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Abstract

The proposal of more flexible distributions is an activity often required in practical con-
texts. In particular, adding a positive real parameter to a probability distribution by
exponentiation of its cumulative distribution function has provided flexible generated
distributions having interesting statistical properties. In this paper, we study general
mathematical properties of a new generator of continuous distributions with three extra
parameters called the exponentiated Gompertz generated (EGG) family. We present
some of its special models as well as an essay on its physical motivation. From math-
ematical point of view, we derive explicit expressions of the EGG family: the ordinary
and incomplete moments, quantile and generating functions, Bonferroni and Lorenz
curves, Shannon and Rényi entropies and order statistics, which are valid for any base-
line model. We also provide a bivariate EGG extension. The estimation procedure by
maximum likelihood of the new class is elaborated and discussed. In order to quantify
and to assess the asymptotic behavior of this procedure, we perform a simulation study.
Finally, two applications to real data are performed. Results furnish evidence in favor
of the use of the EGG beta distribution as a good proposal to these data sets.

Keywords: Reliability and life testing · Applications to social sciences · Gompertz
distribution · New generator · New Distribution for proportion.

1. Introduction

In many practical situations, classical distributions do not provide adequate fits to real
data. Thus, several generators of introducing one or more parameters to generate new
distributions have been proposed in the statistical literature. Some well known generators
are

• Marshal-Olkin generated family (MO-G) (Marshall and Olkin, 1997),

• the beta-G by Eugene et al. (2002) and Jones (2004), Kumaraswamy-G (Kw-G for short)
by Cordeiro and de Castro (2011) and McDonald-G (Mc-G) by Alexander et al. (2012),

• gamma-G (type 1) by Zografos and Balakrishnan (2009), gamma-G (type 2) by Ristić
and Balakrishnan (2012), gamma-G (type 3) by Torabi and Hedesh (2012) and log-
gamma-G by Amini et al. (2012),
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• logistic-G by Torabi and Montazeri (2012),

• exponentiated generalized-G by Cordeiro et al. (2011),

• Transformed-Transformer (T-X) by Alzaatreh et al. (2013) and exponentiated (T-X) by
Alzaghal et al. (2013),

• Weibull-G by Bourguignon et al. (2014) and

• Exponentiated half logistic generated family by Cordeiro et al. (2014).

In general, all above classes can be expressed within one formulation as follows.
Let r(t) be the probability density function (pdf) of the random variable T ∈ [a, b] for
−∞ < a < b < ∞ and W [G(x)] be the cumulative distribution function (cdf) of the
random variable X, satisfying the following conditions:

(i) W [G(x)] ∈ [a, b],
(ii) W [G(x)] is differentiable and monotonically non-decreasing, and
(iii) W [G(x)]→ a as x→ −∞ andW [G(x)]→ b as x→∞.

Recently, Alzaatreh et al. (2013) defined the T-X family of distributions by

F (x) =

∫ W [G(x)]

a
r(t) dt, (1)

where W [G(x)] satisfies the conditions (i)–(iii). The pdf obtained from (1) is given by

f(x) =

{
d

dx
W [G(x)]

}
r {W [G(x)]} . (2)

In the remainder of this paper, we introduce a new class from (1) and study some of its
statistical properties.

El-Gohary et al. (2013) defined the three-parameter generalized Gompertz (GG) distri-
bution having pdf and cdf given by

π(x ; θ, γ, α) = α θ eγ x e−
θ

γ
( eγ x− 1 )

[
1 − e−

θ

γ
( eγ x− 1 )

]α− 1

and

Π(x ; θ, γ, α) =
[

1 − e−
θ

γ
( eγ x− 1 )

]α
,

respectively, where x, θ, γ, α > 0. Notice that the GG model colapses in the Gompertz (G)
distribution when α = 1. Now, applying (i) W [G(x)] = − log[1−G(x)] and (ii)

r(t) = α θ eγ t e−
θ

γ
( eγ t− 1 )

[
1 − e−

θ

γ
( eγ t− 1 )

]α− 1
, t > 0,

on (2), we define a new family of distributions–called the exponentiated Gompertz generated
(“EGG” for short) family– having cdf expressed in the form of the next theorem.

Theorem 1.1 The cdf of the EGG family is given by

F (x ; θ, γ, α, ξ) =

∫ − log[ 1−G(x ; ξ) ]

0
π(w ; θ, γ, α) dw =

{
1− e

θ

γ
{ 1− [ 1−G(x ; ξ) ]−γ }

}α
,

(3)
where θ > 0, γ > 0 and α > 0 are three extra shape parameters.
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Equation (3) is a wider family of continuous distributions. It includes several classes such
as the proportional hazard rate distributions (Gupta and Gupta, 2007). For each baseline
G, the EGG-G distribution is defined by the cdf (3). Henceforth, X ∼ EGG-G(θ, γ, α, ξ)
denotes a random variable having the cdf (3) and G(x ; ξ) denotes the baseline cdf de-
pending on a parameter vector ξ. For simplicity, we can omit the dependence on ξ and
write simply G(x) = G(x; ξ).

A probabilistic deduction and physical interpretation of the EGG family can be ad-
dressed as follows. Let Y be a random variable having the Gompertz distribution (with
positive parameters θ and γ representing the shape and scale, respectively) and Z be
any random variable with baseline cdf G(z; ξ). Thus, if we consider α systems, T1, . . . , Tα
working independently as a random sample from T • = G−1(1 − e−Y ; ξ), then the cdf of
X = max{T1, . . . , Tα} given by

Pr(X ≤ x) = Pr(∩αi=1 {Xi ≤ x}) = {Pr( {X1 ≤ x})}α

= {Pr(G−1(1− e−Y ; ξ) ≤ x )}α

= {Pr(Y ≤ − log[ 1 − G(x; ξ) ] ) }α

= F (x ; θ, γ, α, ξ),

follows the proposed family. In other words, this property characterizes the distribution of
the maximum of α random variables having the G distribution (with parameter vector ξ)
such that their cdf’s are defined by 1 − e−Y , where Y has the Gompertz(θ, γ) distribu-
tion. Applications in several areas can be associated to the above discussion, such those in
reliability and anthropological contexts. Consider a system formed by α independent com-
ponents following specific transformed distribution involving the Gompertz and a baseline
G model. Suppose the system fails if all of the α components fail. Let T1, . . . , Tα denote the
lifetimes. Thus, X describes the maximum lifetime under the influence of the parameters
α, θ, γ and ξ.

This paper is organized as follows. In Section 2, we provide the EGG density and quantile
functions. Three special cases of the proposed family are addressed in Section 3. Some
useful expansions are derived in Section 4. A power series expansion for the quantile
function (qf) of X is derived in Section 5. In Section 6, we provide explicit expressions for
the moments and generating function of X. In Section 7, we present general expressions
for the Rényi and Shannon entropies. In Section 8, the order statistics are investigated. In
Section 9, we introduce a bivariate extension of the new family. Estimation of the model
parameters by maximum likelihood is performed in Section 10. A simulation study and
two applications to real data illustrate the usefulness of the EGG family in Section 12.
The paper is concluded in Section 13.

2. The new family

The pdf and hrf corresponding to (3) are provided in the corollary:

Corollary 2.1 The pdf and hrf of X are given by

f(x ; θ, γ, α, ξ) =
α θ g(x ; ξ) e

θ

γ
{ 1− [ 1−G(x ; ξ) ]−γ }

[ 1 − G(x ; ξ) ]1 + γ

{
1 − e

θ

γ
{ 1− [ 1−G(x ; ξ) ]−γ }

}α− 1
,

(4)
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and

h(x ; θ, γ, α, ξ) =
θ g(x ; ξ)

[ 1 − G(x ; ξ) ]γ+ 1

{
1 − e

θ

γ
{ 1− [ 1−G(x ; ξ) ]−γ }

}α− 1[
1 −

{
1 − e

θ

γ
{ 1− [ 1−G(x ; ξ) ]−γ }

}α] , (5)

respectively, where x ∈ X and g(x ; ξ) is the baseline pdf.

A simple pdf (4) arises when one considers simple expressions for G(x) and g(x). As the
EGG family can be understood as a “dictionary” of special models, an other practical issue
is “how to select the more appropriate baseline for a data set?”. In practice, the following
criteria are often used: (i) take into account the variation range of real data and/or (ii)
choose one parent distribution among many others models based on the smaller value
assumed by the sum of squablack errors between the histogram and the fitted density
f(x ; θ̂, γ̂, α̂, ξ̂) as discussed by Cintra et al. (2013), where θ̂, γ̂, α̂ and ξ̂ are obtained by
any estimation method, usually maximum likelihood.

The EGG family of distributions is easily simulated by inverting (3) as follows: if u is
an outcome from the uniform U(0, 1) distribution, then

x = QG

{
1−

[
1− γ

θ
log(1− u

1

α )
]−1

γ

}
, (6)

is an outcome of a random variable X having pdf (4), where QG(x) = G−1(x) is the qf of
G.

Figure 1 displays the qf’s of X taking the normal N(µ, σ2) and beta B(β1, β2) models as
the parent distributions. These situations are detailed in the next section.
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Figure 1. Plots of the EGG qf’s for the N(µ, σ2) and B(β1, β2) baselines.

3. Some Special EGG distributions

For α = 1, we obtain as a special case of (4) the Gompertz-G family of distributions (Al-
izadeh et al., 2016). The exponentiated class of distributions proposed by Cordeiro et al.
(2016) arises as another special case when γ ↓ 0. For γ ↓ 0 and α = 1, equation (4) re-
duces to the Gupta and Gupta’s proportional hazard rate class (Gupta and Gupta, 2007).
For γ ↓ 0 and θ = 1, we have the reversed hazard rate class (Gupta and Gupta, 2007),



Chilean Journal of Statistics 33

which provides greater flexibility of its tails and can be widely applied in many areas of
engineering and biology. Some special models are listed in Table 1.

This table indicates that the hypotheses H0 : α = 1 and γ ↓ 0, H0 : θ = 1 and γ ↓ 0 and
H0 : θ = α = 1 and γ ↓ 0 can be used when one wishes to assess an extension of the class
proposed by Alizadeh et al. (2016), a change of the proportional hazard rate model in the
form of the parameter θ and the influence of the new class on the baseline distribution,
respectively. Next, we present three special cases of the EGG family, where γ > 0, θ > 0
and α > 0.

Table 1. Some special models

α θ γ G(x) family

1 - - - Gompertz-G family of distributions (Alizadeh et al., 2016)

- - ↓ 0 - Exponentiated class of distributions (Cordeiro et al., 2016)

1 - ↓ 0 - Proportional hazard rate model (Gupta and Gupta, 2007)

- 1 ↓ 0 - Proportional reversed hazard rate model (Gupta and Gupta, 2007)

1 1 ↓ 0 - G(x)

1 - - 1 − e−x Gompertz distribution

- - - 1 − e−x Generalized Gompertz distribution (El-Gohary et al., 2013)

1 - ↓ 0 xv Kumaraswamy distribution (Kumaraswamy, 1980; Jones, 2009)

- - ↓ 0 xv Exponentiated Kumaraswamy distribution and its log transform

(Lemonte et al., 2013)

3.1 The EGGN distribution

We define the exponentiated Gompertz generated normal (EGGN) distribution from (4) by
taking G(x ; ξ) = Φ(x−µσ ) and g(x ; ξ) = σ−1 φ(x−µσ ) to be the cdf and pdf of the normal
distribution with parameters µ and σ2, respectively, ξ = (µ, σ2), and where φ(·) and Φ(·)
are the pdf and cdf of the standard normal distribution, respectively. Then, the EGGN
pdf is given by

f(x ; θ, γ, α, µ, σ) =
α θ

σ
φ
(x− µ

σ

) [
1 − Φ

(x− µ
σ

) ]−γ−1
e
θ

γ { 1− [ 1−Φ( x−µ
σ

) ]−γ }

×
{

1 − e
θ

γ
{ 1− [ 1−Φ( x−µ

σ
)]−γ }

}α−1
, (7)

where x ∈ R, µ ∈ R is a location parameter and σ > 0 is a scale parameter. The random
variable with pdf (7) is denoted by X ∼ EGGN (θ, γ, α, µ, σ2). For µ = 0, σ = 1 and
γ → 0, we have the power-normal (PN) distribution (Gupta and Gupta, 2008). Further,
the basic exemplar when θ = 1 and γ → 0 is the normal distribution. Plots of the EGGN
density function for some shape parameter values are displayed in Figure 2. These plots
indicate that decreasing α and γ causes a flattening of the density curves, whereas this
behavior happens under increasing θ (for θ > 1).

3.2 The EGGGa distribution

We also present as a special model the exponentiated Gompertz generated gamma (EGGGa)
distribution from the gamma distribution with shape parameter a > 0 and scale parameter
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Figure 2. Plots of the EGGN density function for some parameter values.

b > 0. In this case, the baseline pdf and cdf (for x > 0) are given by

g(x ; β1, β2) =
ββ1

2

Γ(β1)
xβ1−1 e−β2x and G(x ; β1, β2) = γ1(β1, β2 x),

where γ(a, x) =
∫ x

0 ta− 1 e−t dt is the incomplete gamma function and γ1(a, x) =
γ(a, x)/Γ(a) is the incomplete gamma function ratio.

Inserting these expressions in (4) leads to the EGGGa density function

f(x ; θ, γ, α, β1, β2) = α θ
ββ1

2

Γ(β1)
xβ1−1 e−b x

[
1 − γ1(β1, β2 x)

]−γ− 1
e
θ

γ
{ 1− [ 1− γ1(β1,β2 x) ]−γ }

×
{

1 − e
θ

γ
{ 1− [ 1− γ1(β1,β2 x) ]−γ }

}α− 1
.

The exponentiated-gamma (EG) distribution comes from this model when γ → 0. Plots
of the EGGGa pdf and hrf for selected parameter values are displayed in Figure 3.
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Figure 3. Plots of the EGGGa density and hazard rate functions for some parameter values.

3.3 The EGGB distribution

We define the exponentiated Gompertz generated beta (EGGB) distribution from the beta
distribution with positive shape parameters β1 and β2. Its pdf and cdf (for 0 < x < 1) are
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given by

g(x ; β1, β2) =
1

B(β1, β2)
xβ1− 1 (1 − x)β2− 1 and G(x ; β1, β2) = Ix(β1, β2),

where Ix(β1, β2) = B(β1, β2)−1
∫ x

0 wβ1− 1 (1 − w)β2− 1dw is the incomplete beta function

ratio and B(β1, β2) =
∫ 1

0 wβ1−1 (1 − w)β2− 1 dw = Γ(β1)Γ(β2)/Γ(β1 + β2) is the beta
function. Inserting these expressions in (4) yields the EGGB density function

f(x ; θ, γ, α, β1, β2) =
α θ

B(β1, β2)
xβ1− 1 (1 − x)β2− 1

[
1 − Ix(β1, β2)

]−γ− 1

× e
θ

γ
{ 1− [ 1− Ix(β1,β2) ]−γ }

{
1 − e

θ

γ
{ 1− [ 1− Ix(β1,β2) ]−γ }

}α− 1
.

The beta distribution arises as a special case when γ → 0, α = 1 and θ = 1. Plots of the
EGGB density function for some parameter values are displayed in Figure 4.
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Figure 4. Plots of the EGGB density function for some parameter values.

4. Useful expansions

For an arbitrary baseline cdf G(x), a random variable Z has the exponentiated-G (“exp-G”
for short) distribution with power parameter c > 0, say Z ∼exp-G(c), if its pdf and cdf
are given by

hc(x) = cG(x)c−1 g(x) and Hc(x) = G(x)c,

respectively. Some structural properties of the exp-G distributions are studied by Mud-
holkar et al. (1995), Gupta and Kundu (1999) and Nadarajah and Kotz (2006), among
several others.

Nadarajah et al. (2013) demonstrated the following lemma.

Lemma 4.1 Let X have the cdf (3). Then, its cdf admits the expansion

F (x) =

∞∑
k=0

bkHk(x), (8)
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where Hk(x) denotes the exp-G cdf with power parameter k and

bk = I0(k) +

∞∑
i=1

∞∑
j=0

wi,j,k︸ ︷︷ ︸
=w+,+,k

= I0(k) + w+,+,k.

Here, I0(k) is an indicator function which takes one if k = 0 and the coefficient wi,j,k is
given by

wi,j,k =
(−1)i+j+k

j!

(
α

i

)(
−j γ
k

) (
i θ

γ

)j
e
i θ

γ .

Based on Lemma 4.1, it follows the Corollary 3.

Corollary 4.2 The pdf of X can be expressed as an infinite linear combination of exp-G
density functions

f(x;α, λ, p, ξ) =

∞∑
k=0

bk+1 hk+1(x; ξ), (9)

where hk+1(x; ξ) = (k + 1) g(x; ξ)G(x; ξ)k denotes the exp-G pdf with power parameter
k + 1. A random variable having this density function will be denoted from now on by
Yk+1 ∼ exp-G(k + 1).

Thus, some mathematical properties of the proposed family can be obtained directly
from those properties of the exp-G distribution.

5. Quantile power series

In this section, we propose alternative explicit expressions for the moments and generating
function of the EGG family using a power series for the qf (6). This result is given in the
following theorem.

Theorem 5.1 The qf of X can be expanded as

Q(u) =

∞∑
m=0

ep u
p, (10)

where ep =
∑∞

i=0 ai qi,p, and for i ≥ 0, qi,0 = δi0 and (for p > 1)

qi,p = (p δ0)−1
p∑

n=1

[n(i+ 1)− p] δn qi,p−n. (11)

The definition of the quantities are in Theorem 2 and the ai’s related to the baseline qf
are given in Appendix A.

Equation (10) is the main result of this section. It allows to obtain various mathematical
quantities for the EGG family as proved in the next sections.

The effects of the shape parameters on the skewness and kurtosis can be based on quantile
measures. The shortcomings of the classical kurtosis measure are well-known. The Bowley
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skewness (Kenney and Keeping, 1962, pp. 101–102) is one of the earliest skewness measures
defined by the average of the quartiles minus the median, divided by half the interquartile
range, namely

B =
Q
(

3
4

)
+Q

(
1
4

)
− 2Q

(
1
2

)
Q
(

3
4

)
−Q

(
1
4

) .

Since only the middle two quartiles are consideblack and the outer two quartiles are ig-
noblack, this adds robustness to the measure. The Moors kurtosis (Moors, 1998) is based
on octiles

M =
Q
(

3
8

)
−Q

(
1
8

)
+Q

(
7
8

)
−Q

(
5
8

)
Q
(

6
8

)
−Q

(
2
8

) .

From the last two equations, the skewness and kurtosis measures can be determined as
functions of the qf of X in equation (6). These measures are less sensitive to outliers
and they exist even for distributions without moments. Figure 5 displays the plots of the
measures B and M for the EGGB distribution discussed in Section 3. These plots indicate
that both measures B and M depend very much on the shape parameters.
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Figure 5. Plots of the skewness and kurtosis measures for the EGGB distribution.

6. Moments and generating function

Let Yk+1 be a random variable having the exp-G distribution with power parameter k+ 1,
i.e., with density hk+1(x). A first formula for the nth moment of X follows from (9) as

E(Xn) =

∞∑
k=0

bk+1 E(Y n
k+1). (12)

Expressions for moments of several exp-G distributions are given by Nadarajah and Kotz
(2006), which can be used to obtain E(Xn).

A second formula for E(Xn) can be expressed from (12) in terms of the G qf as

E(Xn) =

∞∑
k=0

(k + 1) bk+1 τ(n, k), (13)
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where τ(n, k) =
∫∞
−∞ x

nG(x)k g(x) dx =
∫ 1

0 QG(u)n uadu. Cordeiro and Nadarajah (2011)
obtained the quantity τ(n, k) for some well-known models such as the normal, beta, gamma
and Weibull distributions.

We now move to the nth incomplete moment of X defined by mn(y) = E(Xn|X < y) =∫ y
−∞ x

r f(x) dx. For empirical purposes, the shape of many distributions can be usefully
described by what we call the incomplete moments. These types of moments play an
important role for measuring inequality, for example, income quantiles and Lorenz and
Bonferroni curves, which depend upon the incomplete moments. The quantity mn(y) can
be expressed as

mn(y) = E(Xn|X < y) =

∞∑
k=0

(k + 1) bk+1

∫ G(y;ξ)

0
QG(u)n ukdu. (14)

The integral in equation (14) can be computed at least numerically for most baseline
distributions. A second method to obtain the incomplete moments of X follows from (14)
using equations (A5) and (A6):

Corollary 6.1 The nth incomplete of X is given by

mn(y) =

∞∑
k,m=0

(k + 1) bk+1 cn,m
(m+ k + 1)

G(y; ξ)m+k+1, (15)

where the coefficients cn,m can be determined by (A6).

Let MX(t) = E(et X) be the moment generating function (mgf) of X. A first expression
for MX(t) comes from (9) as

MX(t) =

∞∑
k=0

bk+1Mk+1(t), (16)

where Mk+1(t) is the mgf of Yk+1. Hence, MX(t) can be determined from the exp-G
generating function.

A second formula for M(t) can be derived from (9) as

M(t) =

∞∑
i=0

(k + 1) bk+1 ρ(t, k), (17)

where ρ(t, k) =
∫∞
−∞ et x G(x)k g(x)dx =

∫ 1
0 exp[t QG(u)] uk du.

We can obtain the mgfs of several distributions directly from equations (16) and (17).

7. Entropies

An entropy is a measure of variation or uncertainty of a random variable X. Two popular
entropy measures are the Rényi and Shannon entropies (Shannon, 1948; Rényi, 1961). The
Rényi entropy of a random variable with pdf f(x) is defined as

IR(c) =
1

1− c
log

(∫ ∞
0

f c(x) dx

)
,
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for c > 0 and c 6= 1. The Shannon entropy of a random variable X is defined by
E {− log [f(X)]}. It is the special case of the Rényi entropy when c ↑ 1. Direct calcu-
lation yields:

Corollary 7.1 The Shannon entropy of X is given by

E {− log[f(X)]} = − log(αθ)− E {log[g(X; ξ)]}

+
(γ + 1)αθ

γ2

∞∑
i,j=0

(−1)i+j+1

(j + 1) (j + 1)!

(
α− 1

i

)[(i+ 1)θ

γ

]j
e

(i+1)θ

γ

− θ
γ

1− αθ

γ2

∞∑
i,j=0

(−1)i+j

(j + 2) j!

(
α− 1

i

)[(i+ 1)θ

γ

]j e
(i+1)θ

γ

−α(α− 1)θ

γ

∞∑
i,j=0

(−1)i+j+1

(j + 1)!

[(i+ 1)θ

γ

]j
e

(i+1)θ

γ

[ ∂
∂t

(
t+ α− 1

i

)∣∣∣
t=0

]
.

After some algebraic developments, we can obtain an alternative expression for IR(c).

Corollary 7.2 The Rényi’s entropy of X is given by

IR(c) =
c

1− c
log(αθ) +

1

1− c
log

 ∞∑
i,j,k

mi,j,k I(c, k)

 (18)

where

mi,j,k =

(−1)i+j+k
(
c(α− 1)

i

)
e
θ(c+i)

γ (θ(c+ i))j
(
−c(γ + 1) − γ j

k

)
j! γj

and

I(c, k) =

∫ ∞
−∞

g(x)cG(x)k dx

8. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.
Suppose X1, . . . , Xn is a random sample from the EGG-G family of distributions. Let Xi:n

denote the ith order statistic. The pdf of Xi:n can be expressed as

fi:n(x) =K f(x)F i−1(x) {1− F (x)}n−i

=K

n−i∑
j=0

(−1)j
(
n− i
j

)
f(x)F (x)j+i−1,

where K = n!/[(i− 1)! (n− i)!].
We can demonstrate that the density function of the ith order statistic of any EGG-G

distribution follows Corollary 6.

Corollary 8.1 Let X1, . . . , Xn be a random sample from X ∼ EGG(θ, γ, α, ξ), The pdf
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of Xi:n can be expressed as

fi:n(x) =

∞∑
r,k=0

n−i∑
j=0

mj,r,k hr+k+1(x), (19)

where hr+k(x) denotes the exp-G density function with power parameter r + k,

mj,r,k =
(−1)j n!

(i− 1)! (n− i− j)! j!
(r + 1) br+1 fj+i−1,k

[r + k + 1]
, (20)

and bk is given by (8). Here, the quantity fj+i−1,k is obtained recursively from fj+i−1,0 =

bj+i−1
0 and (for k ≥ 1)

fj+i−1,k = (k b0)−1
k∑

m=1

[m(j + i)− k] bm fj+i−1,k−m.

So, we can easily obtain the ordinary and incomplete moments and generating function
for the EGG-G order statistics (based on any G distribution) from equation (19).

9. Bivariate extension

A bivariate extension is presented in the following theorem.

Theorem 9.1

F (x, y ; ξ) =
{

1 − e
θ

γ
{ 1− [ 1−G(x,y ; ξ) ]−γ }

}α
,

where G(x, y ; ξ) is a bivariate continuous distribution with marginal cdf’s
G1(x ; ξ) and G2(y; ξ). The marginal cdf’s are given by

FX(x ; ξ) =
{

1 − e
θ

γ
{ 1− [ 1−G(x ; ξ) ]−γ }

}α
and

FY (y ; ξ) =
{

1 − e
θ

γ
{ 1− [ 1−G(y ; ξ) ]−γ }

}α
.

The joint pdf of (X,Y ) is easily determined by fX,Y (x, y) = ∂2FX,Y (x, y)
/
∂x ∂y:

Corollary 9.2

fX,Y (x, y) =α θ [ 1 − G(x, y ; ξ) ]−γ− 1 e
θ

γ
{ 1− [ 1−G(x,y ; ξ) ]−γ }

× A(x, y ; ξ)
{

1 − e
θ

γ
{ 1− [ 1−G(x,y ; ξ) ]−γ }

}α− 1
,
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where

A(x, y ; ξ) = g(x, y ; ξ) −

[
γ + 1

1 − G(x, y ; ξ)

][
∂G(x, y ; ξ)

∂x

] [
∂G(x, y ; ξ)

∂y

]

− θ

[ 1 − G(x, y ; ξ) ]γ+ 1

[
∂G(x, y ; ξ)

∂x

] [
∂G(x, y ; ξ)

∂y

]

+
θ (α − 1)

[ 1 − G(x, y ; ξ) ]γ+ 1

e
θ

γ
{ 1− [ 1−G(x,y ; ξ) ]−γ }

1 − e
θ

γ
{ 1− [ 1−G(x,y ; ξ) ]−γ }

[
∂G(x, y ; ξ)

∂x

] [
∂G(x, y ; ξ)

∂y

]
.

The marginal pdf’s are

fX(x ; θ, γ, α, ξ) =α θ g1(x ; ξ) [ 1 − G1(x; ξ)]−γ− 1 e
θ

γ
{ 1− [ 1−G1(x ; ξ) ]−γ }

×
{

1 − e
θ

γ
{ 1− [ 1−G1(x ; ξ) ]−γ }

}α− 1

and

fY (y ; θ, γ, α, ξ) =α θ g2(y ; ξ) [ 1 − G2(y ; ξ) ]−γ− 1 e
θ

γ
{ 1− [ 1−G2(y ; ξ) ]−γ }

×
{

1 − e
θ

γ
{ 1− [ 1−G2(y ; ξ) ]−γ }

}α− 1
.

The conditional density functions are

f(x | y) =
[1−G(x, y; ξ)]−γ−1e

θ

γ
{1−[1−G(x,y;ξ)]−γ}A(x, y; ξ)

{
1− e

θ

γ
{1−[1−G(x,y;ξ)]−γ}

}α−1

g2(y; ξ)[1−G2(y; ξ)]−γ−1e
θ

γ
{1−[1−G2(y;ξ)]−γ}

{
1− e

θ

γ
{1−[1−G2(y;ξ)]−γ}

}α−1

and

f(y | x) =
[1−G(x, y; ξ)]−γ−1e

θ

γ
{1−[1−G(x,y;ξ)]−γ}A(x, y; ξ)

{
1− e

θ

γ
{1−[1−G(x,y;ξ)]−γ}

}α−1

g1(x; ξ)[1−G1(x; ξ)]−γ−1e
θ

γ
{1−[1−G1(x;ξ)]−γ}

{
1− e

θ

γ
{1−[1−G1(x;ξ)]−γ}

}α−1 .

10. Estimation

We determine the maximum likelihood estimates (MLEs) of the parameters of the new
family from complete samples only. Let x1, . . . , xn be the observed values from the EGG-G
distribution with parameters θ, γ, α and ξ. Let Θ = (θ, γ, α, ξ)> be the r × 1 parameter
vector. The total log-likelihood function for Θ is given by

`n = `n(Θ) = n log(α θ) +

n∑
i=1

log [g(xi; ξ)]− (γ + 1)

n∑
i=1

log [1−G(x ; ξ)]

+

n∑
i=1

log(1− ti) + (α− 1)

n∑
i=1

log(ti), (21)
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where ti = 1 − e
θ

γ
{ 1− [ 1−G(xi ; ξ) ]−γ }.

The log-likelihood can be maximized either directly or by solving the nonlinear likelihood
equations obtained by differentiating (21). The components of the score function Un(Θ) =(
∂`n/∂θ, ∂`n/∂γ, ∂`n/∂α, ∂`n/∂ξ

)>
are

∂`n
∂θ

=
n

θ
−

n∑
i=1

t
(θ)
i

1− ti
+ (α− 1)

n∑
i=1

t
(θ)
i

ti
,

∂`n
∂γ

= −
n∑
i=1

log[1−G(xi; ξ)]−
n∑
i=1

t
(γ)
i

1− ti
+ (α− 1)

n∑
i=1

t
(γ)
i

ti
,

∂`n
∂α

=
n

α
+

n∑
i=1

log(ti)

and

∂`n
∂ξ

=

n∑
i=1

g(ξ)(x; ξ)

g(x; ξ)
+ (γ + 1)

n∑
i=1

g(ξ)(x; ξ)

1−G(x; ξ)
−

n∑
i=1

t
(ξ)
i

1− ti
+ (α− 1)

n∑
i=1

t
(ξ)
i

ti
,

where t
(ζ)
i = Cζ e

θ

γ
{ 1− [ 1−G(x ; ξ) ]−γ },

Cζ =


− 1
γ , if ζ = θ,

θ
γ2 , if ζ = γ,
γ G(ξ)(x ; ξ)

[1−G(x ; ξ)]γ− 1 , if ζ = ξ

and h(ξ)(·) denotes the derivative of the function h with respect to ξ. Often with lifetime
data and reliability studies, one encounters censoring. A very simple random censoring
mechanism very often realistic is one in which each individual i is assumed to have a lifetime
Xi and a censoring time Ci, where Xi and Ci are independent random variables. Suppose
that the data consist of n independent observations xi = min(Xi, Ci) and δi = I(Xi ≤ Ci)
is such that δi = 1 if Xi is a time to event and δi = 0 if it is right censoblack for i = 1, . . . , n.
The censoblack likelihood L(Θ) for the model parameters blackuces to

L(Θ) ∝
n∏
i=1

[f(xi; θ, γ, α, ξ)]δi [S(xi; θ, γ, α, ξ)]1−δi ,

where f(x; θ, γ, α, ξ) is given by (4) and S(x; θ, γ, α, ξ) is the survival function computed
by (3).

11. Simulation study

Here, we give a simulation study in order to assess the MLEs described in Section 13. One of
advantages of the EGG family of distributions is that its cdf has tractable analytical form.
This fact implies in a simple random number generator (RNG). We use the algorithm.

(1) Generate U ∼ U(0, 1).
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(2) Specify a function G(·; ·) as defined in Section 3.
(3) Obtain an outcome of X by

X = G−1

(
1−

[
1− γ

θ
log(1− U

1

α )
]−1

γ

; ξ

)
.

The EGGB fitted density is plotted in Figure 6.
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Figure 6. Plots of the theoretical (black and solid), fitted (black and long dashes) and empirical (points) density
function for the EGGB(1/2, 1, 1, 1/2, 1/2) distribution.

We perform a simulation study in order to assess the influence of the additional param-
eters (α, θ and γ) on the difference between the theoretical and fitted curves associated
with the EGGB distribution. To that end, we consider 1,000 Monte Carlo’s replications
and, on each replication, the mean square error (MSE) between the fitted and empirical
densities is quantified such as a goodness-of-fit criterion. The current simulation process
is conducted following the steps:

(1) Simulated EGGB distributed data of N ∈ {50, 100, 150} are obtained by means of
the EGG RNG.

(2) Fixing the baseline vector of parameters as ξ = (β1, β2) = (1/2, 1/2) for the EGGB
distribution, respectively. Three scenarios are consideblack: (a) θ = 1/2, γ = 1 and
α ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}; (b) θ = 1/2, γ ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}
and α = 1; and (c) θ ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}, γ = 1 and α = 1.

(3) The generated data is submitted to the ML estimation to obtain the parameter

estimates and the estimated EGGB pdf f̂EGGB(·).
(4) The MSEs between the exact and estimated pdfs are computed.

Figure 7 displays the relationship between the shape parameters and the MSEs. Based on
the asymptotic properties of the MLEs, the MSEs decrease when the sample size increases
(as expected). It is noticeable that the estimation of the parameter θ is the most hard
situation, whereas the estimation of α is the most tractable.

In general, for a given sample size, the estimation of the EGGB extra parameters γ and
α tends not to be influenced by increasing the parameter values.
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Figure 7. MSEs for some EGGB parameter values.

12. Applications

In this section, two applications to real data are performed in order to illustrate the po-
tentiality of the EGGB distribution.
The first application consists the total milk production in one hundred seven SINDI race
cows on the first birth after to calve.These cows are property of the Carnauba farm which
belongs to the Agropecuaria Manoel Dantas Ltda (AMDA), located in the Taperoa City,
Paraiba (Brazil). The original data are not in the interval (0, 1) and it was made the

transformation given by xi = yi−min(yi)
max(yi)−min(yi)

, for i = 1, ..., 107. These data are presented

in Cordeiro and Brito (2012). These data have already been used in Cordeiro and Brito
(2012)presented evidence that such set of data can be well described by the beta power
distribution.
As a second application, we describe the proportion of crude oil converted to gasoline after
distillation and fractionation, discussed by Prater (1956). Ferrari and Cribari-Neto (2004)
used this data as the response variable of a quantile regression. These data can be found
in the ”betareg” package of R statistical software with name ”GasolineYield”.
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Table 2. Parameter estimates (standard errors) and −ˆ̀ values of GoF for the first application

Models Estimates (SEs) −ˆ̀ W ∗ A∗

EGGB 0.44(0.02), 1.22(0.04), 3.76(0.36), -28.10 0.067 0.431
(θ, γ, α, β1, β2) 0.22(0.01), 0.64(0.02)
B 2.41(0.17), 2.82(0.20) -23.77 0.228 1.385
(β1, β2)
EB 0.04(4×10−3), 40.10(2.62), 10.61(1.17) -26.35 0.141 0.857
(α, β1, β2)
BB 0.42(0.03), 86.11(12.75), 3.94(0.21), -27.96 0.078 0.503
(a, b, β1, β2) 0.07(0.01)
KwB 6.88(0.12), 223.83(21.63), 0.23(6×10−3), -27.85 0.078 0.512
(a, b, β1, β2) 0.18(4×10−3)
McB 0.31(0.02), 25.76(4.34), 0.29(0.01), -27.83 0.084 0.536
(a, b, c, β1, β2) 18.45(1.06), 0.03(0.01)
GoB 22.80(2.20), 7.01(2.07), 1.70(0.08), -27.38 0.097 0.613
(θ, γ, β1, β2) 0.10(7×10−3)

In the both examples, we shall compare the EGGB distribution with the following models:
the beta (B), the beta beta (BB) (Zografos and Balakrishnan, 2009), the exponentiated
beta (EB) (Nadarajah, 2005) Kumaraswamy beta (KwB) (Cordeiro and de Castro, 2011),
McDonald beta (Alexander et al., 2012) and Gompertz beta (Cordeiro et al., 2014) distri-
butions.
The measures of goodness-of-fit including the AndersonDarling (A∗) and Cramervon
Mises(W ∗) statistics are computed to compare the fitted models. The statistics A∗ and
W ∗ are described in Evans et al. (2008). They showed W ∗ and A∗ can be calculated as

W ∗ =

n∑
i=1

(
F̂ (x(i))−

i− 0.5

n

)2

+
1

12n

and

A∗ = −
n∑
i=1

2i− 1

n

(
ln
(
F̂ (x(i))

)
+ ln

(
1− F̂ (x(n+1−i))

))
− n.

where n is the sample size. In general, smaller values of these statistics indicate better fits
to the data sets.
Tables 2 and 3 present the MLEs and their corresponding standard errors (in parentheses)

of the model parameters as well as values for − maximized log likelihood (ˆ̀), A∗ and W ∗ .
Figure 8 shows empirical and fitted densities associated with the two set of data. The

EGGB model was indicated as the best fit for both data set by means of all GoFs. Tables
2 and 3 present used goodness-of-fit (GoF) values for both applications.
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Table 3. Parameter estimates (standard errors) and −ˆ̀ values of GoF for the second application

Models Estimates (SEs) −ˆ̀ W ∗ A∗

EGGB 0.10(0.02), 0.08(0.03), 0.53(0.09), -29.11 0.027 0.187
(θ, γ, α, β1, β2) 6.28(0.91), 49.67(4.79)
B 2.46(0.27), 10.11(1.21) -28.38 0.044 0.283
(β1, β2)
EB 0.06(0.01), 27.91(2.49), 44.27(5.44) -28.75 0.035 0.226
(α, β1, β2)
BB 0.09(0.01), 1.29(0.55), 21.03(1.85), -28.76 0.035 0.224
(a, b, β1, β2) 32.63(3.96)
KwB 0.25(0.01), 10.23(1.80), 7.41(0.48), -28.51 0.042 0.263
(a, b, β1, β2) 1.98(0.42)
McB 0.07(0.01), 2.83(1.57), 10.74(1.69), -28.83 0.033 0.218
(a, b, c, β1, β2) 2.57(0.25), 7.86(0.83)
GoB 0.09(0.01), 0.04(0.01), 3.33(0.46), -28.96 0.034 0.219
(θ, γ, β1, β2) 52.77(0.60)
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Figure 8. (Left panel): histogram of Example 1 and fitted distributions, (Right panel): histogram of Example 2 and
fitted distributions.

13. Conclusions

The distributions for modeling data with any support in the statistical literature are nu-
merous. We define the exponentiated Gompertz generated family in order to provide great
flexibility to any continuous distribution by adding three extra shape parameters. Some
special models are briefly discussed. We investigate general structural properties of the
new family including shapes, ordinary and incomplete moments, quantile and generating
functions, Bonferroni and Lorenz curves, Shannon and Rényi entropies and order statis-
tics. The model parameters are estimated by maximum likelihood. A bivariate extension
is proposed. A simulation study is performed to assess the influence of the additional pa-
rameters on the difference between the theoretical and fitted curves of the new family. Its
usefulness are illustrated by means of two applications to real data. The results indicate
that the exponentiated Gompertz generated beta (EGGB) model is a good distribution
for describing these data according to six goodness-of-fit measures.
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Appendix

Appendix A. An expansion for the EGG quantile function

If the G qf, say QG(u), does not have a closed-form expression, this function can usually
be expressed in terms of a power series

QG(u) =

∞∑
i=0

ai u
i, (A1)

where the coefficients ai are suitably chosen real numbers which depend on the parameters
of the G distribution. For several important distributions, such as the normal, Student t,
gamma and beta distributions, QG(u) does not have explicit expressions but it can be
expanded as in equation (A1).

Next, we derive an expansion for the argument of QG(·) in (6)

A = 1−
[
1− γ

θ
log(1− u

1

α )
]−1

γ

.

First, for z ∈ (0, 1) and any real non-integer α, we can write

zα =

∞∑
r=0

sr(α) zr, (A2)

where sr(α) =
∑∞

m=r(−1)m+r
(
α
m

) (
m
r

)
. Second, using (A2) and expanding the binomial

term, we obtain

A = 1−
∞∑
k=0

sk(−γ−1)

k∑
j=0

(−1)j
(
k

j

) (γ
θ

)j
logj [1− u1/α]. (A3)

Further, we use the expansion

[log(1− u1/α)]j =

[
−u

∞∑
r=0

ur/α

(r + 1)

]j
. (A4)

Now, we use throughout the paper a result of Gradshteyn and Ryzhik (2000, Section 0.314)
for a power series raised to a positive integer n (for n ≥ 1)

QG(u)n =

( ∞∑
i=0

ai u
i

)n
=

∞∑
i=0

cn,i u
i, (A5)

where the coefficients cn,i (for i = 1, 2, . . .) are obtained from the recurrence equation (with
cn,0 = an0 )

cn,i = (i a0)−1
i∑

m=1

[m(n+ 1)− i] am cn,i−m. (A6)
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Clearly, cn,i can be determined from cn,0, . . . , cn,i−1 and then from the quantities a0, . . . , ai.
So, we can write equation (A4) as

[log(1− u1/α)]j =

∞∑
r=0

(−1)r dj,r u
r/α+j , (A7)

where the coefficients dj,r come from equations (A5) and (A6) as dj,r =

r−1
∑r

m=1
[m(j+1)−r]

(m+1) dj,r−m for r ≥ 0 and dj,0 = 1. Combining equations (A3) and (A4),

we obtain

A = 1−
∞∑
r=0

k∑
j=0

tr,j u
r/α+j ,

where tr,j =
∑∞

k=0(−1)j+r sk(−γ−1)
(
k
j

) (γ
θ

)j
dj,r. Using again (A2), we have u

r

α
−j =∑∞

p=0 sp(
r
α + j)up and inserting in the last equation gives

A =

∞∑
p=0

δp u
p,

where δp =
∑∞

r=0

∑k
j=0 tr,j sp(r/α+j) for p ≥ 1 and δ0 = 1−

∑∞
r=0

∑k
j=0 tr,j s0(r/α−j).

Then, for any baseline G distribution, we obtain the EGG qf

Q(u) = QG

 ∞∑
p=0

δp u
p

 =

∞∑
i=0

ai

 ∞∑
p=0

δp u
p

i

,

and using (A5) and (A6), we obtain the expansion of Theorem 2

Q(u) =

∞∑
m=0

ep u
p,

where ep =
∑∞

i=0 ai qi,p, and for i ≥ 0, qi,0 = δi0 and (for p > 1)

qi,p = (p δ0)−1
p∑

n=1

[n(i+ 1)− p] δn qi,p−n.
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