy, where

Sy is a scale factor that can be estimated by the standard deviation of Y and ωi ∈ R. Here,

ω0 = (0, . . . , 0)T . The elements of matrix ∆ = (∆α,∆σ,∆β)T are given in Appendix B.
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Explanatory variable perturbation

Consider now an additive perturbation on a particular continuous explanatory variable,

say Xt, by setting xitω = xit + ωiSt, where St is a scaled factor, ωi ∈ R. Here, ω0 =

(0, . . . , 0)T . The elements of matrix ∆ = (∆α,∆σ,∆β)T are given in Appendix C.

8. Residual Analisys

An important step after the model formulation is the analysis of residual. It is used to see

if there are differences in the assumptions made in the model proposed. In this work we

consider the residual Cox-Snell. This residual is used to check the overall fit of the model

(Cox and Snell, 1968). It is described as

ri = − log [S (yi|xi)] , i = 1, . . . , n,

where S(·) is the survival function obtained by adjusted model. The residual Cox-Snell to

Poisson-Weibull regression model is defined by

ri = − log

(
exp{α exp[− exp((y − xTi β)/σ)]} − 1

exp(α)− 1

)
, i = 1, . . . , n.

This residuals follow a standard exponential distribution if the fitted model is adequate

Lawless (2003).

9. Applications

We illustrate the proposed model using data from Crowley and Hu (1977). The data

referred to the survival time (in days) of the patients who were admitted into the Stanford

University heart transplant program from 1967 to 1973. The aim of the study was to relate

the survival time (t) for x1: Year of acceptance to the program; x2: Age of patients (in

years); x3: Previous Surgery (1=yes, 0=no) and x4: If the patient did transplant in the

program (1=yes, 0=no). The data contain n = 103 observations of which 27% are censored.

Initially, to get more information of the survival time was made an analysis these times,

without considering the observations censored. This information is shown in Table 5. It

can be observed in accordance with this table that the median time of patients was 66

days, which indicates that approximately 50% of patients had the survival time larger than

66 days, or approximately 50% of patients had the survival time at most 66 days and its

mean survival time was 171.2 days. It can also be observed that 25% of patients had a

lifetime less than 19.5 days, or greater than 175.5 days. Furthermore, the lifetime of the

patients were between 1 and 1386 days, which implies a great variability over time. What

certifies this great variability is the standard deviation value of 280.9684 days.

Figure 3 shows the survival estimates by Kaplan-Meier for groups of patients on the

variables: Transplant in the program; Previous Surgery; and Age of patients. From this

Figure, it was noted that there is evidence of difference between survival functions for
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groups of patients, for example, patients with previous surgery or no surgery. Therefore,

these variables seem to influence the survival time.

Table 5. Summary of survival time of patients admitted into the Stanford University heart transplant program

from 1967 to 1973.

Minimum First quartile Median Mean Third quartile Maximum Standard deviation

1.0000 19.5000 66.0000 171.2000 175.5000 1386.0000 280.9684
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Figure 3. Curve of the survival function estimated by the Kaplan-Meier to variables Transplant in the program,

Previous Surgery and Age of patients.

An graphical analysis also was done using the TTT curve to verify the shape of the hazard

rate function. According to Aarset (1987), the empirical version of the TTT plot is given by

G(r/n) = [(
∑r

i=1 Yi:n)−(n−r)Yr:n]/(
∑r

i=1 Yi:n), where r = 1, . . . , n and Yi:n represents the

order statistics of the sample. Aarset (1987) showed that the hazard function is constant

if the TTT plot is presented graphically as a straight diagonal; the hazard function is

increasing (or decreasing) if the TTT plot is concave (or convex); the hazard function is

U-shaped if the TTT plot is convex and then concave, otherwise, the hazard function is

unimodal. The TTT plot for heart transplant data in Figure 4 indicates an decreasing

shaped failure rate function. So, we can try using the Poisson-Weibull distribution for the

modeling of data.

The next step after the conclusions made about the Poisson-Weibull regression model

was to check which is the best model when covariates were included.

In this study, the model is expressed in the form:

yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + σzi, i = 1, . . . , 103,

where yi = log(ti) denotes the logarithm of the survival time.

We compared the Poisson-Weibull regression model with its particular cases exponential-

Poisson and Weibull, considering the AIC. The preferred model is the one with the lowest

AIC criterion. The values of AIC are presented in Table 6 with the maximum likelihood

estimates and their standard errors for the parameters of the three models.

It can be observed in accordance with Table 6 that the Poisson-Weibull regression model

had the lowest value of the AIC in relation the exponential-Poisson and Weibull models,



40 Vigas, Silva and Louzada

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TTT plot

N. failure = 75 N. censored = 28
i/n

T
T

T

Figure 4. TTT plot to heart transplant data.

indicating that this model is more appropriate to the data. For exponential-Poisson and

log Weibull regression models, the variables X2 and X4 were significant. For Poisson-

Weibull regression model, the variables X2, X3 and X4 were significant. The estimates of

the parameters and their standard errors of the models were similar in most cases. For all

models was used at 5% of significance.

Table 6. Estimated values of model parameters log exponential-Poisson, log Weibull and log Poisson-Weibull to

data of heart transplant. (E.P. = standard errors)

log exponential-Poisson log Weibull log Poisson-Weibull

Parameters Estimates E.P. p-value Estimates E.P. p-value Estimates E.P. p-value

α 3.2359 1.0821 - - - - 3.0374 1.8982 -

σ - - - 1.4760 0.1321 - 1.2813 0.1163 -

β0 3.1733 5.5028 0.5641 1.3020 6.7664 0.8474 1.3105 6.9977 0.8514

β1 0.0756 0.0779 0.3321 0.0945 0.0949 0.3194 0.1046 0.0988 0.2897

β2 -0.0816 0.0165 < 0.0001 -0.0918 0.0203 < 0.0001 -0.0816 0.0205 < 0.0001

β3 1.1425 0.4924 0.0203 1.1341 0.6573 0.0844 1.2479 0.6269 0.0465

β4 2.4348 0.3085 < 0.0001 2.5422 0.3758 < 0.0001 2.5384 0.3885 < 0.0001

−`(·) 173.3177 171.2324 169.0988

AIC 358.6354 354.4648 352.1976

As the Poisson-Weibull regression model is reduced in the regression models exponential-

Poisson and Weibull, the likelihood ratio test was used to select models which best fit the

data. This procedure is given in the Section 5. To the exponential-Poisson and Poisson

Weibull regression models, hypotheses were: H0 : σ = 1, i.e, the exponential-Poisson

regression model is adequate versus H1 : σ 6= 1, i.e, the Poison-Weibull regression model is

adequate. In this data it was observed that the test statistic was 6.5539 (p-value = 0.0036)

and this result leads us to reject the null hypothesis. In relation the Weibull and Poisson-

Weibull regression models, hypotheses were: H0 : α→ 0, i.e, the Weibull regression model

is adequate versus H1 : α > 0, i.e, the Poison-Weibull regression model is adequate.

In this data it was observed that the test statistic was 4.2672 bigger than 1/2 + 1/2

P (χ2
1 ≤ c) = 2.705543, at the significance level of the 5%, which leads us to reject the

null hypothesis. In both cases there is evidence in favor of the Poisson-Weibull regression

model.

The next step after the conclusions made anteriorly about the models was the residual
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analysis, which is useful to verify the goodness of fit of the model. Figure 5 shows the

Cox-Snell residual plot for the exponential-Poisson, Weibull and Poisson-Weibull models,

respectively. From this Figure, its was noted that for the model Poisson-Weibull, the

exponential curve is closer to the estimated survival curve in relation the exponential-

Poisson and Weibull models.
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Figure 5. Curve of the survival function of the residual estimated by the Kaplan-Meier estimated survival curve

and the exponential standard of the exponential-Poisson, Weibull and Poisson-Weibull models to data of heart

transplant.

Therefore, when removed the non-significant covariate, the estimates of the parameters

of the Poisson-Weibull regression model to data of heart transplant are presented in Table

7.

Table 7. Estimated values of model parameters final of the Poisson-Weibull regression model to data of heart

transplant.

Parameters Estimates E.P. p-value

α 3.0547 1.8524 -

σ 1.2744 0.1157 -

β0 8.6522 1.0497 < 0.0001

β1 -0.0818 0.0205 < 0.0001

β2 1.3268 0.61642 0.0313

β3 2.5734 0.3836 < 0.0001

From the considerations mentioned, the final model is described by:

ŷi = log(ti) = 8.6522− 0.0818xi1 + 1.3268xi2 + 2.5734xi3, i = 1, . . . , 103.

Next, we conduct a local influence study as described in Section 7 by considering the

three different perturbation schemes. We used the software Ox to compute the measures

presented in this section. In Figure 6a, the graph of eigenvector corresponding to Cdmax is

presented, and total influence Ci is shown in figure 6b. The observation 99 was the most

distinguished in relation to the others.

Subsequently, we analyzed the influence of perturbations on the observed survival times.

Figure 7(a) contains the graph for Cdmax versus the observation index, showing that the
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observation 99 was the most salient in relation to the others. Figure 7(b) presents graphs for

the total local influence (Ci), where the observation 99 again stands out. The perturbation

of vectors for continuous explanatory variable age was investigated here. The respectives

graphs of dmax as well as total local influence Ci against the observation index are shown

in Figures 8(a) and 8(b). Note that observations 29; 73 and 99 clearly stands out for the

explanatory variable age.
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Figure 6. Index plot for θ (case-weight perturbation): Local Influence and Total local influence.
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Figure 7. Index plot for θ (response perturbation): Local Influence and Total local influence.
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For each case, the conformal normal curvature of the basic perturbation vector BE and

the aggregate contributions m(q)j , with q = 1 and q = 7, were computed. When q = 7,

only the largest eigenvalue is considered as influential and when q = 1, it is choosen only

non-zero eigenvalues. Figures 9(a) - 11(a) present values for the added contribution of all

the eigenvalues BEi , for i = 1, . . . , 103, against the index of the observations. Observations

7 and 100 are the most distinguished in relation to the others. However, in Figures 9(b)

- 11(b), where the index plots of mq(j) for q = 1 under the all perturbation schemes are

displayed, only observation 99 appear as potentially influential. Figures corresponding to

q = 7 have been omitted in this work because the results are similar to those in that q = 1.

Note that, there are many observations bigger than cut point, so it was choosed only the

points than most distinguished in relation to the others.
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Figure 9. Index plot for θ (case-weight perturbation): Conformal local influence for all eigenvalues and Conformal

local influence for q=1.
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Figure 10. Index plot for θ (response perturbation): Conformal local influence for all eigenvalues and Conformal

local influence for q=1.

Upon conclusion of previous results, we can consider the cases 7; 29, 73, 99 and 100 as

possible influential or outlier observations. These observations were identified as possible

influential points. Thus, are patients that have the following characteristics:

(i) The observation 7 matches to the patient that did not have censure, with age of 50 years,

did not surgery before and did the transplant. This observation has a lower survival time

of the patients with these caracteristics.
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(ii) The observation 29 matches to the patient that did not have censure, with age of 59

years, did not surgery before and did not the transplant. This observation is the oldest

of the patients with these caracteristics.

(iii) The observation 73 matches to the patient that did not have censure, with age of 47

years, did not surgery before and did not the transplant. This observation has the largest

survival time of the patients with these caracteristics.

(iv) The observation 99 matches to the patient that did have censure, with age of 30 years,

did not surgery before and did not the transplant. This observation has the largest

survival time of the patients with these caracteristics.

(v) The observation 100 matches to the patient that do not have censure, with age of 30

years, did surgery before and did the transplant. This observation has the largest survival

time of the patients with these caracteristics.
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Figure 11. Index plot for θ (age explanatory variable perturbation): Conformal local influence for all eigenvalues

and Conformal local influence for q=1.

To verify if these observations are possible influential points in order to reveal the im-

pact of these observations on the parameter estimates, several combinations of candidates

exclusions were made, and the parameters of model were again estimated when it was elim-

inated one, two, until five observations. The Tables 8 and 9 show the maximum likelihood

estimates and their p-values (among parentheses) these combinations. It can be observed

in accordance with this table that when the observations 7, 29, 73 and 99 were removed

individually of the data set, the estimates remained close in relation to the original data.

Also, the significance of the parameters did not change compared to the complete data. For

the observation 100, the estimates also remained near when compared with the original

data, not changing the conclusions about the significance of most parameters, with the

exception of the parameter β2. The same results were obtained when it was eliminated the

observation 100 along with other observations. For example, when are removed together

the observations: (7;100); (29;100); (73;100); (99;100); (7;73;100); (29;99;100); (73;99;100);

(7;29;73;100); (7;73;99;100); (7;29;99;100); (29;73;99;100) and (7;29;73;99;100), the param-

eter β2 is not significant.

The Table 9 shows the percentage change of each estimated parameter, that is given

by
[(
θ̂j − θ̂j(i)

)
/θ̂j

]
X100, in which θ̂j is the estimate of the maximum likelihood with

all observations, and θ̂j(i) is the estimate of the maximum likelihood without the ith ob-
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Table 8. Values of the maximum likelihood estimates and p-values of parameters of the Poisson-Weibull regression

model.

Parameters

Data α σ β0 β1 β2 β3

A=Complete 3.0547 1.2744 8.6522 -0.0818 1.3268 2.5734

(< 0.0001) (< 0.0001) (0.0313) (< 0.0001)

A-{7} 3.0308 1.2678 8.6485 -0.0809 1.3251 2.5168

(< 0.0001) (< 0.0001) (0.0307) (< 0.0001)

A-{29} 3.1100 1.2774 8.8388 -0.0871 1.3216 2.6641

(< 0.0001) (< 0.0001) (0.0324) (< 0.0001)

A-{73} 3.3010 1.2475 8.6591 -0.0835 1.3094 2.7042

(< 0.0001) (< 0.0001) (0.0299) (< 0.0001)

A-{99} 2.6329 1.2124 7.6968 -0.0687 1.3147 2.6748

(< 0.0001) (< 0.0001) (0.0255) (< 0.0001)

A-{100} 3.0812 1.2682 8.6696 -0.0821 1.0995 2.5733

(< 0.0001) (< 0.0001) (0.0739) (< 0.0001)

A-{7; 29} 3.0805 1.2716 8.8257 -0.0860 1.3207 2.6054

(< 0.0001) (< 0.0001) (0.0318) (< 0.0001)

A-{7; 73} 3.2976 1.2420 8.6612 -0.0826 1.3081 2.6494

(< 0.0001) (< 0.0001) (0.0293) (< 0.0001)

A-{7; 99} 2.6021 1.2062 7.6945 -0.0680 1.3120 2.6222

(< 0.0001) (0.0003) (0.0251) (< 0.0001)

A-{7; 100} 3.0566 1.2615 8.6658 -0.0812 1.0986 2.5168

(< 0.0001) (< 0.0001) (0.0728) (< 0.0001)

A-{29; 73} 3.3368 1.2465 8.85765 -0.0896 1.3015 2.8086

(< 0.0001) (< 0.0001) (0.0308) (< 0.0001)

A-{29; 99} 2.7725 1.2158 7.8952 -0.0735 1.3117 2.7571

(< 0.0001) (0.0002) (0.0262) (< 0.0001)

A-{29; 100} 3.1390 1.2711 8.8571 -0.0874 1.0928 2.6646

(< 0.0001) (< 0.0001) (0.0764) (< 0.0001)

A-{73; 99} 1.9909 1.1736 7.3871 -0.0716 1.2828 2.8414

(< 0.0001) (< 0.0001) (0.0251) (< 0.0001)

A-{73; 100} 3.3376 1.2412 8.6783 -0.0838 1.0835 2.7043

(< 0.0001) (< 0.0001) (0.0718) (< 0.0001)

A-{99; 100} 2.6575 1.2064 7.7152 -0.0691 1.0950 2.6740

(< 0.0001) (0.0002) (0.0626) (< 0.0001)

servation. It can be observed in accordance with Table 10 that, individually, the lowest

impact of the percentage change occurred when the observation 7 was removed, or when

the observations that have this individual were eliminated. In contrast, the greatest impact

individually occurred when the observation 99 was removed or when the observations that

have this individual were eliminated. To variables in study, the variable Previous Surgery,

in most cases, had the greatest impact when the observations were removed together,

underestimating the parameter β2.

Thus, from the analysis made, we considered the observation 100 as an influence point

and removed of the dataset. Then, the parameters of model were again estimated without

the variable Previous Surgery, as shown in Table 11. It can be observed in accordance

with this Table that the variables Age of patients and Transplant in the program were
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Table 9. Values of the maximum likelihood estimates and p-values of parameters of the Poisson-Weibull regression

model.

Parameters

Data α σ β0 β1 β2 β3

A=Complete 3.0547 1.2744 8.6522 -0.0818 1.3268 2.5734

(< 0.0001) (< 0.0001) (0.0313) (< 0.0001)

A-{7; 29; 73} 3.3271 1.2420 8.8523 -0.0885 1.3001 2.7525

(< 0.0001) (< 0.0001) (0.0304) (< 0.0001)

A-{7; 29; 99} 2.7333 1.2102 7.8835 -0.0725 1.3102 2.7025

(< 0.0001) (0.0002) (0.0257) (< 0.0001)

A-{7; 29; 100} 3.1084 1.2652 8.8445 -0.0863 1.0926 2.6059

(< 0.0001) (< 0.0001) (0.0752) (< 0.0001)

A-{7; 73; 99} 1.9878 1.1685 7.3947 -0.0708 1.2811 2.7912

(< 0.0001) (0.0001) (0.0248) (< 0.0001)

A-{7; 73; 100} 2.6257 1.2000 7.7121 -0.0683 1.0933 2.6216

(< 0.0001) (0.0001) (0.0752) (< 0.0001)

A-{29; 73; 99} 2.0684 1.1709 7.5806 -0.0771 1.2785 2.9375

(< 0.0001) (< 0.0001) (0.0253) (< 0.0001)

A-{29; 73; 100} 3.3766 1.2401 8.8781 -0.0899 1.0744 2.8092

(< 0.0001) (< 0.0001) (0.0253) (< 0.0001)

A-{29; 99; 100} 2.8021 1.2096 7.9158 -0.0738 1.0908 2.7570

(< 0.0001) (0.0001) (0.0641) (< 0.0001)

A-{73; 99; 100} 1.9894 1.1671 7.3972 -0.0720 1.0629 2.8413

(< 0.0001) (< 0.0001) (0.0618) (< 0.0001)

A-{7; 29; 73; 99} 2.0681 1.1669 7.5812 -0.0761 1.2774 2.8853

(< 0.0001) (< 0.0001) (0.0250) (< 0.0001)

A-{7; 29; 73; 100} 3.3693 1.2355 8.8729 -0.0888 1.0744 2.7528

(< 0.0001) (< 0.0001) (0.0730) (< 0.0001)

A-{7; 73; 99; 100} 1.9805 1.1623 7.4013 -0.0711 1.0615 2.7910

(< 0.0001) (< 0.0001) (0.0636) (< 0.0001)

A-{7; 29; 99; 100} 2.7622 1.2039 7.9039 -0.0729 1.0898 2.7024

(< 0.0001) (0.0002) (0.0632) (< 0.0001)

A-{29; 73; 99; 100} 2.0676 1.1647 7.5890 -0.0774 1.0581 1.0581

(< 0.0001) (0.0002) (0.0632) (< 0.0001)

A-{7; 29; 73; 99; 100} 2.0656 1.1605 7.5904 -0.0765 1.0578 2.8856

(< 0.0001) (< 0.0001) (0.0641) (< 0.0001)

significant, using a significance level of 5%.

From the considerations mentioned, the final model is described by:

ŷi = log(ti) = 8.7702− 0.0842xi1 + 2.7947xi2, i = 1, . . . , 102.

According to the final model, the interpretation of the variable age of patients without

to consider other variables was that the time median estimated survival should decrease

approximately 8.78% ([exp(0.0842) x 100%]) when we increased one year. The interpreta-

tion of the variable transplant in the program without to consider other variables was that

the median estimated survival of patients who did transplant in the program was approx-

imately exp(2.7947) = 16.3577 times higher than those who did not do the transplant.
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Table 10. Percentage change of the maximum likelihood estimates of parameters of the Poisson-Weibull regression

model.

Parameters

Data α σ β0 β1 β2 β3

A-{7} 0.7796 0.5190 0.0432 0.0432 1.1059 0.1314

A-{29} -1.8099 -0.2315 -99.7606 -6.4584 0.3988 -3.5265

A-{73} -8.0649 2.1111 -0.0793 -2.0984 1.3170 -5.084

A-{99} 13.8073 4.8648 11.0421 15.9528 0.9193 -3.9415

A-{100} -0.8682 0.4870 -0.2009 -0.3921 17.1302 0.0010

A-{7; 29} -0.8470 0.2201 -2.0054 -5.0978 0.4669 -1.2467

A-{7; 73} -7.9521 2.5452 -0.1034 -0.9684 1.4162 -2.9535

A-{7; 99} 14.8162 5.3564 11.0685 16.8914 1.1213 -1.8974

A-{7; 100} -0.0620 1.0116 -0.1574 0.7042 17.2002 2.1984

A-{29; 73} -9.2345 2.1893 -2.3739 -9.5487 1.9112 -9.1429

A-{29; 99} 9.2372 4.6008 8.7490 10.1666 1.1400 -7.1414

A-{29; 100} -2.7620 1.2744 -2.3683 -6.8721 17.6386 -3.5459

A-{73; 99} 34.8233 7.9150 14.6217 12.4409 3.3218 -10.4173

A-{73; 100} -9.2623 2.6043 -0.3009 -2.4738 18.3395 -5.0867

A-{99; 100} 13.0028 5.3356 10.8298 15.5616 17.4718 -3.9112

A-{7; 29; 73} -8.9195 2.5442 -2.3127 -8.2117 2.01383 -6.9611

A-{7; 29; 99} 10.5199 5.0378 8.8847 11.3343 1.2553 -5.0184

A-{7; 29; 100} -1.7589 0.7244 -2.2223 -5.5286 17.6510 -1.2662

A-{7; 73; 99} 34.9245 8.3092 14.5338 14.5338 3.4443 -8.4636

A-{7; 73; 100} -9.2284 3.0416 -0.3283 -1.3332 18.3864 -2.9594

A-{29; 73; 99} 14.0424 5.8413 10.8651 16.5046 17.6028 -1.8731

A-{29; 73; 100} -10.5385 2.6931 -2.6103 -9.9446 19.0271 -9.16409

A-{29; 99; 100} 8.2670 5.0839 8.5115 9.7380 17.7882 -7.1368

A-{73; 99; 100} 34.8712 8.4181 4.5053 12.0299 19.8937 -10.4126

A-{7; 29; 73; 99} 32.2980 8.4356 12.3783 6.9199 3.7300 -12.1810

A-{7; 29; 73; 100} -10.2983 3.0573 -2.5508 -8.6001 19.0271 -12.1217

A-{7; 73; 99; 100} 35.1649 8.7967 14.4581 13.0283 19.9957 -8.4569

A-{7; 29; 99; 100} 9.5742 5.5319 8.6488 10.8978 17.8626 -5.0159

A-{29; 73; 99; 100} 32.3121 8.6061 12.2878 5.3385 20.2520 -14.1498

A-{7; 29; 73; 99; 100} 32.3798 8.9388 12.2721 6.5142 20.2740 -12.1349

Table 11. Estimated values of model parameters final of the Poisson-Weibull regression model to data of heart

transplant.

Parameters Estimates E.P. p-value

α 3.0812 2.2427 -

σ 1.2901 0.1178 -

β0 8.7702 1.1376 < 0.0001

β1 -0.0842 0.0212 < 0.0001

β2 2.7947 0.3769 < 0.0001

10. Concluding remarks

In this paper, the Poisson-Weibull regression model, in the form location and scale with the

presence of censored data, was proposed as an alternative to model lifetime and presented
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as particular cases the regression models exponential-Poisson and Weibull. We used maxi-

mum likelihood method for estimation of parameter. Asymptotic tests were performed for

the parameters based on the asymptotic distribution of the maximum likelihood estima-

tors. Additionally, this article compared the performance of the proposed model based on

mean squared error (MSE), AIC, BIC and the likelihood ratio test through a simulation

study. These simulations suggest that the Poisson-Weibull model can be used for mod-

eling data with unimodal failure rate function. However, through the simulation studys,

it was observed that more favorable results were obtained with the proportions of AIC,

BIC, test power, MSE and bias relative for sample sizes larger than 130. In this study,

we discussed the applications of influence diagnostics in Poisson-Weibull regression model

with censored data. We also presented some ways to perform residual analysis. It was

verified that the Poisson-Weibull regression model presented good performance in some

cases. The approach was applied to the data set, which clearly indicated the usefulness of

the approach. Thus, it is expected that this model will be used in other datasets.
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Appendix A. Appendix A: Case-weight perturbation scheme

Here, we provide the elements by considering the case-weight perturbation scheme. The

elements of matrix ∆ = (∆T
1 ,∆

T
2 ,∆

T
j )T are expressed as

∆1i =
δi
α̂

+ δi exp {− exp (ẑi)} − δi
exp(α̂)

(exp(α̂)− 1)σ
− (1− δi)

exp(α̂)

exp(α̂)− 1

− (1− δi)
exp [α̂ exp {− exp (ẑi)}] exp {− exp (ẑi)}

exp [α̂ exp {− exp (ẑi)}]− 1
,

∆2i = δiv̂i exp(ẑi)− δiv̂i {α̂ exp [− exp(ẑi)] exp(ẑi)− 1} − δi
σ̂

+
α̂v̂iĝi

exp [α̂ exp (ẑi)]− 1
,

∆ji = (δi) exp(ẑi)
(xij
σ̂

)
+ (δi)

xij
σ̂

[α̂ exp {− exp (ẑi)} exp(ẑi)− 1]

− (1− δi)
α̂ĝi

(xij
σ̂

)
exp [α̂ exp {− exp (ẑi)}]− 1

.

where j = 0, 1, . . . , p, i = 1, . . . , n, ĝi = exp [α exp {− exp (zi)}] exp
{
ẑi − exp(ẑi)

}
, ẑi =

(yi − xTi β̂)/σ̂ and v̂i = (yi − xTi β̂)/σ̂2.

Appendix B. Appendix B: Response perturbation scheme

Here, we provide elements ∆ji by considering the response variable perturbation scheme.

The elements of matrix ∆ = (∆T
1 ,∆

T
2 ,∆

T
j )T are expressed as

∆1i = −δi exp {− exp (zi)} exp(zi)
Sy
σ̂

+ (1− δi)ĝi(Sy/σ̂)

[
1 + α̂ exp {− exp (ẑi)})

exp [α̂ exp {− exp (ẑi)}]− 1

]
+ (1− δi)

α̂ĝ2
i {exp (−ẑi)}2 (Sy/σ̂)

[exp [α̂ exp {− exp (ẑi)}]− 1]2

∆2i = δi exp(ẑi)(Sy/σ̂
2) + δiv̂i exp(ẑi)(Sy/σ̂) + δiα̂ exp {− exp (ẑi)} (exp(zi))

2(Sy/σ̂)v̂i

+ δiα̂ exp {− exp (ẑi)} exp (ẑi) (Sy/σ̂) [1 + v̂i]− δi(Sy/σ̂)2 − (1− δi)
{

(Sy/σ̂) + (Sy/σ̂
2)
}
α̂ĝi

exp [α exp (ẑi)]− 1

− (1− δi)
{α̂ exp {− exp (ẑi)} − v̂i exp(ẑi)} α̂ĝi(Sy/σ̂)

exp [α exp (ẑi)]− 1
(1− δi)

α̂2ĝ2
i v̂i(Sy/σ̂)

[exp [α̂ exp (ẑi)]− 1]2
,

∆ji = −δi exp(ẑi)
(xij
σ̂

)(Sy
σ̂

)
+ δiα̂ exp {− exp (ẑi)} exp(ẑi)

(xij
σ̂

)(Sy
σ̂

)
[1− exp(ẑi)]

− (1− δi)

[
α̂2ĝi + α̂ exp(ẑi)

]
exp {− exp (ẑi)}

(xij
σ̂

)
exp(ẑi)

(
Sy
σ̂

)
exp [α̂ exp {− exp (ẑi)}]− 1

− (1− δi)
α̂ĝi

(xij
σ̂

) (Sy
σ̂

)
exp [α̂ exp {− exp (ẑi)}]− 1

− (1− δi)
α̂2ĝ2

i

(xij
σ̂

) (Sy
σ̂

)
[exp [α̂ exp {− exp (ẑi)}]− 1]2

,
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where j = 0, 1, . . . , p, ẑi = (yi − xTi β̂)/σ̂, v̂i = (yi − xTi β̂)/σ̂2, ĝi = exp
{
ẑi + exp(ẑi)

}
,

ĥi = exp{exp(ẑi)} and i = 1, . . . , n.

Appendix C. Appendix C: Explanatory variable perturbation

Here, we provide elements ∆ji by considering the explanatory variable perturbation

scheme. The elements of matrix ∆ = (∆T
1 ,∆

T
2 ,∆

T
j )T are expressed as

∆1i = −δi exp {− exp (ẑi)} exp (ẑi))
Stβt
σ̂
−

ĝi
Stβ̂t
σ̂

exp [α̂ exp {− exp (zi)}]− 1

+ (1− δi)
ĝi
Stβ̂t
σ̂ exp {− exp (zi)}

exp [α̂ exp {− exp (zi)}]− 1
− (1− δi)

α̂g2
i exp(−ẑi)Stβ̂tσ̂

[exp [α exp {− exp (ẑi)}]− 1]2
,

∆2i = δi exp (ẑi)
Stβ̂t
σ̂2

[1 + v̂∗∗i ]− δiα̂
Stβ̂t
σ̂

exp(ẑi) exp {− exp(ẑi)} [exp(ẑi)v̂i − 1 + v̂i exp(ẑi)]

+ δi
Stβ̂t
σ̂2
− (1− δi)α̂

exp(ẑi)v̂i
Stβ̂t
σ̂

exp [α exp {− exp (ẑi)}]− 1
(v̂i exp {− exp (zi)}+ 1)

+ (1− δi)
α̂ĝi

Stβ̂t
σ̂2

(vi + 1)

exp [α exp {− exp (ẑi)}]− 1
+ (1− δi)

α̂2(ĝi)
2v̂i

Stβ̂t
σ̂

[exp [α exp {− exp (zi)}]− 1]2
,

For j 6= t, take the forms

∆ji = δi exp(zi)

(
β̂tSt
σ̂

)(xij
σ̂

)
+ δiα̂ exp(ẑi) exp {− exp (zi)}

(
β̂tStxij
σ̂2

)
[exp(ẑi)− 1]

+ (1− δi)
α̂3
(
β̂tStxij
σ̂2

)
g2
i

exp [α exp {− exp (ẑi)}]− 1
+ (1− δi)

(
β̂tStxij
σ̂

)
[exp {− exp (ẑi)} exp(2ẑi)− ĝi]

− (1− δi)α̂2ĝ2
i

(
β̂tStxij
σ̂2

)
[exp [α̂ exp {− exp (ẑi)}]− 1]2

where j = 0, 1, . . . , p, ẑi = (yi − xTi β̂)/σ̂, v̂i = (yi − xTi β̂)/σ̂2, and i = 1, . . . , n. And for

j = t, take the forms

∆ti = δi exp(ẑi)

(
β̂tSt
σ̂

)(xit
σ̂

)
+ δi exp(ẑi)

(
St
σ̂

)
+ δiα̂ exp(2ẑi) exp {− exp (ẑi)}

(
β̂tStxit
σ̂2

)

+ δiα̂ exp(ẑi) exp {− exp (ẑi)}
( β̂tSt

σ̂

)[St
σ̂
− 1

]
− δi

St
σ̂
− (1− δi)

α̂ĝi

(
β̂tStxij
σ̂2

)
[exp(− exp (ẑi)) + exp(ẑi)]

exp [α̂ exp {− exp (ẑi)}]− 1

+ (1− δi)α̂
(
β̂tSt
σ̂

)
ĝi

[
1 + xit

σ̂ exp {− exp (ẑi)} exp(ẑi)
]

exp [α̂ exp {− exp (ẑi)}]− 1
− (1− δi)α̂3ĝ2

i

(
β̂tStxit
σ̂2

)
[exp [α̂ exp {− exp (ẑi)}]− 1]2

where ĝi = exp [α̂ exp {− exp (ẑi)}] exp {− exp (ẑi)} exp (ẑi) and i = 1, . . . , n.


