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Abstract

Estimation of ordered scale parameters of two exponential populations has been consid-
ered when the location parameter is common using type-II censored samples. Sufficient
conditions for improving affine and scale equivariant estimators have been obtained
when the scale parameters are ordered. A simulation study has been done in order to
numerically compare the risk values of all the proposed estimators.
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1. Introduction

Suppose type-II censored samples are available from two exponential populations with
a common location and possibly different scale parameters. More specifically, let X(1) ≤
X(2) ≤ · · · ≤ X(r) (2 ≤ r ≤ m) and Y(1) ≤ Y(2) ≤ · · · ≤ Y(s) (2 ≤ s ≤ n) be ordered
observations taken from two random samples of sizes m and n which follow Ex(µ, σ1)
and Ex(µ, σ2) respectively. This type of data are known as type-II right censored data.
Here Ex(µ, σi) denotes the exponential population with location parameter ‘µ’ and scale
parameter σi, i = 1, 2. The probability density function of Ex(µ, σi) is given by

f(t, µ, σi) =
1

σi
exp

{
−
( t− µ

σi

)}
, t > µ, σi > 0,−∞ < µ <∞; i = 1, 2. (1.1)

The parameter ‘µ’ which is common to both populations is known as the location param-
eter (equivalently minimum guarantee time) and the σi’s are known as the scale param-
eters (equivalently residual life times). The problem is to estimate the vector parameter
σ˜ = (σ1, σ2) under the assumption that σ1 ≤ σ2 using a decision theoretic approach. The
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loss function is taken as

L(d̂˜, σ˜) =

2∑
i=1

(di − σi
σi

)2
, (1.2)

where d̂˜ = (d1, d2) is an estimator for σ˜ = (σ1, σ2). The performance of an estimator will
be evaluated using the risk function defined as

R(d̂˜, σ˜) = Eσ˜{L(d̂˜, σ˜)}. (1.3)

The problem of estimating parameters of exponential populations using censored
samples is not new in the literature and has been extensively studied by several authors
in the recent past. The censoring schemes available are type-I (number of failures are
random but time is fixed), type-II (time is random but number of failures is fixed) or
random censoring where both the number of failures and the time may be random.
Most of the results available in these directions are based on one population only.
For some recent results and review on estimation of parameters of an exponential
population using these types of censoring schemes we refer to Lawless (1982) and Johnson
et al. (2004). Some applications of these types of censoring schemes have also been
discussed in Lawless (1982). Recently, some advanced censoring schemes have been
developed by several authors which are more or less generalizations of these three types
of censoring schemes. We note that, the type-II right censoring scheme is a particular
case of progressive type-II censoring. For a detailed review and recent updates on
estimating parameters of an exponential population using progressive type-II censored
samples we refer to Madi (2010), Wang et al. (2010) and Balakrishnan and Cramer (2014).

However, a less attention has been paid to estimating the parameters when more than
one exponential population is available. For example, Chiou and Cohen (1984) considered
the estimation of the common location parameter of two exponential populations using
type-II right censored data when the scale parameters are unknown. Elfessi and Pal
(1991) considered the estimation of common scale and the location parameters of k(≥ 2)
exponential populations using type-II right censored data. Yike and Heliang (1999)
considered the Bayesian estimation of ordered location parameters of two exponential
populations under a multiple type-II censoring scheme. Tripathy (2015) obtained classes
of equivariant estimators and derived some inadmissibility results for estimating the
common location parameter of two exponential populations using type-II right censored
data. Herein, we consider the model that has been previously considered by Chiou and
Cohen (1984) and Tripathy (2015) and estimate the vector parameter σ˜ = (σ1, σ2), when
ordering of the scale parameters is known in advance, that is, σ1 ≤ σ2.

The model we consider in this paper has applications in industry, business, medical
research in the study of reliability, life testing and survival analysis. For example, two new
brands of electronic devices say brand A (which uses traditional technology) and brand
B (which uses modern technology), having m(≥ 2) and n(≥ 2) units each are placed for
life testing. The experimenter could observe only r (≤ m) and s (≤ n) number of failures
from brand A and brand B respectively, due to some constraints like time and cost. It
may be noted that, the lifetimes of each unit from the two brands are random and follow
exponential distribution. It is also expected that the minimum guarantee time (µ) for
both brands are the same due to market competition, whereas the residual life time (σ1)
of brand A can not exceed the residual life time (σ2) of brand B. Under this situation one
may be interested in drawing inference on the vector parameter σ˜ = (σ1, σ2). For some



Chilean Journal of Statistics 89

more examples we refer to Jana and Kumar (2015), and Barlow et al. (1972).

The problem of estimating the ordered parameters of various distribution functions
has been studied by several researchers in the recent past, when full samples (r = m,
s = n) are available. For some results on estimation of ordered parameters of two or
more exponential populations we refer to Misra and Singh (1994), Jin and Pal (1991),
Vijayasree et al. (1995), and Jana and Kumar (2015). Some work has been done in
estimating the ordered parameters (means or variances) when the underlying distribution
is normal. We refer to Chang et al. (2012) and Tripathy and Kumar (2011) for some
results on estimating ordered parameters of normal populations.

It should be noted that, for full sample case (r = m, and s = n) Jana and Kumar (2015)
considered the componentwise estimation of ordered scale parameters of two exponential
populations when the location parameter is common. In this paper, we consider the simul-
taneous estimation of ordered scale parameters, that is, the vector σ˜ = (σ1, σ2) : σ1 ≤ σ2

using type-II right censored samples from two exponential populations. The rest of the
paper is organized as follows. Section 2 introduces the MLE and the UMVUE without
considering order restriction on the scale parameters. Then under order restriction on the
scale parameters we derive the restricted maximum likelihood estimator for σ˜. In Section
3, we obtain classes of equivariant estimators and prove some inadmissibility results in
these classes. Using these results we obtain improved estimators which dominate the MLE
and the UMVUE with respect to the risk function (1.3). In Section 4, a detailed simulation
study has been carried out to numerically compare the relative risk performances of all
the proposed estimators and recommendations have been made regarding their use. The
paper concludes with some remarks (Section 5).

2. Some Basic Results

In this section, we consider the model (1.1) and obtain some basic estimators for the vector
parameter σ˜ = (σ1, σ2) assuming that σ1 ≤ σ2. To be very specific, let X(1) ≤ X(2) ≤
· · · ≤ X(r), (2 ≤ r ≤ m) be the r smallest ordered observations taken from a random
sample of size m(≥ 2) which follows Ex(µ, σ1). Likewise let Y(1) ≤ Y(2) ≤ · · · ≤ Y(s),
(2 ≤ s ≤ n) be the s smallest ordered observations taken from a random sample of
size n(≥ 2) following Ex(µ, σ2). We assume that these two samples have been drawn
independently from two populations. Let us denote Z = min(X(1), Y(1)), Vx = Ux − Z,
Vy = Uy−Z, where Ux = [

∑r
i=1X(i) +(m−r)X(r)]/m and Uy = [

∑s
i=1 Y(i) +(n−s)Y(s)]/n.

The complete and sufficient statistics for this problem is given by (Z, Vx, Vy). The joint
probability density function of (Z, Vx, Vy) is given by

fVx,Vy,Z(vx, vy, z) =
mrns

σr1σ
s
2

[ vr−1
x vs−2

y

ΓrΓ(s− 1)
+

vr−2
x vs−1

y

ΓsΓ(r − 1)

]
exp

{
− m

σ1
(vx + z − µ)− n

σ2
(vy + z − µ)

}
,

vx > 0, vy > 0, z > µ.

The statistic Z is independent of (Vx, Vy). In the next lines to follow, when we say the
MLE (the UMVUE) of the vector parameter σ˜ = (σ1, σ2) we mean “the collection of the
MLEs (the UMVUEs) for each component σi and put together to form the vector”.
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When there is no order restriction among the scale parameters σ1 and σ2 the MLE of
σ˜ = (σ1, σ2) is given by

σ̂˜ml =
(m
r
Vx,

n

s
Vy

)
= (σ̂1ml, σ̂2ml), say, (2.1)

(see Tripathy, 2015 and Chiou and Cohen, 1984). The uniformly minimum variance unbi-
ased estimator for the vector σ˜ = (σ1, σ2) is given by

σ̂˜mv =
(m
r

(
Vx + V −1

∗

)
,
n

s

(
Vy + V −1

∗

))
= (σ̂1mv, σ̂2mv), say, (2.2)

where V∗ = ( Vx
r−1)−1 + ( Vy

s−1)−1 (see Tripathy, 2015 and Chiou and Cohen, 1984).

When it is known a priori that the scale parameters follow certain ordering that is
σ1 ≤ σ2, these estimators need not be good enough to estimate the vector σ˜. Hence
improved estimators can be obtained by using its isotonic regression with proper weights.
Using the mini-max formula (see Barlow et al., 1972), one can easily write the restricted
MLEs of both σ1 and σ2 as

σ̂ir = min
i≤t1≤k

max
1≤s1≤i

Av(s1, t1), i = 1, 2,

where

Av(s1, t1) =

∑t1
j=s1

nj σ̂j∑t1
j=s1

nj
, s1 ≤ t1, s1, t1 ∈ {1, 2}.

Here we denote n1 = r and n2 = s. Explicitly we obtain the estimators for σ1 and σ2 as

σ̂1r = min
(m
r
Vx,

mVx + nVy
r + s

)
and σ̂2r = max

(n
s
Vy,

mVx + nVy
r + s

)
.

Using these estimators for σ1 and σ2 we construct the restricted MLE (call it σ̂˜rm) of
σ˜ = (σ1, σ2) as

σ̂˜rm = (σ̂1r, σ̂2r). (2.3)

It is easy to observe that the risk of the MLE σ̂˜ml and the UMVUE σ̂˜mv are respectively
given by

R(σ̂˜ml, σ˜) =
1

r
+

1

s
,

and

R(σ̂˜mv, σ˜) =
1

r
+

1

s
+
{( m

rσ1

)2
+
( n

sσ2

)2}
E(V −2

∗ ).

Theorem 2.1 Let σ̂˜ml and σ̂˜rm be the MLE and the restricted MLE of σ˜ = (σ1, σ2) :
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σ1 ≤ σ2 respectively. Let the loss function be the sum of the quadratic losses as given in
(1.2). Then we have R(σ̂˜ml, σ˜) ≥ R(σ̂˜rm, σ˜).

Proof Consider the risk difference of σ̂˜rm and σ̂˜ml :

∆ = R(σ̂˜rm, σ˜)−R(σ̂˜ml, σ˜)

= K1

∫ ∞
1

(1− z)zr−2{(1 + z)− 2ρ}{z(s− 1)nr + (r − 1)ms}
(rz + sρ)r+s+1

dz

+ K2

∫ ∞
1

(z − 1)zr−2{(1 + z)− 2z/ρ}{z(s− 1)nr + (r − 1)ms}
(rz + sρ)r+s+1

dz

= ∆1 + ∆2, (say),

where K1 = ss+1rr−1Γ(r+s+1)ρs

(r+s)2(m+nρ) , K2 = ss−1rr+1Γ(r+s+1)ρs+2

(r+s)2(m+nρ) and 0 < ρ = σ1/σ2 ≤ 1. It is easy

to observe that, both terms ∆1 and ∆2 are non-positive when 0 < ρ ≤ 1. This completes
the proof of the theorem.

Next, we consider a general class of estimators for estimating the vector σ˜ = (σ1, σ2) and
derive a sufficient condition for improving estimators in this class under the assumption,
that the scale parameters are ordered, that is, σ1 ≤ σ2. Consider the class of estimators

Dc = {d̂˜c = (d̂c1 , d̂c2) : c = (c1, c2), c1, c2 ∈ R}, (2.4)

where d̂c1 = c1Vx, and d̂c2 = c2Vy. This class contains the MLE with choices of c1 = m/r
and c2 = n/s.

To proceed further we define a vector c∗ for the class of estimators Dc as,

c∗ = (min(max(c1, c1∗), c
∗
1),min(max(c2, c2∗), c

∗
2)), (2.5)

where

c1∗ =
m(r(m+ n))−m

mr(r − 1) + nr(r + 1)
, c∗1 =

m

r
, c2∗ =

n

s+ 1
, and c∗2 =

n(s(m+ n))− n
ns(s− 1) +ms(s+ 1)

.

Next, we prove a general inadmissibility result for the class of estimators Dc.

Theorem 2.2 Let d̂˜c be the class of estimators for estimating the vector parameter σ˜ as
given in (2.4) and the loss function be taken as in (1.2). Define a vector c∗ as in (2.5).

Then the class of estimators d̂˜c is inadmissible and is improved by d̂˜c∗ if c 6= c∗.

Proof Let us consider the risk of the estimator d̂˜c with respect to the loss function (1.2).

R(d̂˜c, σ̂˜) = E
( d̂c1 − σ1

σ1

)2
+ E

( d̂c2 − σ2

σ2

)2
.
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The above risk is a convex function in both c1 and c2, hence the minimizing choices of c1

and c2 have been obtained as

ĉ1 =
σ1EVx
EV 2

x

and ĉ2 =
σ2EVy
EV 2

y

.

We note that EVx = r
mσ1 − p−1, EVy = s

nσ2 − p−1, EV 2
x = nσ1

mσ2
p−1{ r(r−1)σ2

n + r(r+1)σ1

m },
EV 2

y = mσ2

nσ1
p−1{ s(s−1)σ1

m + s(s+1)σ2

n } where we denote p = m
σ1

+ n
σ2
. Substituting all these

values and after some simplification we get

ĉ1(ρ) =
m(r(m+ nρ)−m)

mr(r − 1) + nr(r + 1)ρ
, and ĉ2(ρ) =

n(s(m+ nρ)− nρ)

s(s− 1)nρ+ s(s+ 1)m
,

where we denote ρ = σ1/σ2; 0 < ρ ≤ 1.

In order to obtain the result we need to obtain the supremum and infimum of ĉ1(ρ) and
ĉ2(ρ) with respect to ρ for fixed sample sizes. It is easy to observe that the function ĉ1(ρ)
is a decreasing function in ρ (0 < ρ ≤ 1). Hence its infimum is attained as ρ → 1 and
supremum is attained as ρ→ 0. We have

inf ĉ1(ρ) =
m(r(m+ n))−m

mr(r − 1) + nr(r + 1)
= c1∗ and sup ĉ1(ρ) =

m

r
= c∗1.

Similarly the infimum and supremum of ĉ2(ρ) are obtained as

inf ĉ2(ρ) =
n

s+ 1
= c2∗ and sup ĉ2(ρ) =

n(s(m+ n))− n
ns(s− 1) +ms(s+ 1)

= c∗2.

Utilizing these results one can easily define the vector c∗ as given in (2.5). Now using the
orbit-by-orbit improvement technique of Brewster and Zidek (1974), we have proved the
theorem.

Remark 2.1 The class of estimators Dc = {d̂˜c : c = (c1, c2), c1∗ ≤ c1 ≤ c∗1, c2∗ ≤ c2 ≤ c∗2}
is complete.

Remark 2.2 Consider the restricted parameter space σ1 ≤ σ2. The estimator d̂˜c∗ dom-

inates d̂˜c if either c1 ∈ [c1∗, c
∗
1]c or c2 ∈ [c2∗, c

∗
2]c. The MLE σ̂˜ml can not be improved by

using Theorem 2.2 as for the MLE, c1 ∈ [c1∗, c
∗
1] and c2 ∈ [c2∗, c

∗
2]. Here [a, b]c denotes the

compliment of the interval [a, b] for any real numbers a and b.

In the next section, we prove some general inadmissibility results for the classes of affine
and scale equivariant estimators. As a consequence estimators dominating the MLE σ̂˜ml,the UMVUE σ̂˜mv and the restricted MLE σ̂˜rm have been obtained.

3. Improving Equivariant Estimators Under Order Restrictions

In this section, we introduce the concept of invariance to our problem and derive a
sufficient condition for improving estimators which are equivariant under affine group of
transformations.

Let GA = {ga,b : ga,b(x) = ax+ b, a > 0,−∞ < b <∞} be a group of affine transforma-
tions. Let us define, Vx = Ux−Z, Vy = Uy−Z. Under the transformation ga,b, the sufficient
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statistics being transformed as Vx → aVx, Vy → aVy and Z → aZ + b. The parameters
µ → aµ + b, and σ˜ → aσ˜ as σi → aσi, i = 1, 2 such that the ordering remains intact. In
order that the loss function (1.2) to be invariant, the estimator d˜ = (d1, d2) satisfies the
relation

d˜(aZ + b, aVx, aVy) = ad˜(Z, Vx, Vy).
Substituting b = −aZ where a = 1/Vx, and simplifying, we obtain the form of an affine
equivariant estimator for estimating the vector prameter σ˜ based on (Vx, Vy, Z) as,

d˜(Z, Vx, Vy) = Vx(ξ1(V ), ξ2(V )),

= d˜ξ, (say), (3.1)

where ξ = (ξ1, ξ2), V = Vy
Vx

and ξi : [0,∞)→ R, i = 1, 2 are real valued functions of V.
To prove the main result of this section let us define a vector valued function ξ∗ for the

class of estimators d˜ξ as

ξ∗(v) = (min(max(ξ1, ξ1∗), ξ
∗
1),max(ξ2, ξ2∗)), (3.2)

where ξ1∗ = m/(r + s), ξ∗1 = (m+ nv)/(r + s), and ξ2∗ = (m+ nv)/(r + s).

Theorem 3.1 Let d˜ξ be the affine class of estimators as given in (3.1) for estimating
the vector parameter σ˜. Let the loss function be taken as (1.2). Then the estimator d˜ξ is
inadmissible and is improved by d˜ξ∗ if there exist some values of the parameters σ1, σ2;
σ1 ≤ σ2, such that P (d˜ξ 6= d˜ξ∗) > 0.

Proof The proof of the theorem can be done by using a result of Brewster and Zidek
(Brewster and Zidek (1974)). To complete the proof, let us consider the conditional risk
function of d˜ξ given V.

R(d˜ξ, σ˜|V = v) = E
{(dξ1 − σ1

σ1

)2
|V = v

}
+ E

{(dξ2 − σ2

σ2

)2
|V = v

}
.

The above risk function is a convex function of both ξ1 and ξ2. The minimizing choices of
these functions are obtained as

ξ̂1(v) =
σ1E(Vx|V = v)

E(V 2
x |V = v)

and ξ̂2(v) =
σ2E(Vx|V = v)

E(V 2
x |V = v)

. (3.3)

It is easy to observe that, the conditional probability density function of Vx given V = v,
is a gamma distribution with shape parameter ‘r+ s− 1’ and scale parameter ‘ σ1σ2

mσ2+nσ1v
’.

Here the gamma probability density function with a shape parameter ‘α’ and a scale
parameter ‘β’ is defined as

g(x, α, β) =
1

Γ(α)βα
xα−1e−

x

β , x > 0, α > 0, β > 0.

So, the conditional expectations are calculated and are obtained as

E(Vx|V = v) =
(r + s− 1)σ1σ2

mσ2 + nσ1v
, (3.4)
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and

E(V 2
x |V = v) = (r + s− 1)(r + s)

( σ1σ2

mσ2 + nσ1v

)2
. (3.5)

Substituting the conditional expectations from (3.4) and (3.5) in (3.3) and simplifying we
get the minimizing choices as,

ξ̂1(v) =
m+ nρv

r + s
and ξ̂2(v) =

m+ nρv

ρ(r + s)
.

In order to apply the Brewster-Zidek technique (Brewster and Zidek (1974)), it is necessary

to obtain the supremum and infimum of both ξ̂1(v) and ξ̂2(v) for fixed values of v and fixed

values of sample sizes. It is easy to note that ξ̂1(v) is an increasing function of 0 < ρ ≤ 1

for fixed v and m,n, r, s. Hence the infimum and supremum of ξ̂1(v) are obtained as

inf
0<ρ≤1

ξ̂1(v) =
m

r + s
= ξ1∗, say, and sup

0<ρ≤1
ξ̂1(v) =

m+ nv

r + s
= ξ∗1 , say.

Similarly it is easy to obtain the spremum and infimum of ξ̂2 and are given by

inf
0<ρ≤1

ξ̂2(v) =
m+ nv

r + s
= ξ2∗, say and sup

0<ρ≤1
ξ̂2(v) = +∞.

Now using the above results it is easy to define the vector valued function ξ∗ as given
in (3.2). Using Theorem 3.1 of Brewster and Zidek (see Brewster and Zidek (1974)) for
improving equivariant estimators we get R(d˜ξ, σ˜) ≥ R(d˜ξ∗ , σ˜) when 0 < ρ ≤ 1. Hence the
proof is completed.

Remark 3.1 The class of estimators d˜ξ such that ξ1∗ ≤ ξ1 ≤ ξ∗1 and ξ2 ≥ ξ2∗ form an
admissible class of estimators within the class of all estimators of the form d˜ξ.

Next we apply the Theorem 3.1 to obtain improved estimators which dominate the
MLE σ̂˜ml, the UMVUE σ̂˜mv and the restricted MLE σ̂˜rm when σ1 ≤ σ2. We note that, the
estimators σ̂˜ml, σ̂˜mv and σ̂˜rm belong to the class given in (3.1). Applying Theorem 3.1, we
obtain the improved estimators dominating σ̂˜ml, σ̂˜mv and σ̂˜rm respectively as

σ̂˜am = Vx[min(max(ξ1m(V ), ξ1∗(V )), ξ∗1(V )),max(ξ2m(V ), ξ2∗(V )))], (3.6)

where ξ1m(V ) = m/r, ξ2m(V ) = (n/s)V ,

σ̂˜av = Vx[min(max(ξ1v(V ), ξ1∗(V )), ξ∗1(V )),max(ξ2v(V ), ξ2∗(V )))], (3.7)

where ξ1v(V ) = m
r (1 + V

(r−1)V+(s−1)), ξ2v(V ) = n
s (V + V

(r−1)V+(s−1)), and

σ̂˜ar = Vx[min(max(ξ1r(V ), ξ1∗(V )), ξ∗1(V )),max(ξ2r(V ), ξ2∗(V )))], (3.8)

where

ξ1r(V ) =

{ m
r , if m

r Vx ≤
n
sVy,

m+nV
r+s , if m

r Vx >
n
sVy,
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ξ2r(V ) =

{ n
sV, if m

r Vx ≤
n
sVy,

m+nV
r+s , if m

r Vx >
n
sVy.

Remark 3.2 We note that the risk values of the above improved estimators could not be
obtained in closed form. Hence a simulation study has been done in Section 4, to evaluate
numerically the risk performances of all these estimators.

Next, we consider a smaller group of transformations which will lead to form a larger
class of estimators. Consider the smaller scale group of transformations GS = {ga : ga(x) =
ax, a > 0}. With the help of this group structure the sufficient statistics being transformed
as Z → aZ, Vx → aVx and Vy → aVy. Also the parameters µ→ aµ, σi → aσi; i = 1, 2, so
that the vector σ˜ → aσ˜. The loss function (1.2) will be invariant if the estimator δ˜ satisfies
the relation

δ˜(aZ, aVx, aVy) = aδ˜(Z, Vx, Vy).
Choosing a = 1/Vx, and simplifying we get the form of a scale equivariant estimator for
estimating σ˜, based on (Z, Vx, Vy) as

δ˜(Z, Vx, Vy) = Vx(ψ1(U, V ), ψ2(U, V ))

= δ˜ψ, say (3.9)

where U = Z/Vx, V = Vy/Vx and ψ1 and ψ2 are real valued functions of U and V.
Let us define the following functions

ψ0
1 =

m(1 + u) + n(u+ v)

r + s+ 1
, ψ0

11 =
m(1 + u)

r + s+ 1
, ψ0

2 = ψ0
1. (3.10)

For the scale equivariant estimator δ˜ψ define the vector valued function ψ∗ as,

ψ∗ = (ψ∗1, ψ
∗
2) (3.11)

where the functions ψ∗1 and ψ∗2 are defined as

ψ∗1 =

ψ0
1, if u > 0, ψ1 > ψ0

1 or u < 0, ψ1 < ψ0
1, u+ v < 0,

ψ0
11, if u < 0, ψ1 < ψ0

11, u+ v > 0,
ψ1, otherwise.

and

ψ∗2 =

{
ψ0

2, if u < 0, ψ2 < ψ0
2,

ψ2, otherwise.

Theorem 3.2 Let δ˜ψ be the class of scale equivariant estimators for estimating the vector
parameter σ˜ as given in (3.9). Let the loss function be as given in (1.2). Define the vector
valued function ψ∗ as in (3.11). Then the estimator δ˜ψ is inadmissible and is improved by
δ˜ψ∗ if there exist some values of parameters µ, σ1, σ2 : σ1 ≤ σ2, such that P (δ˜ψ∗ 6= δ˜ψ) > 0.

Proof The proof is similar to the proof of the Theorem 3.1.

Next, we use the above result to obtain estimators improving upon the MLE σ̂˜ml, the
UMVUE σ̂˜mv, and the restricted MLE σ̂˜rm. We note that the estimators σ̂˜ml, σ̂˜mv, and
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σ̂˜rm, also belong to the class given in (3.9). As an application of Theorem 3.2, the following
improved estimators have been obtained. The estimator which improves upon σ̂˜ml is given
by

σ̂˜sm = Vx(ψ∗1m, ψ
∗
2m) (3.12)

where

ψ∗1m =

ψ0
1, if u > 0, ψ1m > ψ0

1 or u < 0, ψ1m < ψ0
1, u+ v < 0,

ψ0
11, if u < 0, ψ1m < ψ0

11, u+ v > 0,
ψ1m, otherwise,

ψ∗2m =

{
ψ0

2, if u < 0, ψ2m < ψ0
2,

ψ2m, otherwise,

and

ψ1m =
m

r
, ψ2m =

n

s
Vy.

The estimator which improves upon σ̂˜mv is given by

σ̂˜sv = Vx(ψ∗1v, ψ
∗
2v) (3.13)

where

ψ∗1v =

ψ0
1, if u > 0, ψ1v > ψ0

1 or u < 0, ψ1v < ψ0
1, u+ v < 0,

ψ0
11, if u < 0, ψ1v < ψ0

11, u+ v > 0,
ψ1v, otherwise.

ψ∗2v =

{
ψ0

2, if u < 0, ψ2v < ψ0
2,

ψ2v, otherwise,

and

ψ1v =
m

r

(
1 +

V

(r − 1)V + (s− 1)

)
, ψ2v =

n

s

(
V +

V

(r − 1)V + (s− 1)

)
.

Similarly the estimator which improves upon σ̂˜rm is given by

σ̂˜sr = Vx(ψ∗1r, ψ
∗
2r) (3.14)

where

ψ∗1r =

ψ0
1, if u > 0, ψ1r > ψ0

1 or u < 0, ψ1r < ψ0
1, u+ v < 0,

ψ0
11, if u < 0, ψ1r < ψ0

11, u+ v > 0,
ψ1r, otherwise.

ψ∗2r =

{
ψ0

2, if u < 0, ψ2r < ψ0
2,

ψ2r, otherwise,



Chilean Journal of Statistics 97

and

ψ1r =

{ m
r , if m

r Vx ≤
n
sVy,

m+nV
r+s , if m

r Vx >
n
sVy,

ψ2r =

{ n
sV, if m

r Vx ≤
n
sVy,

m+nV
r+s , if m

r Vx >
n
sVy.

Remark 3.3 The improved estimators σ̂˜sm, σ̂˜sv and σ̂˜sr obtained by using Theorem 3.2
have been numerically compared in Section 4.

4. Numerical Comparisons

In Section 3, we have proposed improved estimators namely σ̂˜am, σ̂˜av, σ̂˜ar, σ̂˜sm, σ̂˜sv, and
σ̂˜sr, for σ˜ = (σ1, σ2) using Theorem 3.1 and 3.2 when there is order restriction on σis
that is, σ1 ≤ σ2. These estimators have been improved upon σ̂˜ml, σ̂˜mv, σ̂˜rm. In Section
2, we have also shown that the estimator σ̂˜rm improves upon σ̂˜ml. It seems impossible to
compare the risk performances of all the estimators analytically. The performance of each
estimator was evaluated numerically using simulations. In order to numerically compare
the performances of all the estimators, we have generated 20,000 random type-II censored
samples each from two exponential populations with a common location parameter µ and
different scale parameters σ1 and σ2 such that σ1 ≤ σ2. It is easy to observe that the
risk function of all these estimators with respect to the loss (1.2) is only a function of τ,
where 0 < τ = σ1/σ2 ≤ 1 for fixed sample sizes m,n, r and s. We note that the risk of the
estimator σ̂˜ml is constant 1/r+ 1/s, however the simulated risk values have been used for
comparison purpose in our simulation. The percentage of relative risk for any estimator σ̂˜(say) with respect to the estimator σ̂˜mv is

PR =
(

1−
Risk(σ̂˜)

Risk(σ̂˜mv)
)
× 100.

It has been observed from our simulation study that the risk values of the estimators
σ̂˜rm, σ̂˜am and σ̂˜ar are very similar, hence for presentation purpose we have excluded the
estimators σ̂˜ar and σ̂˜am.

The censoring factors for the first and second populations are k1 = r/m and k2 = s/n
respectively. We note that the values of k1 and k2 are always lie between 0 and 1. The
simulation study has been done for various combinations of sample sizes and τ ranging
from 0 to 1. The simulated risk values as well as the percentage of relative risk have been
computed for the choices m = n, m 6= n, k1 = k2 and k1 6= k2. The risk values of σ̂˜ml(labeled as MLE) σ̂˜mv (labeled as UMV), σ̂˜rm (labeled as RML), σ̂˜av (labeled as AMV),
σ̂˜sm (labeled as SML), σ̂˜sv (labeled as SMV) and σ̂˜sr (labeled as SRM) have been presented
in the Figures 1 and 2. Specifically we have presented the risk values of all the estimators
for the choices m = n = 8, k1 = k2 = 0.25 (Figure 1(a)), k1 = k2 = 0.75 (Figure 1(b)),
k1 = 0.25, k2 = 0.75 (Figure 1(c)), k1 = 0.75, k2 = 0.25 (Figure 1(d)). The graphs for the
unequal sample sizes m = 12, n = 20, k1 = k2 = 0.25 (Figure 1(e)) and k1 = k2 = 0.75
(Figure 1(f)) are also presented. Similarly, in the Figure 2(a)-2(f) the risk values have
been presented for the sample sizes m = 12, n = 20 and m = 20, n = 12 with various
combinations of k1 and k2 (mentioned in the graphs).
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Figure 1.: Comparison of risk values of various estimators of σ˜.

The following observations have been made from our simulation study (Figure 1 and 2).

(1) The percentage of relative risk performances of each estimator with respect to
σ̂˜mv decreases as the censoring factors for first and second populations k1 and k2

increase from 0 to 1 for fixed values of m,n. However, as the sample sizes increase
for fixed censoring factors (k1 and k2) the percentage of relative risk decreases.

(2) The percentage of relative risk improvement for σ̂˜ml varies between 3% and 41%.
The percentage of relative risk improvement for σ̂˜rm varies between 5% and 46%.
The percentage of relative risk improvement for σ̂˜av varies between 0% and 51%.
The percentage of relative risk improvement for σ̂˜sm varies between 2% and 41%.
The percentage of relative risk improvement for σ̂˜sv varies between 0% and 51%
whereas for σ̂˜sr it is varying between 2% and 46%.

(3) The percentage of risk improvement for σ̂˜rm over σ̂˜ml varies between 0% and 34%.
The percentage of risk improvement of σ̂˜av over σ̂˜mv has been quite significant and
is varying between 1% and 51%. The percentage of risk improvement of σ̂˜sm over
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Figure 2.: Comparison of risk values of various estimators of σ˜.

σ̂˜ml varies between 2% and 27%. The percentage of risk improvement for σ̂˜sv over
σ̂˜mv varies between 0% and 51% however, for σ̂˜sr over σ̂˜rm is very small and is
noticed between 0% and 2%.

(4) The maximum percentage of relative risk improvement has been seen for each
estimator when τ → 1, and k1 and k2 tending to 0.

(5) For small values of τ (∼0), the percentage of relative risk performance of σ̂˜sr has
the highest percentage of relative risk improvement ∼46%. For moderate values of
τ the estimator σ̂˜sr also has the best performance. However, as τ approaches 1, it
competes with σ̂˜av.(6) Similar observations hold for other combinations of r,m and s, n.

(7) Based on above discussion and our simulation study, we recommend using the
estimator σ̂˜sr when the values of τ is moderate or very small (∼0). For large values
of τ ≤ 1 either of the estimators σ̂˜sr or σ̂˜av can be used.

Example 4.1 Suppose two brands (brand A and B) of electronic devices have been intro-
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duced in the market. It is known that the brand A uses traditional methodology where as
brand B uses modern technology. The lifetimes are assumed to follow exponential distri-
bution. It is also expected that the minimum guarantee time for both the products remain
same due to market competition where as the residual life times of brand A never exceeds
the residual life times of brand B. Say 20 units from each brand A and B put for a life test.
Then the following failure times (in hours) from brand A and B have been observed . Brand
A: 760.60, 768.34, 1159.43, 1179.04, 1224.18, 1966.99, 4125.64, 4216.05, 7554.39, 8415.60,
Brand B: 259.29, 698.10, 857.57, 1471.89, 1987.32, 3486.55, 4922.22, 4941.09, 5333.26,
5869.24. Here m = n = 20 and r = s = 10. On the basis of these type-II censored samples
we can easily compute Z = 259.29, Vx = 5517.01 and Vy = 4166.65. The various estima-
tors for the vector parameter σ̂˜ = (σ1, σ2) are computed as, σ̂˜ml = (11034.04, 8333.30),
σ̂˜mv = (11561.56, 8860.82), σ̂˜rm = (9683.67, 9683.67), σ̂˜av = (9683.67, 9683.67), σ̂˜sm =
(9716.44, 8333.30), σ̂˜sv = (9716.44, 8860.82), σ̂˜sr = (9683.67, 9683.67). In this situation we
recommend to use the estimator σ̂˜sr.

5. Conclusions

In this article, we have considered the simultaneous estimation of ordered scale parameters
σis using type-II right censored samples from two exponential populations with common
location parameter in a decision theoretic approach. We note that Jana and Kumar (2015)
considered the componentwise estimation of ordered scale parameters when full samples
(that is r = m, s = n) are available from two exponential populations. We have succeeded in
applying Brewster and Zidek (1974) technique for simultaneous estimation of parameters.
We have derived a sufficient condition for improving estimators belonging to a broad class
of equivariant estimators. This class contains the MLE, and the UMVUE for estimating
σ˜. As a consequence, estimators dominating the MLE, and the UMVUE in terms of risk
values are obtained using the prior information σ1 ≤ σ2. In fact the results obtained in
this paper generalizes some of their results for simultaneous estimation of ordered scale
parameters σis using samples from two exponential populations with a common location.
Below we discuss an example where our model fits well and compute estimates for the
ordered scale parameters σis.
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