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Abstract

Polytomous responses modeling, particularly ordinal ones, has been the subject of in-
creasing interest in recent years. It has been gaining ground in research on quality of
life and health status indicators, among other topics. Its use ranges from cross-sectional
studies, which assume independence between observations, to longitudinal studies, in
which two or more responses from the same individual are observed over time. There
are several methods proposed in the literature to model data of this nature in cross-
sectional studies, and in practice the most common is the proportional odds model.
There is also the partial proportional odds model, which generalizes the proportional
odds model and allows for non-proportionality in a subset of covariates. In longitudinal
studies, the usual models - marginal and generalized linear mixed (conditional) models
- for analysis of correlated data can also be used to model polytomous responses. In this
paper, models for ordinal polytomous responses are discussed from an applied perspec-
tive of conditional and marginal structures. The specification and interpretation of the
models are illustrated and discussed by analyzing two real data sets.

Keywords: conditional models · marginal models · ordinal responses · partial propor-
tional odds model · proportional odds model.

Mathematics Subject Classification: Primary 62J12 · Secondary 62P10.

1. Introduction

In recent years, many methods have been proposed for modeling polytomous responses,
and the interest in this type of modeling has been growing for both cross-sectional and
longitudinal studies. In epidemiology, for example, there is often interest in estimating the
risk of adverse events, and researchers may choose to classify the response of interest into
two or more categories to estimate the relative risk or odds ratio, depending on the design
of the study (Ananth and Kleinbaum, 1997). The use of ordinal polytomous responses has
gained significant ground in studies on quality of life, health status indicators, and even in
evaluating the severity of certain diseases. In clinical trials, responses on an ordinal scale
are often used to quantify the symptoms or condition of a patient, and they may be used
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to evaluate the effectiveness of post-operative procedures (Parsons et al., 2009).
Typical approaches for analyzing longitudinal data can be used to model polytomous

responses. For instance, using the marginal approach, some authors proposed different
procedures for modeling polytomous responses in longitudinal studies. In most studies,
the authors adopted the generalized estimating equations (GEE1) proposed by Liang and
Zeger (1986) and Zeger and Liang (1986), and made use of the proportional odds model.
Clayton (1992), for instance, considered GEE1 to model ordinal responses, but rewrote it
based on binary variables and used the proportional odds model to fit the models. Heagerty
and Zeger (1996) proposed a new set of estimating equations to analyze correlated ordinal
responses. These authors have extended the proposed method of Carey et al. (1993) to
accommodate correlated ordinal responses, simultaneously modeling the parameters of
marginal mean and association.

In addition to the class of marginal models, numerous studies have suggested model-
ing ordinal responses by using conditional models. Hedeker and Gibbons (1994) proposed
a random effects model for analyzing ordinal responses in longitudinal studies that uses
probit and logistic link functions, using multilevel terminology. Hedeker and Mermelstein
(1998, 2000) described an extension of the proportional odds model for longitudinal data
allowing non-proportionality of odds in a subset of the predictor variables. Hedeker and
Gibbons (1994, 2006) also presented a model within a multilevel representation that ac-
commodates multiple random effects for analyzing longitudinal ordinal responses, in which
variables can be included to explain inter and intra-individual variations.

Even though, there is available literature proposing a variety of methods for analysis
of polytomous responses, they are presented in a fragmented way. Thus, in this paper,
the literature on marginal and conditional models are systematized and summarized to
model ordinal polytomous responses in longitudinal studies. Model’s specification is fully
presented to provide a comprehensive overview of these methodologies for the reader. Dif-
ferences in the interpretation of the results from distinct methodologies are highlighted
and illustrated by analyzing two real data sets. In the first one, data from an epidemiolog-
ical study conducted with 635 children up to 5 years of age, for which the main objective
was to assess the impact of rainwater harvesting systems on children’s health, is used.
The second application relates to a study of 49 pregnant women who were followed until
delivery, which aimed to compare two methods of analgesia for pain during labor. The two
data sets differ in sample size, in balance, in the number of repeated measurements per
individual, and also in the equidistance of the time measurements. It is important to note
that the choice of modeling strategy in a longitudinal study depends essentially on the
question of interest to the researcher. In the following sections, marginal and conditional
classes of models are presented for ordinal responses.

This paper is organized as follows. Section 2 presents in full details the two real data
examples involving ordinal longitudinal responses. Detailed specifications for the models for
analyzing longitudinal ordinal responses from the perspective of marginal and conditional
approaches are presented in Section 3. Results from the models fitted for both examples
are presented and discussed in Section 4. Finally, the paper ends with some final remarks
in Section 5.

2. Motivating datasets

Two real data examples involving ordinal longitudinal responses are described in this
section. The first one, in Section 2.1, is related to parasitic level measured three times in
a year period and the second one, in Section 2.2, is related to pain intensity during labor
measured repeatedly in an ordinal scale since application of anesthesia until delivery.
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2.1 Study on rainwater harvesting systems and children’s health

A prospective cohort epidemiological study was conducted with 635 children up to 5 years
old, who were selected and monitored for a period of one year (2009-2010). The main objec-
tive of the study was to evaluate the impact of the implementation of rainwater harvesting
systems, built mostly by the One Million Cisterns Program (Programa 1 Milhão de Cister-
nas - P1MC), on health of children in rural families living in Chapada do Norte and Berilo,
in Médio Vale do Jequitinhonha-Minas Gerais-Brazil. In the first stage of the study, half of
the children had access to cisterns for storing rainwater (Group 1), and the other half did
not have (Group 2) (Fonseca, 2012). In the study, two health indicators were analyzed: the
occurrence of diarrhea and the presence of intestinal parasites (protozoa diners: Endolimax
nana, Entamoeba coli and Iodamoeba butschlii; pathogenic protozoa: Entamoeba histolyt-
ica/ dispar and Giardia lamblia; helminths: hookworm, Ascaris lumbricoides, Hymenolepis
nana, Enterobius vermicularis, Strongyloides stercoralis and Trichuris trichiura) in three
longitudinal study phases. The response of interest is the parasitic level (1: poly-infected
child; 2: monoinfected child; 3: uninfected child). Each child was evaluated at three phases
of the study: baseline, 6 months after the beginning of the study and, finally, one year from
the beginning. The predictor variables are group (1: with cistern; 0: without cistern) and
age of the children at baseline, in months. The proportion of older children (≥24 months)
at baseline are slightly higher in the cistern group (63.8%) compared to those without
cistern (55.8%). Furthermore, 13.2% of children under 12 months were infected (mono- or
poly-infected) in the baseline, while this percentage was 59.8% for older children (≥ 24
months). Analyses presented here include information for 635 children who had parasitic
level measured in at least one of the phases of the study.

Figure 1. Trend plots for: (a) Proportion of monoinfected children and (b) Proportion of poly-infected children in
the three phases of the study by cistern group

Figure 1 shows the proportion of monoinfected and poly-infected children by cistern
group at three phases of the study. It is observed that the proportion of poly-infected
children is relatively higher in the group with cistern for the three phases of the studies,
while the opposite behavior was observed for mono-infection.

2.2 Study on analgesia in childbirth

This study was conducted in Minas Gerais state, Brazil, in order to compare two tech-
niques of analgesia for labor pain. There were 49 patients who were monitored throughout
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labor until birth of the child. Normal delivery was expected and indicated by the medical
doctors to all patients included in the study. Pain intensity was subjectively assessed by
the patient, and measurements of blood pressure, maternal heart rate, consumption of
oxytocin, sedation level, signs of respiratory depression, apnea, and other variables were
recorded every 5 minutes during the first 30 minutes after the onset of anesthesia, and
thereafter every 30 minutes until delivery. One of the used techniques was epidural anal-
gesia (the gold standard), which is a local anesthetic. The other one, whose efficiency was
to be compared to the gold standard, involved continuous intravenous infusion of remifen-
tanil, an opioid that has an onset of action within 1 to 3 minutes. Among the 49 pregnant
women, 33 received epidural anesthesia and 16 received remifentanil. The intensity of the
pain normally depends on the degree of uterine cervix dilatation, and it is generally mild.
It is of a colic-type in the initial period, when the dilatation of the cervix is less than 3
cm, and the pain becomes more intense with the progression of labor (Soares, 2013).

The response of interest is the intensity of pain as measured by a Visual Analog Scale
(VAS) (1: tolerable and mild pain; 2: moderate pain that causes discomfort; 3: intense and
unbearable pain), and it was measured every 5 minutes (5, 10, 15, 20, 25, 30 minutes)
for the first half hour after anesthesia, and thereafter every 30 minutes until delivery (60,
90, 120, ..., minutes). Only measurements from the first 90 minutes were used for data
analysis. Thus, 0, 5, 10, 15, 20, 25, 30, 60, 90 minutes denotes the time points at which the
intensity of pain was assessed. Time 0 refers to the time immediately before to anesthesia.
Predictor variables considered were the treatment group (0: peridural; 1: remifentanil) and
patient age.

Figure 2 shows the trajectories, by treatment group, for probability of pain during the
follow-up of 90 minutes. According to descriptive analysis, there is a difference between the
groups regarding pain intensity, and the probability of intense pain, for example, is higher
among pregnant women in the group receiving remifentanil. We observed that the women
receiving epidural anesthesia are slight older than those receiving remifentanil. However,
due to small sample sizes, we were not able to describe the data by age groups.

Figure 2. Probability of pain intensity in the two treatment groups for the first 90 min of follow-up

3. Longitudinal data set modeling

In a longitudinal study, participants are referred to as individuals or subjects. Accordingly,
the response of the i-th individual, i = 1, 2, . . . , n, taken repeatedly over time, is defined
as Yij , and may be grouped into a mi × 1 vector represented by Yi = (Yi1, . . . ,Yimi

)T ,
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with j = 1, . . . ,mi, where mi represents the number of measures over time. Here Yij is
an ordinal categorical response assuming values from 1 to K. There is a p × 1 vector of
predictor variables associated with each Yij that may or may not change over time, i.e.,
Xij = (Xij1, . . . ,Xijp)

T .
Marginal and conditional cumulative logit models for ordinal longitudinal data are pre-

sented in this section. GEE (Generalized Estimating Equations) is presented in Section
3.1 and Conditional model in Section 3.2. In section 3.3 the proportionality assumption of
odds will be discussed.

3.1 Marginal model

Marginal model for ordinal response Yij can be generally defined as a partial proportional
odds model (Peterson and Harrell, 1990). A natural extension of this model for longitudinal
data is given by:

log

[
P(Yij ≤ k|Xij , X̃

T
ij)

1− P(Yij ≤ k|Xij , X̃T
ij)

]
= γk + XT

ijβ + X̃T
ij%k, k = 1, 2, . . . ,K − 1. (1)

Model (1) is an extension of the proportional odds model (McCullagh, 1980; Walker and

Duncan, 1967), in which the effect %k varies according to the k cutoff responses, with X̃ij

being a subset of Xij for which the effect varies with k. If %k = 0, then model (1) reduces
to the proportional odds model.

In the proportional odds model, changes in the K − 1 cumulative logits over time are
related to the predictor variables. Although the model includes K − 1 intercepts γk, it
assumes that the effects of predictor variables are the same across the K − 1 logits, which
is equivalent to assuming that the effects of predictor variables on the cumulative odds are
proportional (Fitzmaurice et al., 2011). One advantage of the proportional odds model is
that regardless of the number of categories, the interpretation of the slope parameter is the
same. Another desirable feature is that the slope parameter exponentiated is interpreted
as an odds ratio.

Thus, in a study whose response has, for example, 3 ordered categories, we have 2
cumulative logits based on cumulative probabilities of the model (1):

logit1 = log

[
P(Yij ≤ 1|Xij , X̃

T
ij)

1− P(Yij ≤ 1|Xij , X̃T
ij)

]
= γ1 + XT

ijβ + X̃T
ij%1

and

logit2 = log

[
P(Yij ≤ 2|Xij , X̃

T
ij)

1− P(Yij ≤ 2|Xij , X̃T
ij)

]
= γ2 + XT

ijβ + X̃T
ij%2.

The logits 1 and 2, respectively, represent the log of the odds for the most favorable cat-
egory compared to other categories, and the log of odds for the 2 most favorable categories
compared to the last category.

The cumulative probabilities might be modelled treating the ordinal response as a set
of K − 1 variables of the form:

Uijk =

{
1, if Yij ≤ k
0, if Yij > k.

A general specification of the marginal model for ordinal responses follows by:
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(1) logit (Fijk) = γk + XT
ijβ + X̃T

ij%k, in which Fijk = E(Uijk) = P(Yij ≤ k);

(2) Var(Uijk|Xij , X̃ij) = Fijk(1− Fijk);
(3) when specifying the intra-individual association, the correlation between the com-

ponents of (Uij,1, . . . ,Uij,K−1) in the j-th time point is a known function of Fijk.

The components of (Uij,1, . . . ,Uij,K−1) in part 3 above are correlated, and this cor-
relation follows from the fact that the probabilities of K multinomial responses must
necessarily add up to 1 for a given point in time (Hedeker and Gibbons, 1994). Thus, for
instance, the correlation between Uijk1 and Uisk2 can be expressed by:

Corr(Uijk1 ,Uisk2) =
Fijk1 − Fijk1Fisk2√

Fijk1Fisk2(1− Fijk1)(1− Fisk2)
.

As an alternative to using models for correlation, it is possible to specify the association
between pairs of ordinal responses by making use of the overall odds ratio as a measure of
association. Lipsitz et al. (1991) used the odds ratio as a measure of association when the
response of interest is binary, in contrast to the model for correlation proposed by Prentice
(1988), while Heagerty and Zeger (1996) considered the overall odds ratio as a measure
of association when defining the marginal model for a pair of ordinal repeated responses.
Thus, the overall odds ratio for the i-th individual, with responses Yis = k1 and Yij = k2,
is defined as:

αisj(k1, k2) =
F isj(k1, k2)

[
1− Fisk1 − Fijk2 + F isj(k1, k2)

][
Fisk1 − F isj(k1, k2)

] [
Fijk2 − F isj(k1, k2)

] , (2)

in which F isj(k1, k2) = P(Yis ≤ k1,Yij ≤ k2).
The parameter αisj(k1, k2) in expression (2) can be seen as a marginal odds ratio, which

seeks to capture the association between pairs of responses Yis and Yij in categories k1

and k2, respectively.
The estimation of the parameters in the marginal model for ordinal responses is done

using the GEE extension proposed by Heagerty and Zeger (1996). According to these
authors, if the primary interest is to estimate the parameter β, the 1st order estimating
equations are given by:

U?1 (β,α) =

n∑
i=1

[
∂µi
∂β

]T
V−1
i11(Ui − µi(β))

and

U?2 (β,α) =

n∑
i=1

[
∂σi
∂α

]T
V−1
i22(Si − σi(β,α)),

µi = g−1(logit(Fijk)); Vi11 = A
1/2
i Ri(α)A

1/2
i , where Ai is a diagonal matrix such that

Ai = diag{Var(Uijk|Xij , X̃ij)}; Ri(α) is a mi×mi matrix, known as the “working correla-
tion matrix”; Ui = (UT

i1, . . . ,U
T
imi

)T ; and Vi22 denotes a covariance matrix corresponding
to the following Kronecker product: Si(s,j) = (Uis − µis) ⊗ (Uij − µij). Furthermore,
σi = E(Si).

Estimation of β and α in the marginal model for ordinal responses is analogous to the
Lipsitz et al. (1991) proposition. The difference for ordinal responses is that the covariance
matrix for the vector of responses has a block-diagonal structure, with the covariance



Chilean Journal of Statistics 57

determined by µi. Thus, the following algorithm summarizes the estimation process for
GEE1 in the case of ordinal responses:

(1) Obtain initial estimates for (β̂
(0)
, α̂(0)). In general, it is assumed that α(0) = 0, and

β̂
(0)

is estimated from a proportional odds model for independent observations;
(2) Using the iterative Gauss-Seidel process, β and α are updated, and the process

continues until convergence is achieved, such that:

β̂
(m+1)

= β̂
(m)

+

(
n∑
i=1

[
∂µi
∂β

]T
V−1
i11

[
∂µi
∂β

])−1( n∑
i=1

U?1 (β(m),α(m))

)
,

α̂(m+1) = α̂(m) +

(
n∑
i=1

[
∂σi
∂α

]T
V−1
i22

[
∂σi
∂α

])−1( n∑
i=1

U?2 (β(m),α(m))

)
.

Parameter α is treated as a perturbation in the 1st order GEEs. This set of parameters
was initially estimated by the method of moments (Liang and Zeger, 1986; Zeger and Liang,
1986). Carey et al. (1993) proposed the use of ALR (Alternating Logistic Regression)
and the parameter α was estimated by using the odds ratio as a measure of association.
Heagerty and Zeger (1996) extended the method of Carey et al. (1993) to accommodate
ordinal responses, and used the global odds ratio as a measure of association. In this case,
a second estimation equation for parameter α is given by:

U??2 (β,α) =

n∑
i=1

[
∂ξi
∂α

]T
M−1

i (U?
i − ξi) = 0, (3)

where ξi(s,j)(k1,k2) = E(Uis,k1 |Uij,k2); Mi = diag[ξi(1− ξi)]; and U?
i is defined as:

U?
i = ((Ui1 ⊗ 1K)T , (Ui2 ⊗ 1K)T , . . . , (Ui(mi−1) ⊗ 1K)T )T .

In the Kronecker product, a vector of 1’s is used to represent the fact that the elements
of vector Uij are repeated K times. In addition, (U?

i − ξi) represents the conditional
residual formed by all different pairs of ordinal responses, where ξi = E(U?

i |U??
i ), and

U??
i = ((1K ⊗Ui2)T , (1K ⊗Ui3)T , . . . , (1K ⊗Uimi

)T )T .
Estimating equation (3) is nothing more than a regression of U?

i on U??
i , where the

conditional expectations are given by ξi. The estimation algorithm for ALR is similar to
the one previously described for 1st order GEEs, alternating between steps to update α and
β. Estimation of β via ALR has the same robustness and consistency as those obtained by
GEE1, the difference lies in the efficiency of parameter α (Heagerty and Zeger, 1996). The
asymptotic normality of (β, α) shown by Liang and Zeger (1986) applies to the estimation
for ordinal response models. Thus, the asymptotic variance of the ALR estimators is given
by:

V =

[
n∑

i=1

E
(
DT

1iB1iD1i

)]−1

×

{
n∑

i=1

E

[(
U?

1i
U??

2i

)(
U?

1i
U??

2i

)T
]}
×

[
n∑

i=1

E
(
DT

1iB1iD1i

)]−1

, (4)

where D1i =

[
∂µi

∂β 0

0 ∂ξi
∂α

]
; and B1i =

[
Vi11 0

0 Vi22

]−1

.
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It is worth noting that the marginal model has focused on the inferences about the
population mean, and it is one of the most popular methods in longitudinal modeling
being solely based on assumptions about the average response.

3.2 Conditional or Mixed models

The conditional model (in the sense of a random effect) for cumulative probabilities can
be described as in Hedeker and Mermelstein (2000), in terms of the following logit:

log

[
P(Yij ≤ k|bi,Xij , X̃ij)

1− P(Yij ≤ k|bi,Xij , X̃ij)

]
= γk+XT

ijβ+X̃ij%k+ZTijbi, k = 1, 2, . . . ,K−1, (5)

Zij is a q-vector of predictor variables that is a subset of Xij , usually those ones that change
over time, and bi ∼ Nq(0,G). Again, if the effect %k in (5) is zero, then the expression
reduces to the proportional odds mixed effects.

A general specification for the model of mixed effects in ordinal responses considers:

(1) logit
(

P(Yij ≤ k|bi,Xij , X̃ij)
)

= γk + XT
ijβ + X̃ij%k + ZTijbi;

(2) conditional to the vector of random effects bi, the values of Yij are independent
and have a multinomial distribution for j = 1, . . . ,mi;

(3) the effects bi are assumed to follow a multivariate normal distribution with mean
0 and a q× q covariance matrix G (for a model with random slopes and intercept).

Thus, the accumulated logits for a response Yij that has, for example, three categories
can be expressed as:

log

[
P(Yij ≤ 1|bi,Xij , X̃ij)

1− P(Yij ≤ 1|bi,Xij , X̃ij)

]
= log

[
P(Yij = 1|bi,Xij , X̃ij)

P(Yij = 2 or 3|bi,Xij , X̃ij)

]
= γ1 + XT

ijβ + X̃T
ij%1 + ZT

ijbi

and

log

[
P(Yij ≤ 2|bi,Xij , X̃ij)

1− P(Yij ≤ 2|bi,Xij , X̃ij)

]
= log

[
P(Yij = 1 or 2|bi,Xij , X̃ij)

P(Yij = 3|bi,Xij , X̃ij)

]
= γ2 + XT

ijβ + X̃ij%2 + ZT
ijbi.

Therefore, for an ordinal response containing three categories, the model simultaneously
describes the effects of predictor variables under all K−1 comparisons between the proba-
bilities (Hedeker and Mermelstein, 2000). The inclusion of random effects in the model has
implications for the interpretation of the parameters. Conditional at the random effect, a
model as in (5) has the same slope, but different bi for all subjects. Therefore, the inter-
pretation of the regression coefficients in this class of models is done at individual level,
and conditional to the random effect.

After the three specifications of the mixed model for ordinal responses, it follows that
the joint probability for Yi and bi can be expressed as: f(Yij ,bi) = f(Yij |bi)f(bi) and
likelihood function is expressed by:
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L(Yi|β, %k,G) =

n∏
i=1

∫
bi

mi∏
j=1

f(Yi|Xij , X̃ij ,bi)f(bi)dbi (6)

=
n∏

i=1

∫
bi

mi∏
j=1

[
K∏

k=1

(
P(Yi ≤ k|Xij , X̃ij ,bi)− P(Yi ≤ k − 1|Xij , X̃ij ,bi)

)Ii,k]
f(bi)dbi

=

n∏
i=1

∫
bi

mi∏
j=1

 K∏
k=1

 eγk+XT
ijβ

T+X̃T
ij%

T
k

1 + e
γk+XT

ijβ
T+X̃T

ij%
T
k

−
eγk−1+XT

ijβ
T+X̃T

ij%
T
k−1

1 + e
γk−1+XT

ijβ
T+X̃T

ij%
T
k−1

Ii,k
 f(bi)dbi,

where Ii,k =

{
1, if Y = k
0, otherwise

.

Parameters of the mixed model are estimated by maximizing the function in (6). It is
necessary to use numerical approximation methods, such as Laplace or Gaussian quadra-
ture, because this expression has no closed form. It is also possible to use the method
of penalized quasi-likelihood (PQL). In some situations the PQL method is preferable to
approximate numerical methods due to the computational time being much greater in this
last method.

3.3 Proportionality Assumption

The cumulative logit model, commonly known as proportional odds model (McCullagh,
1980; Walker and Duncan, 1967), is one of the most used in the modeling of ordinal
responses, and considers that each cumulative logit has its own intercept. The proportional
odds model assumes that all the odds ratio are identical between the K − 1 intercepts,
that is, the model assumes that all observations have a common variance, implying that
there is an approximately linear growth of the odds ratio. According to McCullagh (1980),
the parameters γk are of little interest in the interpretation of the model, and are usually
referred to as cut-off points. The parameter β describes the increase in the log of odds
for any category of response. In the expression described in (1), if %k = 0, we have the
proportional odds model.

The assumption that βk = β, ∀k, that is, the odds are proportional, can be verified
individually or globally via likelihood ratio test (LRT) or a test based on score statistic. The
global test evaluates only if the model violated the global assumption of proportionality
of the odds. From the global test is not possible to identify which covariates violated the
assumption. To assess each covariate individually, we also use a likelihood ratio test or the
test based on score statistic whose asymptotic distribution in this case will be chi-square
with K − 1 degrees of freedom.

In marginal modeling the global assumption of proportionality of odds can be verified
through a score test (Stiger et al., 1999), given by:

S = U?T1 V−1U?1, (7)

where U?1 is the 1st order estimating equation; and V is the asymptotic variance, known
as sandwich estimator. Under null hypothesis, the score statistic in (7) has an asymptotic
chi-square distribution with (K − 2)× p d.f., where p is the number of predictor variables
in the model. When the assumption of proportionality of odds applies to some but not all
of the covariates, the model (1) can be used to obtain the parameter estimates.

As in the marginal modeling, the global assumption of proportionality of odds can also be
checked in the conditional modeling. In this case a LRT can be used, where the deviance of
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the model assuming proportional odds (DevPO) is compared to the deviance of the partial
proportional odds model (DevPPO). The test statistic is given by:

LRT = −2 ln
[
L(Yi|β,G)− L(Yi|β, %k, X̃ij ,G)

]
(8)

= DevPO −DevPPO.

Under the null hypothesis, the asymptotic distribution of statistics in (8) is chi-square
with degrees of freedom given by l = (d.fPPO − d.fPO) (Hedeker and Gibbons, 1994).

4. Data applications and results

In this section the marginal and conditional models for ordinal response presented previ-
ously are used in the two real data applications, which were described in subsections 2.1
and 2.2.

Adjustments were made using the R-3.2.0 (R Core Team, 2015) and SAS 9.0 (SAS
Institute Inc., 2002) softwares. For fitting the marginal proportional odds model, the func-
tions ordgee(·), from the geepack library, and repolr(·), from the repolr library, were
used in R. Such functions use an extended method from those proposed by Heagerty and
Zeger (1996). The repolr(·) function also tests, through score statistics, the assumption
of proportional odds. Different structures (exchangeable, unstructured, and independent)
were used for the working matrix R(α). For fitting the marginal partial proportional odds
model in SAS, the Proc GENMOD was used. The functions clmm(·) and clmm2(·) from the
ordinal library in R software were used for fitting the conditional models. Adaptive Gaus-
sian quadrature, with 50 points, was considered. Syntax for fitting the models described
in this paper using R and SAS are available in the supplementary online material.

4.1 Rainwater harvesting systems and child health

In this application the response variable is the parasitic level (1: poly-infected child; 2:
monoinfected child; 3: uninfected child) of the child i adjusted at each phase j = 1, 2, 3
of the study. The predictors variables considered were the treatment group, phase of the
study and age of child.

The global assumption of proportional odds was evaluated for the marginal model by
the score test, and the test indicated that the assumption was violated (p-value=0.014).
For the conditional model the global assumption of proportionality of odds was tested by
LRT test, and it was also rejected (p-value<0.001). In both models all variables violated
the assumption of proportionality of odds (p-values< 0.05), so XT

ijβ = 0. For this reason,
it was decided to consider the partial proportional odds model, which ensures that the
effects of all variables vary according to the category of response. The partial proportional
odds models considered in the final adjustment were:

− Marginal model:

log

[
P(Yij ≤ k|X̃ij)

1− P(Yij ≤ k|X̃ij)

]
= γk + %1kgroupij + %2kphasej + %3kagei.
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− Conditional models:

log

[
P(Yij ≤ k|bi, X̃ij)

1− P(Yij ≤ k|bi, X̃ij)

]
= γk + %1kgroupij + %2kphasej + %3kagei + bi,

log

[
P(Yij ≤ k|b1i,b2i, X̃ij)

1− P(Yij ≤ k|b1i,b2i, X̃ij)

]
= γk+%1kgroupij+%2kphasej+%3kagei+b1i+b2iphasej ,

for k = 1, 2, 3, j = 1, 2, 3 and i = 1, . . . , 635.
The marginal partial proportional odds model was adjusted considering the structures

independent and exchangeable for the working matrix R(α). We were unable to adjust the
unstructured form for R(α) since this structure was not available in the proc GENMOD
(SAS 9.0). Due to the significance of the parameter α in exchangeable structure, this
was the chosen structure for R(α). Table 1 presents partial proportional odds estimates.
The interpretation of the estimated parameters in this model considers that the %k effect
differs for each cumulative logit. For example, it can be observed that the odds of poly-
infection for children in house with cistern is 1.95(e0.667) times the odds of those who did
not have one. Calculating the cumulative effect of mono or poly infection, it is observed
that the odds decreases (e−0.103 = 0.902) for children who have cistern at home compared
to children who did not have one. There is an increased odds of poly-infection for each
one-month increase in the child’s age (e0.014 = 1.014), the same was true for the odds
of mono or poly-infection (e0.020 = 1.02). Across different phases, there is a reduction in
the odds of mono or poly-infection (e−0.036 = 0.96). Exchangeable association structure
indicates that the odds of a child with mono or poly-infection in one phase remains in such
condition in the next phase is 2 (e0.692). Because of the association structure, there is an
equal odds that a non-infected child in a particular phase remains in such condition in the
next phase.

Table 1. Estimates for the marginal partial proportional odds model in the study on rainwater harvesting systems

and child health

R(α) independent R(α) exchangeable

Variable β̂ SE p-value β̂ SE p-value
γ1 -2.312 0.311 - -2.342 0.311 -
γ2 -1.478 0.152 - -1.506 0.152 -
Group1 (with cistern) 0.667 0.203 0.001 0.667 0.203 0.001
Group2 -0.127 0.117 0.278 -0.103 0.117 0.377
Age1 0.013 0.008 0.080 0.014 0.007 0.065
Age2 0.020 0.004 <0.001 0.020 0.004 <0.001
Phase1 -0.037 0.185 0.044 -0.036 0.018 0.049
Phase2 0.005 0.011 0.633 0.001 0.011 0.607
α̂∗ - 0.692 0.137 <0.001
∗ intra-individual association based on the log of odds ratio

The conditional partial proportional odds model considers random effects only in the
intercept (lowest AIC when compared to the model with random effect in the intercept
and slope) (Table 2).

It can be observed from the conditional partial proportional odds model results that
given two children with the same random effects, the odds of poly-infection are greater
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Table 2. Parameter estimates for the conditional partial proportional odds model in the study on rainwater har-

vesting systems and child health.

Conditional Conditional
Variable random intercept random intercept and slope

β̂ SE β̂ SE
γ1 -3.623 0.432 -3.614 0.416
γ2 -1.526 0.214 -1.522 0.215
Group1(with cistern) 0.557 0.214∗ 0.511 0.215∗

Group2(with cistern) -0.124 0.118 -0.123 0.118
Age1 0.033 0.008∗ 0.033 0.008∗

Age2 0.019 0.004∗ 0.019 0.004∗

Phase1 -0.191 0.135 -0.177 0.134
Phase2 0.032 0.070 0.029 0.071
g11 = Var(b1i) 0.046 0.046
g22 = Var(b2i) 0.042
AIC 2198.98 2200.44
∗ p-value significant

among those in the group with cistern (e0.557 = 1.75) as compared to those in the group
without cistern. Moreover, conditioned on the random effect, the odds of poly-infection
increases with each additional month of child’s age (e0.033 = 1.04). The same occurs with
the chance of mono or poli infection (e0.019 = 1.02). It is important to note that although
the phase of the study was not statistically significant, there is a reduction (e−0.191 = 0.826)
in the odds of poly-infection over time among children who have the same random effect.

4.2 Analgesia in childbirth

For this application the response variable is pain intensity (1: tolerable and mild pain; 2:
moderate pain; 3: intense and unbearable pain) for the parturient i fitted at each time
j = 0, 5, 10, 15, 20, 25, 30, 60, 90, in minutes. The predictors were the treatment group, age
of parturient and the time until the child-birth.

For the marginal model, the global assumption of odds proportionality was tested
using the score test, and it was not rejected (p-value=0.07). The same occurred
with the conditional model using the LTR test (p-value=0.08). Thus, in this application

X̃ij%k = 0, and the following proportional odds models are assumed to be the final models:

− Marginal model

log

[
P(Yij ≤ k|Xij)

1− P(Yij ≤ k|Xij)

]
= γk + β1groupi + β2agei + β3timej .

− Conditional models

log

[
P(Yij ≤ k|bi,Xij)

1− P(Yij ≤ k|bi,Xij)

]
= γk + β1groupi + β2agei + β3timej + bi,

log

[
P(Yij ≤ k|b1i,b2i,Xij)

1− P(Yij ≤ k|b1i,b2i,Xij)

]
= γk + β1groupi + β2agei + β3timej + b1i + b2itimeij ,

for k = 1, 2, 3 e i = 1, . . . , 49.
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Three different structures for the matrix R(α) were considered for the marginal model.
In the third model, 36 combinations of the 9 measures of time are considered, and thus α
is formed by 36 correlation parameters. Results in Table 3 were very similar for the three
structures. The second model (exchangeable structure) was chose for a matter of interpre-
tation and parsimonious, since the single component of α was statistically significant.

Effect of group was the only one statistically significant, indicating that the odds of
feeling slight pain will be less (e−1.485 = 0.23) among women who receive reminfentanil
compared to those who receive peridural analgesia. Because the odds are proportional, this
also expresses the odds that a woman in labor who receives reminfentanil experience mild to
moderate pain compared to those who receive a peridural analgesia. Since age is negatively
associated to pain intensity, we believe that the unadjusted results presented in Figure 2
may be spurious, because we observed that the women receiving epidural anesthesia are
slight older than those receiving remifentanil. The intra-individual association (α) was
statistically significant (p-value<0.001), revealing a change in the odds of a patient to
remain in a certain response category from one follow-up time to another. In such a case,
if there were not so many follow-up times to be estimated, it is advisable to consider the
unstructured association structure.

Table 3. Parameter estimates for the marginal proportional odds model in the study of analgesia in childbirth.

R(α) independence R(α) exchangeable R(α) unstructured

Variable β̂ SE p-value β̂ SE p-value β̂ SE p-value
γ1 0.151 0.737 - 0.232 0.776 - 0.253 0.776 -
γ2 1.797 0.757 - 1.864 0.794 - 1.885 0.792 -

Group (Remifentanil) -1.398 0.392 0.001 -1.485 0.438 0.001 -1.523 0.491 0.002
Age -0.045 0.036 0.208 -0.047 0.038 0.207 -0.051 0.037 0.178
Time -0.004 0.004 0.922 -0.002 0.004 0.738 -0.002 0.004 0.641
α̂∗ - 1.023 0.219 <0.001 α̂0,5=1.900 0.764 0.013

α̂0,10=1.076 0.627 0.086
...

α̂60,90=0.921 0.711 0.195
∗intra-individual association based on the log of odds ratio

Results for the conditional model are presented in Table 4. Comparing the first and the
second models in this table, the LRT was statistically significant (p-value< 0.0001). This
fact is an indication that the variance of the random effect is greater than 0. Using AIC,
the second model is chosen among the three adjusted models. Thus, the final model in this
case would be the conditional model with a random intercept.

Table 4. Parameter estimates for the conditional proportional odds model in the study of analgesia in childbirth.
GLM Conditional Conditional

random intercept random intercept and slope

Variable β̂ SE p-value β̂ SE p-value β̂ SE p-value
γ1 0.171 0.401 - 0.432 0.745 - 0.428 0.732 -
γ2 1.785 0.412 - 2.352 0.757 - 2.345 0.744 -
Group (Remi) -1.078 0.205 <0.001 -1.322 0.375 <0.001 -1.318 0.371 <0.001
Age -0.046 0.018 0.010 -0.057 0.032 0.076 -0.056 0.031 0.072
Time -0.005 0.004 0.234 -0.005 0.004 0.235

g11 = V ar(b1i) 0.961 0.928
g22 = V ar(b2i) 0.516

LRT∗ <0.001 0.99
AIC 849.79 820.53 823.34

∗ on H0 σ2
bli

= 0, l = 1, 2

For the chosen conditional model, it was observed that the effect of group was the only
one being statistically significant. For this variable we have that, given two parturients
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with the same random effect, the odds to feel pain is lower (e−1.322 = 0.27) among those
who used reminfetanil when compared to those who opted for epidural analgesia. And
just like in the marginal model, the negative effect on age variable may be indicative of
spurious results, since women who received epidural anesthesia are slightly older than
women who received reminfetanil. Moreover, conditioned on the random effects, the odds
of experiencing pain decreases (e−0.057 = 0.94) for each year that adds the age of the
parturient.

5. Discussion

Ordinal responses modeling has been the subject of increasing interest in recent years,
and many methods have been proposed in the literature. The proportional odds model
McCullagh (1980) is the most known model. It assumes that the odds in all categories of
the ordinal response are the same. Unlike the model for nominal polytomous responses,
the interpretations of the parameters are not obtained directly, considering one of the re-
sponse categories as a reference. In the proportional odds model, the reference category
changes according to the logit that is being analyzed. This happens because the calculated
probabilities are accumulated. In this model, it is important to test the assumption of
proportionality of odds, so that it can be assured that the estimates are consistent. In sit-
uations where this assumption is violated, it is recommended to search for another suitable
methodology for ordinal responses. Existing models include the partial proportional odds
model (Peterson and Harrell, 1990), which is a generalization of the model proposed by
McCullagh (1980). This model allows a subset of predictor variables to violate the propor-
tionality assumption, with their effects varying according to the category of the ordinal
response. The model also includes a subset of predictor variables that do not violate the
proportionality assumption.

Studies that discuss the modeling of ordinal responses mostly consider just the theoretical
aspects of the proportional odds models. The emphasis on this methodology might be
due to its availability in most statistical software. Little attention, however, is given to
the interpretation of the fitted model, which could be helpful to improve understanding
of these approaches. In practice, the ordinal response is often recategorized as a binary
variable and used in models in such a way that have direct interpretation.

Currently few studies addressing the diagnostic techniques for models for ordinal re-
sponses are found in the literature. O’Connell and Liu (2011) provided a review of diag-
nostic methods that may be useful in investigating model assumptions and in identifying
unusual cases for proportional and partial proportional odds models. A common method
used to test model fit for categorical responses is to compare observed frequencies and esti-
mated expected frequencies under the assumed model via chi-squared-type goodness-of-fit
statistics. Lipsitz et al. (1996) generalized the popular Hosmer-Lemeshow statistic for the
binary logistic regression model to the situation with ordinal responses. Fagerland and
Hosmer (2013) examined goodness-of-fit tests for the proportional odds model by deriving
test statistics based on the Hosmer-Lemeshow test for binary logistic regression. Graphical
and numerical methods for verifying the adequacy of the proportional odds model have
been proposed, focusing on the assessment of bad functional specification to the effect of
specific covariates using observed cumulative residuals (Arbogast and Lin, 2005; Liu et
al., 2009). Nevertheless, all aforementioned methodologies were discussed for analysis of
cross-sectional ordinal data.

In longitudinal studies, the usual models (marginal models and conditional) can be
extended to accommodate the ordinal nature of the response. It is important to emphasize
that the choice of the most appropriate methodology depends on the type of question that
the researcher wants to answer. Thus, such models are not comparable because the focus
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of the analysis differs for different models, and different models are interpreted in different
ways. The marginal model, for example, has a focus on inferences of population mean,
and it is one of the most popular methods in longitudinal modeling because it is based
exclusively on assumptions about the mean response. In contrast, the conditional method
focuses on the individual and on the introduction of a random effect at the individual
level, which has important implications for estimation and interpretation of the regression
coefficients. However, the choice of the best model depends on the purpose of the study.

An additional important issue for analysis of longitudinal data is the potential of in-
complete information over time. In longitudinal analysis missing data is very common and
in some applications inevitable. Thus, the methodologies for analysis of longitudinal data
deal with missing data and still provide consistent estimates depending upon the missing
data mechanism. In case of GEE, estimates are consistent under missing completely at
random (MCAR) assumption. Usually MAR is more genuine assumption about the miss-
ing mechanism, but it cannot be checked from the data. For fitting GEE to our data we
used geepack package in R, which assumes MCAR. Multilevel models have the advantage
of being applicable under weaker assumption regarding the missing mechanism than GEE.
In general, potential bias is avoided with maximum likelihood inference under other mech-
anism than MNAR (missing not at random) (Agresti, 2010). Particularly regarding our
data, there are a few children with missing data regarding the outcome in some time points
in the first application, but the missing pattern seems to be at random. For the second
application, the women only has information up to delivery. Thus, if a woman delivered in
30 minutes, she will not have measurement of pain intensity in the later time points. In our
data 3 women delivered up to 30 minutes, with the fastest having a baby in 20 minutes.
On the other hand, there are 31 (63.3%) women with complete data, i.e., information up
to 90 minutes. In both cases, however, we have strong evidence to believe that the missing
data patterns are not MNAR.

Of the two applications discussed in the paper, the assumption of proportionality of odds
was violated only in the first study, and, therefore, the partial proportional odds model
was used in that case. The two applications differ in sample size, in the balance of data,
in the number of repeated measurements per individual, and also in the equidistance of
the time measurement. Considering the results from our applications, we observed that
estimates of both models tend to be similar in the second application, which has a larger
number of measurements per subject. Further research and simulation studies are still
required to evaluate if the number of repeated longitudinal measures may lead to closer
conditional and marginal estimates. Such a definitive conclusion can not be drawn based
on only two examples. It is important to mention that there are no large computational
cost in the fit of both models. The longer time (no more than 5 minutes) is spent in fitting
the conditional model depending on the number of points used in the adaptive Gaussian
quadrature.

In our applications both data got some limitations. One of the limitations is the potential
of several confounding factors that were not taken into account into these analyses. For the
first application about the effect of rainwater harvesting systems on children’s infections,
factors such access to other water facilities, children’s immune factors, hygiene practices
(such as the use of boiled water), sanitation conditions, among others, may affect our
ability to conclude about the intervention effect. Moreover, some children have moved
from an area with cistern to other without cistern during the study, and vice-versa. For
the second application about the effect of analgesia in labor pain, factors such as number
of previous births (primiparous vs multiparous mothers), educational level, pre-natal care,
among others, may also be important for this evaluation. Another limitation is the sample
size, notably regarding the second data. Nevertheless, since the major goal of the paper is
to systematize and summarize statistical methodologies for modeling ordinal polytomous
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responses in longitudinal analysis, these applications are mainly included for illustration of
the methodologies, particularly regarding interpretation of parameter estimates and model
assumptions.

Discussion about sample size and/or statistical power is available in the literature for
ordinal logistic models for independent observations (Abreu et al., 2008; Capuano et al.,
2007; Fagerland and Hosmer, 2013; Liu and Agresti, 2005; Rabbee et al, 2003; Walters,
2004). Particularly regarding the tests for evaluation of proportional odds assumption,
these tests have been criticized for having a tendency to reject the null hypothesis in cases
with minimum deviation from proportionality for analysis of independent observations
(Agresti, 2010). In such cases, some authors recommend plotting the log odds generated
by each cut-point (Capuano et al., 2007); others recommend to use p-value < 0.10 to indi-
cate that the models need further scrutiny. There is no doubt that fitting ordered logistic
regression using maximum likelihood estimates requires sufficient sample size. However,
there is still no consensus about how big the sample sizes should be for analysis of longitu-
dinal ordinal data. In our second application, even though we have only 49 subjects, there
are 408 observations being analyzed due to its longitudinal feature, with mean number of
observations per subject being 8.3 (min = 4,max = 9). Research is still required to extend
known results from settings with independent observations to longitudinal designs.

In this paper, we aimed helping researchers to improve their understanding on available
methodology for analysis of longitudinal ordinal responses, emphasizing interpretation
through discussion of real data applications.

Further research and discussion is still needed for the modeling of ordinal responses in
longitudinal studies. One idea for future work would be to explore diagnostic techniques for
ordinal responses, a topic not yet explored in studies with this type of data. Furthermore,
other models could be used for analysis of ordinal responses in longitudinal studies, such
as the class of models known as transition models (Azzalini, 1994; Lee and Daniels, 2007).
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