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Abstract

Contingency tables (CTs) are widely used in a variety of disciplines for displaying,
presenting and analysing categorical data. Generally speaking, the analyses performed
involve the study of potential associations between two or more categorical variables
(also known as factors) using a statistical test. We recently proposed, exemplified and
implemented a graphical diagnostic test (GDT) to study such associations based on
two-way CTs diagtable. In this test, several observations are added (or removed) from
each cell whilst the other cells are held constant, and a test statistic T of interest is
graphically represented. Provided that the initial CT can be reduced to a series of two-
way CTs, here we present an extension of the GDT to allow the analysis of stratified
CTs, and the evaluation of the effect of simultaneous changes in pairs of cells over T .
Three examples are given, an implementation in the R language is presented, and future
directions are discussed.

Keywords: Graphical diagnostic test · Contingency tables · Diagnostics · Statistical
graphics · Data science.

1. Introduction

In applied statistics, we often deal with data sets that contain attributes, also called
variables, that describe the characteristics of an object, individual or experimental unit.
These variables can be of several types, one of which is categorical variables. Categorical
variables can be seen as categories that reflect possible characteristics of the experimental
unit such as gender, eye colour, political affiliation, severity of symptoms (i.e., none, mild,
severe), consumer preferences, school attended or race (Agresti, 2002, Chapter 1).

Contingency tables (CTs), first introduced by Karl Pearson (Pearson, 1904, p. 34), are
widely used in several disciplines, including data science, business intelligence, engineer-
ing and scientific research Wickens (1969); Kamish (1988); Agresti (2002); Iossifova and
Marmolejo-Ramos (2013); Vélez et al. (2015). CTs are referred to as multiway or two-way
CTs depending upon how many variables are considered for either displaying the frequency
distribution of such variables, or for summarising the potential association between them
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using a statistical test to measure the departure from a hypothesised model M which is
believed to describe such an association (Agresti, 2002, Chapter 2). In its simplest form,
model M could correspond to the independence model where two categorical variables X
and Y with up to I and J levels, respectively, are considered to be stochastically indepen-
dent. A classical example in which the model of independence M is rejected is that shown
in Agresti (2002, Table 2.5) and reproduced in Table 1. Indeed, a χ2 test of independence
gives χ2

M = 18.1 and a p-value of pM = 2.05 × 10−5 from which it is concluded that the
development of lung cancer is not independent from smoking habits (see also Example
3). Note, however, that this previous result gives no information about how robust the
conclusion is as it is not possible to evaluate the effect - on the conclusion initially reached
- of small changes in the entries of the CT. This effect has traditionally been assessed
via diagnostic methods, an area of relative proliferation in statistics Belsey et al. (1980);
Lustbader and Moolgavkar (1985); Genest and Green (1987); Tsujitani and Koch (1991);
Andersen (1992); Friendly (1994), with the most frequently used approach being the elim-
ination or addition of one observation at the time to each of the I×J entries of a two-way
CT, followed by the calculation of a test statistic under model M .

Table 1. Lung Cancer and Smoking. Source: Doll and Hill (1950), and taken from Table 2.5 in Agresti (2002).

Smoker
Lung Cancer

Yes (Case) No (Control)
Yes 688 650
No 21 59

Recently, Vélez et al. (2016) proposed, implemented and illustrated a graphical diag-
nostic test (GDT) for two-way CTs. Using this method, the authors are able to study the
effect of small changes in the cells of the CT on a model of interest M (i.e., independence
model) when up to k observations, one at a time, are added to or removed from every
cell. When a specific model M is fitted to the CT, this procedure determines how robust
the model is and how confident we are about the conclusions drawn. In other words, the
authors attempt, by using this method, to determine if the conclusion would change when
small changes in the entries of the CT are introduced.

Despite showing how useful the GDT is, the authors acknowledged that more work needs
to be done to extend the GDT to (i) stratified two-way CTs, and (ii) allow the possibility of
introducing changes to more than one cell at the time. The first case refers to situations in
which, given a third variable with S categories (i.e., gender or socioeconomic strata), equal
number of two-way CTs are constructed. The second topic implies an improvement of the
GDT method such that it is possible to evaluate the effect, on model M , of simultaneously
adding or removing up to k p-tuples (p = 2, 3, . . .) of observations from the corresponding
cells in the CT. It has been argued that the implementation of such a procedure is not
computationally challenging, but the graphical representation is. According to the authors,
the main difficulty lies in representing the c ! /{(c−p) ! p !} total number of possible p-tuples,
where c is the number of cells in the two-way CT diagtable.

In this paper we present an extension of the GDT, namely eGDT, that addresses the
analysis of stratified two-way CTs and allows the quantification of simultaneous changes
in pairs of observations on the statistical model of interest. We initially put forward the
GDT proposed by Vélez et al. (2016). Further, we propose and describe the workflow that
ultimately leads to the development of the eGDT, illustrate it with three examples, and
present our implementation in R R Core Team (2016) statistical package. Finally, future
directions of research as well as other potential applications of the eGDT are discussed.
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Figure 1. GDT for a two-way CT when up to 10 observations are (a) added or (b) removed to/from every cell.
The entries and the corresponding number of observations are given by 833, 75, 82 and 10 for cells (1,1), (1,2),
(2,1) and (2,2), respectively. The LRT of independence fives G2

M = 0.683 and pM = 0.409. The blue horizontal line
corresponds to a 5% significance level.

2. Extended GDT

2.1 Background

Starting with a two-way CT, the GDT proposed by diagtable determines the change pro-
duced by a single cell on a hypothetical model M when up to k observations, one at the
time, are added to or removed from each cell of the CT. Formally, the GDT can be seen
as a three-step procedure to test whether two categorical variables are independent (null
hypothesis). First, k observations are added to (or removed from) the (i, j)th cell and the
statistic TM,(i,j),k under model M is calculated (i = 1, 2, . . . , I; j = 1, 2, . . . , J). Secondly,
the p-value of the test is calculated as pM = 1 − F (TM,(i,j),+k) when k observations are
added, and pM = 1−F (TM,(i,j),−k) when k observations are removed. Thirdly, pM is plot-
ted as a function of k. In the expressions above, F is the cumulative distribution function
of the test statistic T .

Figure 1 shows the results of the GDT applied on a two-way CT using a likelihood
ratio test (LRT) for the independence model, M . Here, the test statistic is calculated as

G2
M = 2

∑I
i=1

∑J
j=1

(
Nij log Nij

EM
ij

)
, where EM

ij is the expected value of the (ij)–th cell of

the CT (denoted as N). The calculation of p-values follows as G2 ∼ χ2
(I−1)(J−1) under

the null hypothesis of independence. Although the model of independence is not rejected
(G2

M = 0.683, pM = 0.409) when the full data is used, either adding four observations to
or removing eight observations from (2, 2) would have changed our conclusion entirely.

2.2 From GDT to eGDT

The GDT only deals with changes in one cell of the CT at a time. But, what would happen
if more than one cell is simultaneously changed? And what would we do if stratified CTs
are available? We tackle these questions using the eGDT provided that the original CT
can be broken down into a series of smaller two-way CTs.

Before we move ahead and describe the eGDT in detail, let us introduce some notation.
Throughout this paper we will denote (a, b) as the (a, b)th cell of the two-way CT, and u|v
as the pair of entries u and v of the CT. In a 2×2 CT for example, one will have four cells
and equal number of entries such that cells (1, 1), (1, 2), (2, 1) and (2, 2) are respectively
equivalent to entries 1, 2, 3 and 4. We shall say that Trs is the test statistic when entries
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u and v change r and s units, respectively (r = 0, 2, . . . , k; s = 0, 2, . . . , k). diagtable
indicate that k can take any integer value provided that the resulting entry in the CT is
not negative. Additionally, we will say that u+x | v−y denotes that x observations are being
added to entry u, and y observations removed from entry v. For completeness, c and n
denote the number of cells and the total number of observations, respectively.

Extension of a graphical diagnostic test for contingency tables 3

Table 1: A two-way contingency table with I ⇥ J cells.

Variable X
Variable Y

1 2 · · · J

1 n11 n12 · · · n1J

2 n21 n22 · · · n2J

...
...

...
. . .

...
I nI1 nI2 · · · nIJ

Table 2: A two-way contingency table with I ⇥ J cells.

Variable X
Variable Y

1 2 · · · J

1 1 2 · · · J

2 J + 1 J + 2 · · · 2J
...

...
...

. . .
...

I (I � 1)J + 1 (I � 1)J + 2 · · · IJ

1. Under model M , calculate TM,(i,j),�Nij
, TM,(i,j),�Nij+1, . . . , TM,(i,j),�1, TM

(see Table ?? for more details).

2. Determine the p-value of the test as

pM =

8
><
>:

1 � F (TM,(i,j),�k) if k observations are removed
1 � F (TM ) for the original data
1 � F (TM,(i,j),+k) if k observations are added

(1)

with F the cumulative distribution function of the test statistic under the
null hypothesis.

3. Plot pM against the number of added/removed observations k.

3. Extended graphical diagnostic test

3.1. A two-way CT

For illustration purposes let us consider the polygraph evaluation data in Si-
monoff (2003) shown in Table 3. Here, a likelihood ration test (LRT) of indepen-
dence produces G2

M = 3.454 and pM = 0.063 from which it is concluded, at 5%
significance, that the group at which individuals are classified is independent from
the true group.

Vélez et al. (2015) showed that the model of independence hardly withstand
with this data as either adding just one observation to cells (1,1) or (2,2), or
removing one observation from cells (1,2) or (2,1), would have changed the initial
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Cell u
Cell v

0 +1 +2 · · · +k

0 T00 T01 T02 · · · T0k

+1 T10 T11 T12 · · · T1k

+2 T20 T21 T22 · · · T2k

...
...

...
...

. . .
...

+k Tk0 Tk1 Tk2 · · · Tkk

u \ v 0 +1 +2 · · · +k

0 T00 T01 T02 · · · T0k

+1 T10 T11 T12 · · · T1k

+2 T20 T21 T22 · · · T2k

...
...

...
...

. . .
...

+k Tk0 Tk1 Tk2 · · · Tkk

conclusion. But, what if we simultaneously change the number of observations
in pairs of cells? How would our previous conclusion change? Observe that the
number of cells in the CT is c = 4, and the number of pairs and triplets of cells
that could be changed is 4 !/{(4�2)! 2 !} = 6 and 4 !/{(4�3)! 3 !} = 3, respectively.

3.2. Stratified two-way CT

In this example we consider the Titanic data (Dawson 1995). Briefly,

3.3. Multi-way CT

3.4. Dealing with missing values

Correa & Vélez (2014)
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Figure 2. Workflow in the eGDT. Every cell in the (a) initial CT is (b) labeled row-wise, and (c) a test statistic
T is subsequently calculated after up to k observations are simultaneously added to or removed from u|v. Further,
the result is graphically represented for (d) each category of a third categorical variable (i.e., gender in this case) or
using (e) surface and/or contour plots.

Figure 2 depicts the general workflow of the eGDT. The process begins with a two-way
CT (Figure 2a) and the row-wise numbering of every single entry in the CT (Figure 2b).
Further, for each of the c ! /{(c − p) ! p !} total number of possible p-tuples (p = 2, 3, . . .),
we calculate Trs (Figure 2c). The last step is to produce a graphical representation of Trs
or a function of it (i.e., the p-value) depending upon the value of p. When p = 1, the plots
reduce to the GDT (Figure 2d); when p = 2, either or both a 3D or/and 2D plot can be
produced (Figure 2e); and for p = 3, an alternative would be to produce similar plots for
Trs given two entries of the CT and for every change in a third entry (see Example 3 for
an illustration). A similar strategy can be applied to p = 4.

3. Illustrations

1. Polygraph evaluation. For illustration purposes, let us consider the polygraph eval-
uation data in Simonoff (2003, pp. 221) shown in Table 2. Here, a LRT of independence
produces G2

M = 3.454 and pM = 0.063 from which we conclude, using a type I error
probability of 5%, that the group individuals are classified by the polygraph is indepen-
dent from the true group they actually come from. Observe that the number of cells in
the CT is c = 4, and the number of pairs and triplets of cells that could be changed is
4!/{(4 − 2)! 2!} = 6 and 4!/{(4 − 3)! 3!} = 3, respectively. Following our notation, these
combinations of entries would be given by 1|2, 1|3, 1|4, 2|3, 2|4 and 3|4 in the first case,
and 1|2|3, 2|3|4 and 1|3|4 in the latter.
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Table 2. Polygraph evaluation. Source: Simonoff (2003).

True group
Classified group

Guilty Innocent
Guilty 6 2
Innocent 4 8

It was previously shown that, for this data, the model of independence hardly withstood
in that adding just one observation to cells (1,1) or (2,2), or removing one observation
from cells (1,2) or (2,1), would have changed the initial conclusion Vélez et al. (2016).
But, what if we simultaneously change the number of observations in pairs of cells? How
would our previous conclusion change? Figure 3 shows the results of the eGDT applied
to Table 2 when p = 2. Here, the combinations of changes in pairs of entries given by
1+1 | 2−1, 1+1 | 3−1, 1+1 | 4−2, 2−1 | 3+1, 2−1 | 4+2 and 3−1 | 4+1 would result in the rejection
of the independence model initially tested. Overall, this shows how sensible our conclusions
are to small changes in the CT.
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Figure 3. Extended GDT for the polygraph data in Simonoff (2003) when entries (a) 1|2, (b) 1|3, (c) 1|4, (d) 2|3,
(e) 2|4 and (f) 3|4 are simultaneously changed. The blue lines correspond to the initial number of observations in
that pair of entries, and the red dot to − log10(pM ) = 1.2. Values of − log10(p) > 1.3 indicate rejection of the
independence model at 5% significance level.

2. Postoperative delirium and statins. In this example, we analyse the case of a
stratified CT showing whether individuals undergoing cardiac surgery (and who reported
previous use of statins) suffered postoperative delirium [Table 3]statins. We will determine
whether the use of statins is associated with postoperative delirium using eGDT with the
G2 statistic. In contrast to the original study, here gender or other confounding variables
are not controlled.

Our results indicate that the use of statins is associated with a reduction of postoperative
delirium episodes in older (G2

M = 4.634, pM = 0.031), but not in younger individuals
(G2

M = 0.318, pM = 0.572). As the authors discussed, this latter result is a consequence of
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ageing as patients taking statins tend to be older and hence more likely to have delirium.
In other words, the statins effect is attenuated in individuals with < 60 years of age.

When the GDT is applied to Table 3, several intriguing changes take place. In particular,
adding three observations to cell (1, 1) or seven observations in cell (2, 2), or removing two
or 25 observations from cell (2, 1), would have resulted in no effect of statins use on the
older group (Figure 4a and 4b, left). Furthermore, adding eight observations to cell (2, 1),
or removing five or nine observations from cells (1, 1) and (2, 1), respectively, would have
resulted in an association between the use of statins and postoperative delirium in individ-
uals with < 60 years of age (Figure 4a and 4b, right). This latter result, opposite to that
in Katznelson et al. (2009), shows how fragile the conclusions are to small perturbations
of the original data.
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Figure 4. Extended GDT for the statin data in Katznelson et al. (2009). Observations are (a) added or (b) removed
from individuals cells in Table 3. The 3D and contour representation of simultaneous changes in entries 1|3 of the
resulting two-way CTs are shown for (c) age ≥ 60 and (d) age < 60 years. The red dot is − log10(pM ) = 1.51 in (c)
and − log10(pM ) = 0.242 in (d). Conventions as in Figures 1 and 3.

We also used the eGDT by changing entries 1|3 simultaneously. The results are presented
in Figures 4c and 4d. In individuals aged ≥ 60 years, changing 10|3r with r ≤ −5, and
1r|30 with r > 3, would have resulted in a completely different conclusion (that is, no
effect of statin on postoperative delirium after cardiac surgery). Likewise, by changing
10|3r with r > 13, and 1r|30 with r < −6, we would have concluded that statins reduce
postoperative delirium in patients aged < 60 years. Once again, this result shows how
small and simultaneous changes in two entries of the original CT could change our initial
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conclusion entirely.

Table 3. Use of statins and presence of postoperative delirium by age. Source: Katznelson et al. (2009).

Age Statins
Delirium
Yes No

≥ 60 years Yes 64 424
No 37 149

< 60 years Yes 9 179
No 12 185

3. Smoking and Lung cancer. Here we use the data presented in Table 1. Following
Agresti (2002, pp. 46), the odds ratio is (688× 59)/(650× 21) = 2.97, the 95% confidence
interval is (1.78, 4.94) and the associated p-value is pM = 1.38 × 10−5. Altogether, these
results indicate that the odds of lung cancer for smokers is ∼ 3 times that of nonsmokers,
which in turn implies, as already known, that smoking is the main cause of lung cancer
American Lung Association (2016).
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Figure 5. 3D and contour plots for the eGDT when entries 3|4 of Table 1 are simultaneously changed. The red dot
corresponds to − log10(pM ) = 4.86. Combinations within the purple region on the right give − log10(p) < 1.3 and
hence produce odds ratios that are not statistically significant at the 5% level.

Figure 5 shows the results of the eGDT applied to Table 1 when entries 3 (i.e., no smokers
who developed lung cancer) and 4 (i.e., smokers who developed lung cancer) are simulta-
neously changed, and the odds ratio is used as the test statistic of interest to quantify the
potential association between smoking habits and the development of lung cancer. Follow-
ing previous recommendations Vélez et al. (2016), a total of k = {−20,−19, . . . , 19, 20}
observations were independently added to these entries. Under this set up, a total of 128
combinations of entries 3|4 resulted in odds ratios that were not statistically significant
(purple region, Figure 5); some of these combinations are 3+7|4r with r = {−19,−20},
and 3+20|4r with −20 ≤ r ≤ −4. Thus, whether including seven nonsmokers’ cases and
excluding 19 nonsmokers’ controls, or adding 20 nonsmokers’ cases and removing at least
four nonsmokers controls would have led to a wrong conclusion that there is no association
between smoking habits and the development of lung cancer.

4. Discussion

We have previously proposed a method that graphically represents the effects of modifying
the number of observations in I × J CTs on the values of an association test diagtable.
One of the drawbacks of such a method is that observations can be added or removed
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one at a time in one cell while the other cells are kept constant. The current extension,
eGDT, deals with that drawback by allowing the simultaneous modification of pairs of
cells; that is, observations can be added or removed from two cells in tandem while the
other cells are held constant. Furthermore, the eGDT can be applied to multiway CTs that
are amenable to be broken down into several I × J CTs. In a couple of examples, it was
illustrated how the eGDT can be used to model CT data and visualise several significant
and non-significant scenarios given the data.

Our current implementation of the eGDT can be easily scaled to epidemiological studies
to determine the effect of small-to-large changes in pair of cells on the difference between
two proportions, the relative risk of individuals exposed and nonexposed to a particular
event, or the odds ratio (as illustrated in Example 3). In order to take full advantage of the
characteristics of the eGDT, the χ2 and G2 tests, commonly used to establish whether two
categorical variables X and Y are not independent McHugh (2013), can be substituted by
other statistical measures of independence. In particular, measures such as the φ and γ
coefficients, the C contingency coefficient, the Cramér’s V statistic, Yule’s Q measure of
correlation, or the uncertainty coefficient (Agresti, 2002, Chapter 2), might be of interest.
Similarly, the Fisher’s exact and Barnad’s tests could also be incorporated.

Another area of further development is the control for confounding variables within the
eGDT. Confounding variables are well-known in masking the potential association between
an outcome variable and an explanatory variable under the presence of a second explana-
tory variable that is not controlled (McDonald, 2014, pp. 21). Ultimately, this confounding
effect may cause the researcher to incorrectly analyse the results and therefore make incor-
rect conclusions about their implications Skelly et al. (2012); Pourhoseingholi et al. (2012).
By controlling confounding variables within the eGDT, these negative consequences can
be ameliorated Pourhoseingholi et al. (2012). Furthermore, disciplines such as psychology,
genetics and engineering, all of which make use of loglinear and generalised linear models
(GLMs) Nelder and Wedderburn (1972); Agresti (2002), will instantly benefit from the
inclusion of this feature in future implementations of the eGDT. It is worth mentioning
that, in the context of multi- or two-way CTs, Logistic and Poisson regression models
Nelder and Wedderburn (1972); Zeileis et al. (2008) are the best choice for studying the
potential relationship between an outcome of interest and a set of predictors, and it would
be desirable to have versions of the eGDT that include such models.

Missing values are common in psychology, data science, engineering, social sciences and
genetic research. The effects of missing data and how they are dealt with in statistical
analyses have been extensively discussed Rubin (1976); Little and Rubin (2002). Several
easy-to-use implementations of some imputation methods that “spot” missing data are
already available in R Harrell et al. (2016); van Buuren and Groothuis-Oudshoorn (2011);
Su et al. (2011); Stekhoven (2013); Honaker et al. (2011). In the context of two-way CTs,
Correa and Vélez (2014) determined the effect of partially missing data on the χ2 test of
association. When the χ2 test is used and the missing information is accounted for in the
statistical analysis (instead of dropping it as usual), the authors found that the χ2 test of
association tends to reject the null hypothesis of independence more often than when the
missing information is dropped. This result holds whenever m, the proportion of missing
information in the two-way CT, is negligible compared to the sample size n (Correa and
Vélez, 2014, section 3.2). Considering that two-way CTs arise frequently in many research
fields, thus it is key to include partially missing data in the analyses. eGDT enables the
researcher to evaluate and graphically represent the effect of small-to-large changes in the
entries of the CT; this feature constitutes a step forward in promoting the use of good
practices for statistical modelling.

Finally, we want to focus on some potential applications of our previously proposed GDT
Vélez et al. (2016) and the eGDT proposed herein. Consider an experiment to evaluate
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whether a newly developed vaccine performs better than the one which is already available
(i.e., the gold standard). The results of such an experiment are usually arranged in a two-
way CT, which is often referred to as a confusion matrix; both vaccines are compared
using performance measures such as sensitivity, specificity, and the positive and negative
predictive values Parikh et al. (2008). These performance measures can be easily added
to the repertoire of the eGDT so it is possible to compare two competitive diagnostic
tools (as in the example above), or determine whether a relatively unknown statistical
method is a plausible alternative Salazar et al. (2012); Vélez et al. (2014, 2015). Further
improvements may include an enhanced version of the eGDT that incorporates Bayesian
inference Gelman et al. (2004); Kerman and Gelman (2006); Congdon (2005) of these
performance measures, as well as an interactive implementation of the eGDT to better
understand potential associations between categorical variables in complex cases. For this
purpose, the R packages such as shiny Chang et al. (2017) and manipulate Allaire (2014)
constitute well-suited alternatives.
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Appendix A. Extended graphical diagnostic test

The R code to perform the eGDT based on the model of independence for contingency
tables includes the following three functions:

(1) runAssocTest(x, c1, c2, k, type).

(2) plotSurface(M, ...).

(3) plotContour(M, ...).

where

x 2× 2 contingency table.

c1 Limits of the y-axis. By default it is the interval c(0,1).

c2 Limits of the y-axis. By default it is the interval c(0,1).

type Defines whether to "add" or "remove" observations, respectively.

k Number of observations to be added/removed. When type = "remove",

the maximum value for k is that for the corresponding cell.

alpha Type I error probability of the test. By default 5%.

lin.col Colour of the horizontal line. By default lin.col = 2 (red).

. . . Additional arguments passed to plot. See ?plot in R for more details.

### ----------------------

### Example

### ----------------------

## load the R code

source(’https://www.dropbox.com/s/yknmfji0wkp7n81/egdt-src.R?dl=1’)

## contingency table in Example 1

x <- matrix(c(6, 2, 4, 8), ncol = 2, byrow = TRUE)

## values of k

k <- -2:5

## run association test when entries 1 and 2 are changed, and the LRT is used

out <- runAssocTest(x, 1, 2, k, type = ’lrt’)
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## 3D and contour plotting

par(mfrow = c(1, 2), mar = c(4, 2, 1, 1))

plotSurface(out, bty = ’b2’, expand = 1, zlim = c(0, 4), theta = -135, phi = 25,

resfac = 5)

plotContour(out)


