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Abstract

Most calibration models in the literature assume that the errors are normally distributed.
Unfortunately, when there are outliers in the data, these models often have very poor
performance. In this work, we address this problem and propose a linear calibration
model for replicate measurement by assuming that the error model follows a family of
symmetric distributions, which includes lighter and heavier tails distributions than the
normal, such as the Student-t, power exponential and logistic of type II distributions.
In presence of outliers, these distributions are more stable than the normal distribution.
Likelihood-based methodology is used to estimate the model parameters and the Fisher
information matrix is used to construct confidence intervals for the unknown value
of interest. Furthermore, a simulation study is carried out to verify the asymptotic
properties of the proposed model main parameter. Finally, we present an application of
the proposed model using a real data set from chemical analysis.

Keywords: atypical observation · chemical analysis · linear calibration model
· symmetrical distribution.

Mathematics Subject Classification: Primary 62J05 · Secondary 62J99.

1. Introduction

The calibration models in analytical chemistry are generally used to determine the amount
of an analyte in samples with unknown concentrations. In the chemical laboratory, a mea-
surement process is performed in order to obtain the data set. Firstly, a series of samples
is prepared with known concentrations of an analyte (standard samples) and also samples
with an unknown concentration (test samples). The standard sample concentrations should
cover, at least, the range of concentration encountered during the analysis of test samples
and be evenly spaced across the range. In chemical analysis the sampling costs can be quite
expensive, so it is usually encountered in the routine analysis a small number of samples.
Analyzing each of these standards and test samples using a chosen technique, for instance,
chromatography in case of organic chemistry analysis and atomic absorption spectroscopy
for metals analysis, it will produce a series of measurements. For most analysis a plot of
instrument response versus analyte concentration will show a linear relationship.

Calibration model for chemical analysis can be defined by the relationship between the
instrument response and the analyte concentration. The data set for the first stage is
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obtained by recording the responses (Y ) from standard concentrations (X), where these
standards may be prepared in the laboratory or available from a commercial source. In
the second stage, the response variables (Y0) are recorded from the test sample with the
unknown concentration (X0). Deviations from linearity, however, are not uncommon, es-
pecially as the concentration of metallic analytes, for example, increases due to variance
reasons, such as unabsorbed radiation, stray light, or disproportionate decomposition of
molecules at high concentrations.

In order to have sufficient information related to the first stage from the calibration
model, it is prepared a minimum of four standard samples. The estimates can be poor
when the number of standard samples in the first stage from the calibration model is
small, but the accuracy of the estimates increases if the number of standard samples
increases. Usually, it is prepared two or three replicates of the standard samples. So,
the analyst replicates measurements to ensure linearity, to improve the confidence in the
result, to assess the variability in the analysis and to avoid a gross error in the analysis
of a single aliquot. Response measurements of an analyte can be achieved by instrumental
repetitions or by authentic repetitions, see Pimentel and Neto (1996). The instrumental
repetitions are referred to repeated measurement responses on the same standard solution
or analytical sample, whereas that the authentic repetitions are replicate measurements,
which are carried out on different standard solutions for the same concentration level, so
this last kind of experiment is more expensive. Therefore, replicates increases considerably
the number of experimental measures and these information can be added in the calibration
model as it will be discussed in the Section 2.

In statistical literature about linear calibration models usually it is assumed that the
random errors follow the normal distribution. For example, Krutchkoff (1967) compares the
classical and the inverse estimators of the normal calibration model by using Monte Carlo
method. In Shukla (1972), they are compared by using the mean squared error (MSE),
and also it is provided expressions for the bias, variance and MSE of the linear calibration
model. In Bolfarine et al. (1996) and Blas et al. (2013) and Blas et al. (2007), it is studied
the linear calibration model by taking into account measurement errors in the independent
variable. Blas and Sandoval (2010) proposed a kind of generalization of the model discussed
in Blas et al. (2007) by assuming heteroscedasticity. Nevertheless, it is known that atypical
observations can have significant influence on inferences of statistical models with normally
distributed errors. Thus, the main purpose of this paper is to consider the case when the
random error have heavier tails than one normal distribution. A heavy tail distribution
is one whose extreme probabilities approach zero relatively slowly. Therefore, we propose
the linear calibration model for replicated data with the symmetric distributions family
as assumption of the error models. Many distributions belong to this class such as the
normal, Student-t, power exponential, logistics of type I and II, among others.

In the decade of 1970, several researchers began to develop statistical models with sym-
metric distributions inspired by the Kelker’s work (Kelker (1970)). Theoretical and applied
aspects of this class of distributions have been widely discussed in recent decades, see for
example, Fang et al. (1990), Fang and Zhang (1990) and Fang and Anderson (1990).

1.1 Symmetric distribution

The general form of the classes of univariate symmetric probability density functions is
defined as follows: the random variable Y has symmetric distribution with location pa-
rameter µ ∈ Re and scale parameter φ > 0, if the probability density function is given
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by

f(y; µ, φ) =
1√
φ

h

[
(y − µ)2

φ

]
, y ∈ Re, (1)

for some positive function h(·) called generating density function,it is defined on Re+ and∫ +∞
0 u−

1
2 h(u) du = 1. This condition guarantees that f(y; µ, φ) is a density function (see

Fang et al. (1990)). We denote the density function given in (1) by S(µ, φ, h).
The insertion point of this work is motivated by both aspects the inadequacy of the

normal distribution in the presence of atypical observations and the necessity of replicate
measurements. In this work, we discuss the Student-t, power exponential and logistic of
type II (Log-II) distributions, which stem from the class of distributions defined in (1).
These distributions are suggested as an alternative to the normal distribution.

There exist some works in literature that have studied heavy tailed distributions as an al-
ternative to normal distribution for the errors from linear calibration models. For example,
in Branco et al. (1998) it is considered the calibration model problem assuming Student-t
errors under a Bayesian perspective. Branco et al. (2000) discussed the Bayesian calibra-
tion model with the assumption that the error distribution is elliptically symmetric. Lima
et al. (2007) studied the calibration model with measurement error assuming Student-t
errors. Figueiredo et al. (2008) presented the Bayesian calibration model assuming that
the random errors follow a skew normal distribution. Figueiredo et al. (2010) introduced
the EM algorithm to find the maximum likelihood estimates of a linear calibration model
assuming that the errors follow the skew normal distribution, and Blas et al. (2013) stud-
ied the linear calibration model with Berkson type measurement errors assuming that the
error follows the normal distribution and also considered replicate measurements. There
are calibration model approaches that present less restrictive assumptions over error spec-
ifications. For instance, Lwin (1981) obtained approximated expressions for the MSEs of
the calibration model estimators assuming finite fourth moment of the errors.

In this work, our focus are on considering replicate measurements on the linear cali-
bration model with the symmetric error distributions as given in (1), and studying the
asymptotic behavior of the estimator of X0 for the Student-t, power exponential and Log-
II distributions. The power exponential and Log-II distributions are not discussed in the
works reported in the literature related to calibration models. On the other hand, by con-
sidering replicate measurements we are adding more information over the modeling, so our
proposed model would be closer to the experiment reality.

The rest of the paper is organized as follows. In Section 2, we present the heavy tailed
linear calibration model (hereafter called the “Proposed-M”), and discuss the parameter
estimation. Section 3 presents the simulation study of the Proposed-M to evaluate the
asymptotic behavior of X0 under three distributions for the error model: Student-t, power
exponential and Log-II. Furthermore, confidence intervals and coverage probabilities are
obtained for the parameter X0 in different scenarios evaluated. In Section 4, we present
an application to verify the suitability of the Proposed-M. And finally, some concluding
remarks are presented in Section 5.

2. Heavy tailed linear calibration model

The heavy tailed linear calibration model with replicate measurements (Proposed-M) is
defined by both the first and second stages which are given by the following equations,
respectively,
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Yij = µij + εij , j = 1, · · · ,mi and i = 1, · · · , n (2a)

Y0i = µ0 + ε0i, i = n + 1, · · · , n + r, (2b)

where µij = β0 + β1Xi and µ0i = β0 + β1X0 are the systematic components from the first
and second stages, respectively.

In the first stage (2a), the variables Yij , with j = 1, · · · ,mi and i = 1, · · · , n are observed.

The quantities Xi are known fixed values and the random errors εij
iid∼ S(0, φ, h), where

iid means independent and identically distributed and “ ∼ ” means follows. In the second
stage (2b), we have the responses Y0i from an instrument as a function of the unknown
concentration X0 of test samples and ε0i

iid∼ S(0, φ, h0). The error variables εij and ε0i are
mutually uncorrelated. The functions h and h0 define the distribution belonging to the
class of symmetric distributions. In practice, the assumption h = h0 is made when Yij and
Y0i are obtained using the same method. If there are outliers in the first or second stage
the assumption that h 6= h0 can be suitable. The model parameters are β0, β1, X0, φ and
the main interest is to estimate X0.

The density of Yij and Y0i are given by

fYij
(yij) =

1√
φ

h(uij) and fY0i
(y0i) =

1√
φ

h0(u0i),

where uij = (yij − µij)2/φ, u0i = (y0i − µ0i)2/φ with Yij ∼ S(µij , φ, h) and Y0i ∼
S(µ0i, φ, h0).

The log-likelihood function for the parameter vector θ = (β0, β1, X0, φ)> is given by

l(θ) = −1
2

log φ

(
n∑

i=1

mi + r

)
+

n∑

i=1

mi∑

j=1

log h(uij) +
n+r∑

i=n+1

log h0(u0i). (3)

The score function is constructed as follows: assuming that the functions h and h0

are continuous and differentiable we can define Wh(u) = ∂ log[h(u)]/∂u. Thus, the score
functions for the Proposed-M are given by

U(β0) = ∂l(θ)
∂β0

= − 2
φ





n∑

i=1

mi∑

j=1

Wh(uij)(yij − µij) +
n+r∑

i=n+1

Wh0(u0i)(y0i − µ0i)





U(β1) = ∂l(θ)
∂β1

= − 2
φ

{
n∑

i=1

xi

mi∑

j=1

Wh(uij)(yij − µij) + X0

n+r∑

i=n+1

Wh0(u0i)(y0i − µ0i)

}

U(X0) = ∂l(θ)
∂X0

= −2β1

φ

n+r∑

i=n+1

Wh0(u0i)(y0i − µ0i)

U(φ) = ∂l(θ)
∂φ = − 1

2φ

[
n∑

i=1

mi + r

]
− 1

φ





n∑

i=1

mi∑

j=1

Wh(uij)uij +
n+r∑

i=n+1

Wh0(u0i)u0i



 .

We can find the expression Wh(u) for the normal, Student-t, power exponential and Log-II
symmetric distributions in Cysneiros and Paula (2005), which are presented in Table 1.
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Table 1. Values of Wh(u), dh and fh for the normal, Student-t, power exponential and Log-II distributions.

Distribution Wh(u) dh fh

Normal − 1
2

1
4

3
4

Student-t (v) − (v+1)
2(v+u)

(v+1)
4(v+3)

3(v+1)
4(v+3)

Power exponential (k) − 1
2(k+1)uk/(k+1)

Γ( 3−k
2 )

4(2k−1)(k+1)2Γ( k+1
2 )

(k+3)
4(k+1)

Logistic-II − exp(−√u)−1
(−2

√
u)[1+exp(−√u)]

1
12 0.60749

The maximum likelihood estimators of the Proposed-M can not be obtained in analyt-
ical form, so it is necessary some numerical maximization such as Newton-Raphson or
Fisher scoring method (Nocedal and Wright (1999)). In the following we will describe an
alternative form to find the maximum likelihood estimates from the Proposed-M.

Let Z be an (
∑n

i=1 mi + r) × 2 matrix, with the first column vector of ones and
the second column containing the vector (X11>m1

, X21>m2
, · · · , Xn1>mn

, X01>r )>, where
1a define an a-dimensional column vector of ones. It is defined the matrix W =
(Y >, Y0

>)>, which is a vector containing the response variables from the model (2a-
2b), where Y = (Y>

1 ,Y>
2 , · · · ,Y>

n )> with Yi = (Yi1, Yi2, · · · , Yimi
)>, and Y0 =

(Y0n+1, Y0n+2, · · · , Y0n+r)> are the vector of observed responses from the first and sec-
ond stages, respectively. So, we can re-writte the model (2a-2b) as

W = Zβ + ε (4)

where β = (β0, β1)> and ε = (εimi
, · · · , εimn

, ε0n+1, · · · , ε0n+r)>. It must be noted that
the parameter X0 is in Z, so an iterative procedure is therefore proposed to obtain the
maximum likelihood estimators of the Proposed-M which is given by the following iterative
procedure,

β(k+1) = {Z(k)>D(v(k))Z(k)}−1Z(k)>D(v(k))y, (5)

φ(k+1) =
1

N + r
{y − Z(k)β(k)}>D(v(k)){y − Z(k)β(k)}, (6)

X0
(k+1) = argmaxX0

{l(β(k+1), φ(k+1), X
(k)
0 )}. (7)

where N =
∑n

i=1 mi and D(v(k)) = diag{v(k)
1 , v

(k)
2 , · · · , v

(k)
n , v

(k)
n+1, · · · , v

(k)
n+r} with v

(k)
i =

−2W
(k)
h (·) for i = 1, · · · , n and v

(k)
i = −2W

(k)
h0

(·) for i = n+1, · · · , n+ r and k = 0, 1, . . . ..
Initial values for iterative procedure are given by the maximum likelihood estimates for
the usual calibration model (Shukla (1972)).

Since in the equations (5) and (6) the matrices Z and D depend only on the value X0,
we can substitute them into the logarithm of the likelihood function (3) written in matrix
form using (4), such that it will only depend upon the parameter X0. Hence, it can be
maximized using some numerical method as given in (7), where the starting value of X0

can be used from the usual calibration model (Shukla (1972)) and the maximizing method
BFGS can be used, which can be implemented in the software R. Once the parameter X0

is estimated from Equation (7), in the next iteration step the estimates of β and φ can be
found by using this estimate in the equations (5) and (6), respectively.

The Fisher information matrix Kθ for the Proposed-M can be expressed as follows
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Kθ = E

[(
∂l(θ)
∂θ

)2
]

=




Kβ0 Kβ0β1 Kβ0X0 Kβ0φ

Kβ1 Kβ1X0 Kβ1φ

KX0 KX0φ

Kφ


 ,

with the matrix components given by

Kβ0 =
4
φ

{
Ndh + rdh0

}
,

Kβ1 =
4
φ

{
n∑

i=1

miX
2
i dh + rX2

0dh0

}
,

KX0 =
4
φ

rβ2
1dh0 ,

Kφ =
1

4φ2

{
N(4fh − 1) + r(4fh0 − 1)

}
,

Kβ0β1 =
4
φ

{
n∑

i=1

miXidh + rX0dh0

}
,

Kβ0X0 =
4
φ

rβ1dh0 ,

Kβ1X0 =
4
φ

rβ1X0dh0 ,

Kβ0φ = Kβ1φ = KX0φ = 0,

where the values dh = E[W 2
h (U)U ], dh0 = E[W 2

h0
(U0)U0], fh = E[W 2

h (U)U2] and fh0 =
E[W 2

h0
(U0)U2

0 ] are computed for some distribution as given in Table 1.
Under conditions that are fulfilled for parameters in the interior of the parameter space

but not on the boundary, the asymptotic distribution of θ̂ is normal with zero mean and
the variance is the inverse of the expected information matrix. Then, in order to construct
a confidence interval (CI) for X0 we consider

X̂0 −X0√
Var(X̂0)

D→ N(0, 1),

where Var(X̂0) is the variance of X̂0 derived from the Fisher information matrix. Therefore,
the approximate CI for X0 with confidence coefficient (1− α) is given by

[
X̂0 − zα

2

√
V̂ar(X̂0), X̂0 + zα

2

√
V̂ar(X̂0)

]
,

where zα

2
is the quantile of order (1− α

2 ) of the standard normal distribution.

3. Simulation study

The behavior of the maximum likelihood estimator of X0 was studied through the empirical
bias and the mean square error (MSE), for which it is generated 10000 Monte Carlo samples
from the Proposed-M with sample sizes n = 5, 20, 40 and 100 for the first stage and r = 3,
20 and 100 for the second stage. The values of the parameters were β0 = 0.1, β1 = 2 and
φ = 0.04. The values xi, i = 1, · · · , n, are taken to be equally spaced values over the range
[0, 2], being the values x1 = 0 and xi = xi−1 + 2/(n − 1) for i = 2, . . . , n. The parameter
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values X0 were also chosen over the range [0, 2] such that 0.01 (extreme inferior value), 0.8
(near to the central value) and 1.9 (extreme superior value). The empirical mean bias and
the MSE are given by

∑10000
i=1 (X̂0−X0)/10000 and

∑10000
i=1 (X̂0−X0)2/10000, respectively.

The simulation results were obtained using the software R version 2.11.1.
Tables 2-5 present both the empirical bias and the MSE of X0 for the normal, Student-t,

power exponential and logistic-II distributions. These tables show that for all r and X0,
the bias and the MSE decrease as the size of n increases, and when X0 is close to the
midpoint of the interval [0, 2] they are much smaller. In Tables 2-4 , we observe that for all
n and X0 , the MSE decreases as the size of r increases, and for the logistic-II distribution
this behavior remains for most of the cases, except for the smaller sample size of n and
the extremes values of X0.

Table 2. Empirical bias and MSE of X̂0 for the normal distribution.

r = 3 r = 20 r = 100
X0 n Bias MSE Bias MSE Bias MSE
0.01 5 -0.0034 0.0093 -0.0028 0.0063 -0.0054 0.0060

20 -0.0012 0.0052 -0.0009 0.0023 -0.0014 0.0019
40 -0.0014 0.0043 -0.0006 0.0015 -0.0005 0.0010
100 -0.0001 0.0037 0.0002 0.0009 -0.0003 0.0005

0.8 5 -0.0012 0.0055 -0.0002 0.0026 -0.0007 0.0021
20 0.0012 0.0039 -0.0003 0.0010 -0.0006 0.0006
40 0.0003 0.0036 -0.0001 0.0008 0.0000 0.0004
100 0.0001 0.0035 -0.0001 0.0006 -0.0001 0.0002

1.9 5 0.0035 0.0086 0.0038 0.0057 0.0025 0.0043
20 0.0014 0.0049 0.0009 0.0021 0.0012 0.0015
40 -0.0004 0.0042 0.0005 0.0013 0.0006 0.0008
100 -0.0005 0.0037 0.0001 0.0008 0.0004 0.0004

Table 3. Empirical bias and MSE of X̂0 for the Student-t distribution.

r = 3 r = 20 r = 100
X0 n Bias MSE Bias MSE Bias MSE
0.01 5 -0.0161 0.0384 -0.0152 0.0266 -0.0089 0.0219

20 -0.0027 0.0170 -0.0039 0.0070 -0.0039 0.0059
40 -0.0005 0.0143 -0.0013 0.0042 -0.0016 0.0031
100 -0.0014 0.0121 -0.0004 0.0026 -0.0009 0.0014

0.8 5 -0.0014 0.0208 -0.0036 0.0102 -0.0017 0.0081
20 -0.0020 0.0128 -0.0002 0.0031 -0.0005 0.0019
40 0.0001 0.0120 -0.0002 0.0022 -0.0001 0.0011
100 -0.0017 0.0114 0.0002 0.0018 0.0000 0.0006

1.9 5 0.0150 0.0344 0.0125 0.0227 0.0097 0.0178
20 0.0046 0.0160 0.0038 0.0062 0.0043 0.0047
40 0.0047 0.0135 0.0014 0.0038 0.0023 0.0026
100 0.0007 0.0124 0.0012 0.0024 0.0005 0.0012
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Table 4. Empirical bias and MSE of X̂0 for the power exponential distribution.

r = 3 r = 20 r = 100
X0 n Bias MSE Bias MSE Bias MSE
0.01 5 -0.0308 0.0866 -0.0316 0.0609 -0.0213 0.0484

20 -0.0100 0.0378 -0.0091 0.0154 -0.0074 0.0126
40 -0.0043 0.0303 -0.0066 0.0091 -0.0034 0.0066
100 -0.0025 0.0259 -0.0029 0.0053 -0.0018 0.0029

0.8 5 -0.0030 0.0431 -0.0073 0.0234 -0.0072 0.0179
20 -0.0021 0.0283 -0.0016 0.0066 -0.0027 0.0041
40 -0.0027 0.0258 -0.0018 0.0048 -0.0011 0.0023
100 -0.0023 0.0237 0.0001 0.0037 -0.0001 0.0012

1.9 5 0.0266 0.0713 0.0309 0.0514 0.0262 0.0439
20 0.0022 0.0349 0.0072 0.0139 0.0078 0.0103
40 0.0029 0.0289 0.0028 0.0082 0.0035 0.0056
100 -0.0005 0.0263 0.0017 0.0050 0.0016 0.0025

Table 5. Empirical bias and MSE of X̂0 for the logistic-II distribution.

r = 3 r = 20 r = 100
X0 n Bias MSE Bias MSE Bias MSE
0.01 5 -0.0586 0.4860 -0.0513 0.1014 -0.0427 0.0832

20 -0.0140 0.0570 -0.0152 0.0262 -0.0155 0.0226
40 -0.0019 0.0467 -0.0067 0.0150 -0.0061 0.0111
100 -0.0024 0.0391 -0.0017 0.0089 -0.0025 0.0049

0.8 5 -0.0120 0.0724 -0.0112 0.0341 -0.0074 0.0289
20 -0.0048 0.0436 -0.0021 0.0113 -0.0024 0.0067
40 0.0017 0.0386 -0.0032 0.0081 -0.0021 0.0038
100 -0.0005 0.0362 -0.0008 0.0061 -0.0003 0.0021

1.9 5 0.0503 0.2543 0.0469 0.0995 0.0387 0.0774
20 0.0135 0.0543 0.0125 0.0239 0.0127 0.0183
40 0.0065 0.0444 0.0082 0.0138 0.0053 0.0094
100 0.0029 0.0380 0.0045 0.0084 0.0021 0.0044

Tables 6-7 present the lower limit (LL) and upper limit (UL) of the asymptotic 95%
confidence interval for the parameter X0, and the covering percentage for the normal,
Student-t, power exponential and logistic-II distributions, respectively. Analyzing these
tables, we observe that for all r, when X0 = 0.01 the LL and UL decrease as the size of n
increases, and when X0 = 1.9 and for, in most of the cases, X0 = 0.8 the LL increases and
UL decreases as the size of n increases. This causes the covering percentage to increase
approaching 95%.
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Table 6. 95% asymptotic confidence interval and coverage probability for the parameter X0 under the normal and
Student-t distributions.
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Table 7. 95% asymptotic confidence interval and coverage probability for the parameter X0 under the power
exponential and logistic-II distributions.
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4. Application

We apply the Proposed-M to a data set from Neto et al. (2007). In this application the
main interest is to estimate the zinc concentration (X0). This data set is presented in
Table 8 and it consists on aqueous solutions containing five levels of zinc concentration
(X) and their related replicate measurements (Y ) of size mi = 3, which are obtained from
the flame atomic absorption spectrometry analytical procedure.

Table 8. Zinc concentration levels and absorbance.

Concentration Replicate measurements
X Y1 Y2 Y3

0.0 0.696 0.696 0.706
0.5 7.632 7.688 7.603
1.0 14.804 14.861 14.731
2.0 28.895 29.156 29.322
3.0 43.993 43.574 44.699

To show the suitability of our approach in a practical experimentation, we consider the
zinc standard concentration value 1.0 to be an unknown value X0, and then the related
response variable Y0 will be considered the second stage data on the calibration model. So,
the rest of the data set are considered as the first stage data on the calibration model. The
data set was obtained using only an analytical method, and then it belongs to the same
population and it is reasonable to consider h = h0 in (3), i.e., the dependent variable from
the first and second stage have the same distribution.

The Proposed-M defined in Section 2 is fitted to this data set over the normal, Student-
t, power exponential and logistic-II distributions. The values of the parameters v and k
related to the Student-t and power exponential distributions, respectively, were chosen
in a selection procedure based on the Akaike information criterion (AIC). Based on this
selection procedure, the values of the parameters chosen were v = 3 for the Student-t
distribution and k = 0.5 for the power exponential distribution.

Table 9 presents the Akaike information criterion (AIC), Bayesian information criterion
(BIC) and the Hannan-Quinn information criterion (HQ) which are model selection crite-
ria. Based on these criteria, the selected model is the one with minimum value. We observe
that the values of the AIC, BIC and HQ criteria are smaller for the fitted Proposed-M
assuming Student-t errors as compared with those values of the other fitted models.

Table 9. AIC, BIC and HQ criteria for the Proposed-M using the zinc data set from Neto et al. (2007).

Distribution AIC BIC HQ
Normal 6.8603 8.2764 6.8452

Student-t (v = 3) 3.8399 5.2560 3.8249
Power exponential (k = 0.5) 5.4678 6.8839 5.4528

logistic-II 5.5385 6.9546 5.5234



14 Marciano et al.

Table 10. Proposed-M parameters estimates, standard error and confidence interval amplitude U(X0) under errors
normal, Student-t, power exponential and logistic-II .

Distribution β̂0 β̂1 X̂0 φ̂ U(X0)
Normal 0.5159 14.4526 0.9882 0.0857 0.0259

(0.1290) (0.0708) (0.0132) (0.0313) -
Student-t (v = 3) 0.5891 14.3357 0.9912 0.0204 0.0151

(0.0746) (0.0410) (0.0077) (0.0099) -
Power exponential (k = 0.5) 0.5540 14.3845 0.9906 0.0283 0.0220

(0.1088) (0.0598) (0.0112) (0.0127) -
logistic-II 0.5539 14.3929 0.9897 0.0199 0.0217

(0.1076) (0.0591) (0.0110) (0.0085) -

The generated envelopes for the normal, Student-t, power exponential and logistic-II
distributions, as proposed by Atkinson (1981), are presented in Fig. 1. In this figure we
observe that the Proposed-M with Student-t distribution fitted better the data set than
the other distributions.

(a) (b)

(c) (d)
Figure 1. Simulated envelopes for the fitted Proposed-M using the zinc data set under (a) normal, (b) Student-t
(v = 3), (c) power exponential (k = 0.5) and (d) logistic-II distributions.
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5. Concluding remarks

A new calibration model with replicate measurements assuming a class of symmetrical
distributions for the error model was proposed in this work. This new model is quite
flexible to analyze data considering a class of symmetrical distributions instead of only
the normal distribution. For example, error normality is very used in chemical analysis,
but there are applications where normal distributions is not adequate. In this work, the
simulation study was conducted to show the asymptotic behavior of the parameter of
interest X0 assuming Student-t, power exponential and logistic-II errors for the Proposed-
M. It was observed that when the sample size of the first and second stage increase both
the empirical bias and the MSE decrease for the three distributions. We also observed
that for small sample sizes in the first stage (n = 5) for all the studied distributions,
the estimator of X0 has large bias when it is close to zero, and the lower value of bias
occurs when the value of X0 is near to the midpoint of the range of the variable X. The
application example proved that the three alternative models of the normal model can be
more appropriate for the data set according to the AIC, BIC and HQ criteria. Moreover,
based on simulated envelopes, the Student-t model is more appropriate than the other two
alternative models for the zinc data set.
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