
Chilean Journal of Statistics
Vol. 7, No. 1, April 2016, 17–30

Regression

Research Paper

Comparative inference and diagnostic in a reparametrized
Birnbaum-Saunders regression model
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Abstract

The Birnbaum-Saunders distribution has received great attention in recent years, pro-
viding many useful techniques for analysis of positive response variables in several works.
A regression model in a similar framework of a generalized linear models was proposed
using a new parametrization of the Birnbaum-Saunders distribution. The purpose of this
paper is to develop a Bayesian approach for this recent regression model. In addition,
Bayesian influence diagnostic procedures will be discussed and compared with classical
alternatives using Monte Carlo methods. Both approaches have similar results, but we
propose a way to improve the Bayesian method.

Keywords: Birnbaum-Saunders distribution · Bayesian inference · Bayesian influence
diagnostic.

Mathematics Subject Classification: Primary 62F15 · Secondary 62J20.

1. Introduction

The Birnbaum-Saunders distribution, BS, was initially proposed by Birnbaum and Saun-
ders (1969a) in order to analyze the lifetime of objects that suffer from a cyclic damage
that causes a crack when a certain threshold of damage is reached. Afterwards, Birnbaum
and Saunders (1969b) presented inference methods for this initial distribution. A regres-
sion model framework was introduced at first by Rieck and Nedelman (1991), who used a
relation between the BS and Sinh-Normal distributions to create a log-Birnbaum-Saunders
model. Thereafter, accelerated lifetime models were discussed by Owen and Padgett (2000).
After these papers, many works have been done about BS regression models, as Dı́az-
Garćıa and Leiva (2002) who introduced an extension of early models with a generalized
Birnbaum-Saunders distribution, allowing different kernels of elliptical distributions to be
used in the BS model. Influence diagnostic for log-BS models was discussed, for exam-
ple, by Galea et al. (2004) and generalization of their results for log-BS nonlinear models
was given by Lemonte and Patriota (2011). Recently, Leiva (2016) presented an excellent

∗Corresponding author. Email: rvf1@de.ufpe.br

ISSN: 0718-7912 (print)/ISSN: 0718-7920 (online)
c© Chilean Statistical Society – Sociedad Chilena de Estad́ıstica
http://www.soche.cl/chjs



18 Fonseca et al.

description about inference, modeling and applications using the BS distribution.
On the other hand, Bayesian procedures for BS models present only a few papers in lit-

erature. We highlight Achcar (1993), who has developed Bayesian estimation procedures
for the BS distribution by using various approximations to the marginal posteriors and
compared with classical methods and Tsionas (2001), who developed a Bayesian approach
for a BS regression model proposed by Rieck and Nedelman (1991). Influence diagnostic
analysis in Bayesian framework was discussed for a non-linear Birnbaum-Saunders regres-
sion model by Farias and Lemonte (2011) and for a BS distribution with t-Student kernel
by Cancho et al. (2010).

A BS distribution parametrized by its mean was discussed by Santos-Neto et al. (2012),
based on generalized linear models (GLM), with the following probability density function

f(y;µ, δ) =
exp{δ/2}√1 + δ
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with δ > 0, µ > 0 representing the mean of Y , whose variance is given by Var(Y ) =
µ2(2δ + 5)/(δ + 1)2. Properties from the original BS were retained, such as reciprocity
and proportionality closure, i.e., Y −1 ∼ BS

(
(δ+1)2

δ2µ , δ
)

and aY ∼ BS(aµ, δ) whith a > 0,
respectively.

A regression model based on this new reparametrization was proposed by Leiva et al.
(2014), in the similar way done in GLM, where a function links the explanatory variables
to the conditional expectation of the response variable, which is explained by a linear
predictor

g(µi) = x>i βββ = ηi, (1)

where xi = (xi1, . . . , xip)> is a vector of explanatory variables, βββ = (β1, . . . , βp)> is a
regression coefficients vector and ηi is the linear predictor. The link function g : R+ → R

is monotone and at least twice differentiable. Estimation methods, residual analysis and
influence diagnostic where done in the frequentist approach by Leiva et al. (2014) for
this new model. One of the objectives of this paper is to develop and discuss estimation
methods and diagnostic in the Bayesian approach.

The paper is organized as follows. In Section 2 we introduced the Bayesian approach for
the reparametrized Birnbaum-Saunders regression model. The structure of the model and
possible prior distributions for the parameters are discussed. In Section 3 we presented
comparison model criteria currently used in the literature of Bayesian regression mod-
els and Section 4 presented results to perform Bayesian influence diagnostic under such
models. In Section 5, we give a brief description of local influence diagnostic under the
frequentist approach. A Monte Carlo simulation study is performed in section 6, analyzing
prior choices for the Bayesian model and comparing some influence diagnostic methods for
the BS model. An application to real data is made in section 7 under Bayesian and fre-
quentist methodologies, with a comparison of both. Finally, section 8 concludes the paper
with a discussion.

2. Section Two

The Bayesian approach for the model presented in equation (1) may be done similarly
to Bayesian generalized linear models (see, for example, Dey et al. (2000)), assigning the
Birnbaum-Saunders distribution for the response variable Y1, . . . , Yn, and suitable prior
distributions for the coefficients regression vector βββ and the parameter related to disper-
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sion, δ. Consider the following hierarchical structure for the Bayesian Birnbaum-Saunders
model

yi|βββ, δ ∼ BS(g−1{x>i βββ}, δ), i = 1, · · · , n

(βββ, δ)> ∼ π(βββ, δ). (2)

The likelihood function for the BS regression model is given by

L(βββ, δ|y) ∝
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with µi = g−1(x>i βββ). Nevertheless, since we have no prior information about dependence
between βββ and δ, we consider the conditional independence π(βββ, δ) = π(βββ)π(δ) in equation
(2). Furthermore, it may be used a distribution with support in Rp for π(βββ) and a positive
support distribution for δ. As a first choice, we propose a multivariate Normal distribution
for the regression coefficients, and since δ assume positive values only, a Gamma distribu-
tion is a natural choice for its prior distribution. In this way, the first hierarchical structure
for the Bayesian Birnbaum-Saunders regression model, denoted by M1, is of the form

yi|βββ, δ ∼ BS(g−1{x>i βββ}, δ), i = 1, · · · , n (3)

βββ ∼ Np(µµµ0,ΣΣΣ0), (4)

δ ∼ Gamma(a, b), (5)

with µµµ0, ΣΣΣ0, a and b denoting the hyperparameters of the model and for δ, we assume the
following Gamma distribution π(δ|a, b) ∝ δa−1 exp{−bδ}, with a, b > 0.

In the model M1 presented in equations (3)-(5) it is given just one way in many ways to
choose prior distributions for the parameters of interest. Different prior distributions can
be and should be tested to modeling the data. One of the objective of doing the test is to
check if different prior distributions leads to different inferential results.

The second model considered here, denoted by M2, differ of M1 on the covariance matrix
of the prior distribution of the coefficients regression ΣΣΣ0 given in equation (4). It is assumed
in M2 that ΣΣΣ0 is of the form τ−2ΣΣΣ0, where τ2 is a hyperparameter of precision associated
to a Gamma prior distribution, τ2 ∼ Gamma(c, d), with c, d > 0. So we can hierarchically
have

yi|βββ, δ ∼ BS(g−1{x>i βββ}, δ), i = 1, · · · , n (6)

βββ|τ2 ∼ Np(µµµ0, τ
−2ΣΣΣ0), (7)

τ2 ∼ Gamma(c/2, d/2), (8)

δ ∼ Gamma(a, b). (9)

The representation of the equations (7)-(8) in model M2 allows us to have a good range
of flexible distributions belonging to the class of scale normal distributions for the prior
distributions for βββ. This class present distributions with heavier or lighter tails than the
normal distribution, besides having normal distribution as a particular case. We highlighted
Normal distribution, Cauchy distribution, Student t-distribution and Person Type VII
family as particular cases of model M2 (see for example, Choy and Chan (2008)).

The normal distribution is obtained assuming that τ2 follows a degenerate distribution
on one (model M1) and a Cauchy distribution is obtained assuming c = d = 1 in the prior
distribution in equation (8). There exist quite a few forms of the multivariate Student
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t-distribution (see Kotz and Nadarajah (2004)) with many of the cited variations focusing
on introducing non-centrality. Among all the possible multivariate representations, the
most common form considered is obtained when c = d = ν, where ν denotes the degrees
of freedom. This one will be considered in this paper. Finally, Person Type VII family is
obtained for any c, d > 0 in equation (8).

Is is important to observe in model M2 that the hyperparameters c and d controls shape
and tails of the prior distribution of βββ is considered fixed and known. That it is not always
a good alternative to modeling data. Therefore, the last model considered in this paper,
denoted by M3, consider that c = d = ν is unknown and a prior distribution is chosen
for the degrees of freedom ν. The prior distribution resulting is a multivariate Student-t
distribution with ν degrees of freedom for βββ. It is also assumed that ν ∼ Unif(c, d), with
c, d > 0. The hierarchical representation of model M3 is

yi|βββ, δ ∼ BS(g−1{x>i βββ}, δ), i = 1, · · · , n (10)

βββ|τ2 ∼ Np(µµµ0, τ
−2ΣΣΣ0), (11)

τ2 ∼ Gamma(ν/2, ν/2), (12)

ν ∼ Unif(c, d), (13)

δ ∼ Gamma(a, b). (14)

Since the posterior distributions obtained for models M1, M2 and M3 do not present a
known distribution and do not have closed form, Monte Carlo Markov Chain (MCMC)
methods are usually good to generate samples from the joint posterior distributions, al-
lowing us to make inferences.

3. Section Three

Since a prior distribution has to be chosen to fit the model and, if there is no additional
knowledge about the distribution of the parameters, an alternative is to choose the better
prior distribution by using some criteria to compare how different models are by the fitting
the data. The method used in this paper is based in predictive functions, verifying how good
model predicts values from the data, using the Conditional Predictive Ordinate (CPO),
proposed by Geisser and Eddy (1979). Firstly, consider D as the full data set and D[i] the
data with the ith observation removed. The CPOi measures the probability of the model to
predict the value of the ith observation given the data without the predicted observation,
i.e., CPOi = π(yi|D[i]) =

{∫
π(θθθ|D)/π(yi|θθθ)dθθθ

}−1, which according to Christensen et al.
(2011) may be approximated from the MCMC samples of the parameters θθθ(1), . . . , θθθ(s) by

ĈPOi =

{
1
s

s∑

i=1

1
fi(yi|θθθ(k), D)

}−1

,

where yi is the observed value and fi(yi|θθθ(k), D) is the probability density of yi for the cur-
rent value of θθθ and the full data. Higher is the CPOi value, more credible is the observation
to be explained by the fitted model. Given the CPO values for each observation, two dif-
ferent models M1 and M2, for example, can be compared by using the log pseudo-marginal
likelihood (LPML), given by LPML =

∑n
i=1 log(CPOi), with n denoting the sample size

of the data. By this criteria, the best model would be the one with largest LPML. Another
possibility would be to use the pseudo-Bayes factor (PBF), also discussed by Geisser and
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Eddy (1979), given by

PBF(M1,M2) =
ˆπ(yi|D[i], M1)
ˆπ(yi|D[i], M2)

=
∏n

i=1 ĈPOi(M1)∏n
i=1 ĈPOi(M2)

,

where ĈPOi(Mj) is the estimated value of CPO of the ith observation under model j. The
model M2 (M1) is preferable than model M1 (M2) if PBF [M1,M2] < 1(> 1).

4. Section Four

In order to verify the presence of influential observations in regression models under
Bayesian framework, Cho et al. (2009) proposed a method that uses the Kullback-Leibler
(K-L) divergence measure to identify those observations. The K-L divergence is given by

K(P,P[i]) =
∫

π(θθθ|D) log
{

π(θθθ|D)
π(θθθ|D[i])

}
dθθθ,

where θθθ is the parameters vector of the model, P is the posterior distribution of θθθ for
the full data and P[i] is the posterior distribution for the data with the ith observation
removed. According to Cho et al. (2009), these measures can also be obtained through the
expression

K(P,P[i]) = − log(CPOi) +Eθθθ [log {f(yi|θθθ)} |D] , (15)

where Eθθθ [·|D] is the posterior expectation of the distribution of θθθ given D. The equation
(15) allows to calculate an approximation of the K-L divergence using MCMC samples of
the posterior distribution of θθθ for the full data. Also, comparing values that might define
a coin as biased or unbiased, Vidal and Castro (2010) derived a cut-off point for the K-L
divergence, where an observation with K(P,P[i]) > 0.14 could be considered as influential.
Besides having a intuitive justification, this cut-off point might be too rigorous, thus we
propose using twice the mean value of K(P,P[1]), . . . , K(P,P[n]), similarly the way done
in classical approach for total local influence (see next section), allowing more flexibility
for the cut-off point to vary according to the sample analyzed. These rules of thumb are
very useful in applications and provide criteria of assessing influence rather than visual
inspection.

Another quantity used with the K-L divergence is the calibration, whose definition is
given by McCulloch (1989). Given that K(Q1,Q2) = k for two posterior distributions Q1

and Q2, the objective consists to find a value for q(k) in order to K [B{1/2}, B{q(k)}] = k,
where B{p} represents a Bernoulli distribution whith parameter p. According to McCulloch
(1989) the value of q(k) is the calibration of k, and allows to observe similarities between
the K-L divergences in the situations Q1 and Q2, and B{1/2} and B{q(k)}, where q(k) ≈ 1
means that models Q1 and Q2 are notoriously different, while if q(k) ≈ 0.5, the models
are quite similar. Taking q(k) as pi, according to Cho et al. (2009), K(P,P[i]) may be
measured by

K(P,P[i]) = K(B{1/2}, B{pi}) =
− log {4pi(1− pi)}

2
,
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where using the divergence measure to calculate pi, we have

pi =
1 +

√
1− exp{−2K(P,P[i])}

2
,

where pi ∈ [0.5, 1]. The values pi can be used to verify how well the current model fitted
the ith observation, where values further from 0.5 might be an indicative of influence.

5. Section Five

Local influence method was firstly proposed by Cook (1986) to analyze differences between
an adopted model and a model with perturbed observations. Considering θθθ a vector p× 1
of the model parameter and θwθwθw the parameters vector of the model under perturbation,
a influence measure caused by the perturbation vector www ⊂ Rn, with n being the sample
size, can be obtained by

LD(www) = 2[l(θθθ)− lwww(θθθ)],

where l(θθθ) is the log-likelihood function for the non-perturbed data, lwww(θθθ) is the log-
likelihood function for the model under perturbation and LD(www) is a deviance measure of
the likelihood functions caused by the perturbation vector www.

Considering www0 a non-perturbation vector where lwww0(θθθ) = l(θθθ), the method consists
in verify the behavior of LD(www) around www0. The influence analysis is done using a unit
direction ||ddd|| = 1 and evaluating the plot of LD(www0 + addd) versus a, a ∈ R. The usual
method consists in consider the direction dddmax which corresponds to the largest normal
curvature Cddd(θθθ) around a = 0, and Cook (1986) gives its expression which is

Cddd(θθθ) = 2|d>∆>d>∆>d>∆>L̈−1
θθθθθθ ∆d∆d∆d|,

where −L̈θθθθθθ is the observed Fisher’s matrix and ∆∆∆ is a perturbation matrix with elements

∆∆∆ij =
∂2lwww(θθθ)
∂θθθi∂wwwj

,

evaluated in θθθ = θ̂θθ, with i = 1, . . . , p and j = 1, . . . , n. According to Cook (1986), we have
that Cmax is taken as the largest eigenvalue of F̈ = −∆>∆>∆>L̈θθθθθθ∆∆∆ and dddmax and its associated
eigenvector. The graphical analysis of influence consists in evaluate the plot of dddmax versus
the observations indexes.

The local influence analysis for the reparametrized BS regression model was discussed by
Leiva et al. (2014) considering many cases of perturbation. Another useful way to verify the
influence is called total local influence, proposed by Lesaffre and Verbeke (1998), evaluating
Ci = 2|F̈ii|, where F̈ii is the ith diagonal element of F̈. The authors also proposed a cut-off
point, where observations with Ci greater than 2C̄ should be highlighted as influential,
where C̄ = n−1

∑n
i=1 Ci. This technique can be very useful in applications and could be

used in comparison with other methods of influence diagnostic, like the K-L divergence in
Bayesian models.
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6. Section Six

6.1 Different priors comparison

A Monte Carlo simulation study was performed to compare the different prior distributions
presented in the three models M1, M2 and M3 from Section 2. Observations from Yi ∼
BS(µi, δ) and Xi ∼ Unif(0, 1) were simulated, with

µi = exp{β0 + β1xi}, i = 1, . . . , 50.

In the Bayesian models was considered ΣΣΣ0 = τ−2Ip in equation (4), with Ip denoting the
identity matrix of dimension p and τ2 > 0 a fixed hyperparameter for the precision for the
prior distribution of βββ. Furthermore, it is assumed µµµ0 = 000p in (4), where 000p is a vector of
p zeros. The three considered models are presented below:

The first model, denoted by M1, is the BS-Normal prior model given in equations (3)-(5)
with µµµ0 = 0002, ΣΣΣ0 = 1000I2 and a = b = 0.01. The second model, denoted by M2, is the
BS-Person Type VII prior model given in equations (6)-(9) with µµµ0 = 0003, ΣΣΣ0 = 1000I2,
a = 0.01, b = 0.01, c = 2 and d = 4.002. Finally, the last model, denoted by M3, is
the BS-Student-t prior model given in equations (10)-(14) with µµµ0 = 0002, ΣΣΣ0 = 1000I2,
a0 = 0, b0 = 100. These hyperparameters were chosen in order to guarantee a large
variance (low precision) for the prior distributions, i.e., they consist in non informative
prior distributions.

The models presented previously were fitted considering four different scenarios of pa-
rameters. They are θθθj = (β0, β1, δ)>, j = 1, 2, 3, 4: θθθ1 = (2,−1.5, 3)>; θθθ2 = (−2.5, 2, 3)>;
θθθ3 = (−.5,−1.7, 5)> and θθθ4 = (1.3, 2.2, 1)>. The simulations were done using the soft-
wares R (R Core Team (2014)) and OpenBUGS (Thomas et al. (2006)), through the package
R2OpenBUGS. The initial values for the MCMC chains were obtained using the classical
approach for the regression model, with MCMC samples of size 10000 with the first 1000
values being discarded in the burn-in period. To check the convergence of the MCMC
chains, ACF plots and traceplots were analyzed using the CODA package (see Plummer et
al. (2006)) and the convergence was confirmed in all cases.

From the results in the Table 1, we can observe that for θθθ1 and θθθ2 the best model was
M1, but with a LPML close to M2 and the worst model being M3 in both scenarios. For
θ3 the three models had quite similar performance, with M2 being the best. On the other
hand, for θθθ4 the best model was M3, and the closest LPML from M3 was the one from M2.
This results suggest that the prior choice in the BS regression model has a slight impact
in its quality, but before choosing the model it would be useful compare the possible prior
distributions.

6.2 Influence diagnostic comparison

A second Monte Carlo simulation was performed to evaluate this time the influence di-
agnostic of classical and Bayesian approaches in the BS regression model. We used the
expressions given by Leiva et al. (2014) of generalized leverage (GL), local influence con-
sidering the case-weight perturbation (LIcw), response perturbation (LIresp) and covariate
perturbation (LIcov) schemes. A number of 1000 replicas of samples of the vectors y and
x were generated, with n = 50 observations, where yi ∼ BS(µi, δ) , xi ∼ Unif(0, 1),
µi = exp{−0.5− 1.7xi}, δ = 5 and i = 1, . . . , 50. The covariate generated was kept fixed,
being the same for each replica. To simulate influential observations, some values yj ran-
domly chosen from y were replaced by y∗j = yj + 5σy, where σy denotes the standard
deviation from the sample y. The effect of modifications in the covariate was also stud-
ied, changing some values of x in the same way, x∗j = xj + 5σx, where σx denotes the
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Table 1. Comparison of the models M1, M2 and M3 within different scenarios. The criteria LPML was calculated
and the PBF was obtained between the models in the rows with the ones in the columns.

Scenario Model LPML PBF
M2 M3

M1 -118.7370 1.062801 1.415612
θθθ1 M2 -118.7979 - 1.331963

M3 -119.0845 - -
M1 24.5828 1.041390 1.283002

θθθ2 M2 24.5422 - 1.232009
M3 24.3336 - -
M1 17.6647 0.983168 0.979655

θθθ3 M2 17.6816 - 0.996428
M3 17.6852 - -
M1 -173.8033 0.853929 0.792765

θθθ4 M2 -173.6454 - 0.928373
M3 -173.5711 - -

standard deviation from the sample x. The percentage of modified values from the sam-
ple size was denoted by r, being 2%, 6% or 10%. For the Bayesian model an option for
model M2 was made and the initial estimates from the classical model were used for the
MCMC chains, the later with sample size 3000, burn-in period of 300 observations and
spacing of 2 observations. Before performing the complete simulation, the Bayesian model
was analyzed for some replicas in order to verify the convergence of the MCMC chains,
which was adequate considering traceplots and ACF plots. The influence measures were
obtained for the complete parameter vector θθθ = (β0, β1)>. Observations were considered
as influential in each approach through the cut-off points 2C̄ proposed by Lesaffre and
Verbeke (1998) for total local influence in the classical model, and Kcut1 = 0.14 for the
K-L divergence in the Bayesian model discussed by Vidal and Castro (2010). We also pro-
posed using Kcut2 = 2K-L as cut-off point for the K-L divergence, similarly in the total
local influence, where K-L is the mean of K-L values. We denoted the results using Kcut2

as K-Ld. For generalized leverage we used a cut-off point of 2p/n, where p is the number of
parameters and n the sample size. Percentages of correct detection of the modified values
were obtained for each diagnostic method, evaluating the cut-off points.

In the Table 2, we can notice LIcw and K-Ld had the best performance in general, i.e., the
cut-off point 2C̄ of total local influence under case-weight perturbation and Kcut2 were the
most efficient in the simulation study detecting the perturbed observations. We can observe
that LIcov had the best results detecting perturbations like x∗, but for perturbations like
y∗ the results were worse, as expected. On the other hand, LIresp performed poorly in
both schemes of perturbation compared with the other methods, thus its results were
not presented. The GL had a better performance detecting perturbation of the form x∗
(which is similar to generating leverage points) than y∗ (similar to generating outliers). The
influence diagnostic in the Bayesian model using Kcut1 detected the perturbed observations
less efficiently than LIcw and K-Ld, which might have occurred because its cut-off point is
fixed for all samples, making this Bayesian criteria more rigorous in taking an observation
as influential.

Therefore, we see that LIcw and K-Ld were the most efficient methods to detect influent
points in the simulation study, with a slight advantage for the latter. We also noticed that
using Kcut2 = 2K-L improved the performance of the Bayesian diagnostic, allowing more
flexibility for the K-L cut-off point.
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Table 2. Rates of correct detection of influence points by the total local influence under different schemes of
perturbation, generalized leverage and K-L divergence (for two cut-off points). The proportion of modified variables
to simulate influent observations is r and the terms y∗ and x∗ denote if the modification was on the response or in
the covariate.

Modification r LIcw LIcov GL K-L K-Ld
%2 0.985 0.995 0.771 0.978 0.993

x∗ %6 0.618 0.718 0.503 0.484 0.625
%10 0.420 0.539 0.371 0.266 0.427
%2 1.000 0.551 0.000 0.961 1.000

y∗ %6 0.941 0.351 0.000 0.724 0.936
%10 0.731 0.248 0.000 0.443 0.767

7. Application

The data set analyzed is the biaxial fatigue data, first studied by Brown and Miller (1978),
which consists in 46 observations about the lifetime until its failure, in cycles, of a piece
of metal. The variables are Y , the number of cycles until failure, and Work, measuring
the work per cycle. Was noticed by Rieck and Nedelman (1991) that using log(Work)
(which we denote by x) is a more appropriate choice. The models were adjusted using the
softwares R and OpenBUGS.

The dataset was also analyzed by other authors with different models using the
Birnbaum-Saunders distribution, like the already cited Galea et al. (2004), Lemonte and
Patriota (2011), Farias and Lemonte (2011), for example. Our analysis differ from the
previous works using a reparametrized BS and comparing the classical and Bayesian ap-
proaches for the model.

7.1 Classical approach

Using the results presented in Leiva et al. (2014), the classical approach for the Birnbaum-
Saunders regression model was implemented for the following model

log(µi) = β0 + β1xi, i = 1, . . . , 46, (16)

where Yi ∼ BS(µi, δ) and the logarithmic link function is used. Maximum likelihood es-
timates and its standard errors (SE) are presented in Table 3. We can observe that the
covariate x has a negative influence in the expected value of the lifetime, and the regres-
sions coefficients are significant since the intervals of two standard errors do not contain
zero.

In Figure 1, the residuals plot show an apparent random behavior, with one observation
outside the the limits of (−2, 2), which indicates this point might be possibly outlier.
A simulated envelope (see Atkinson (1985)) was done using the standardized residual
proposed by Leiva et al. (2014), which has the form ri = {V̂ar(Yi)}−1/2(yi − µ̂i), where
V̂ar(Yi) = µ̂2

i (2δ̂ + 5)/(δ̂ + 1)2, indicates that the fitted model seems adequate.

Table 3. Estimates for the model (16) in classical approach and its respective standard errors.

Parameter Estimate SE
β0 12.3606 0.4001
β1 -1.6708 0.1111
δ 11.8771 2.4765
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Figure 1. Plot of residuals (a) and simulated envelope (b)

7.2 Bayesian approach

The Birnbaum-Saunders regression model given in equation (16) was also considered under
the Bayesian approach. However, it will be used three different prior distributions for the
regression coefficients and it will be verified the sensibility of the model (16) for each prior
distribution considered in this paper. It is important to emphasize since we have no prior
information about the dependence structure among the regression coefficients, it is a fair
choice to assume the non informative prior distributions used in the simulation study in
the section 6.1. A MCMC sample of size 10000 was generated with a burn-in period of
1000. The convergence of the chains generated by MCMC algorithms were verified using
procedures included in CODA package and the software R, being the latter also used to
calculate the quality measures of fit.

Table 4. Estimates in the Bayesian model.

Model Parameter Mean SE P2,5 Median P97,5

β0 12.3924 0.4138 11.5800 12.390 13.200
M1 β1 -1.6774 0.1148 -1.9000 -1.677 -1.451

δ 11.1991 2.3376 7.1858 11.030 16.360
β0 12.3197 0.4001 11.530 12.3100 13.1200

M2 β1 -1.6572 0.1108 -1.877 -1.6560 -1.4400
δ 11.3063 2.3613 7.114 11.1700 16.3800
τ2 0.0255 0.0183 0.003 0.0212 0.0719
β0 12.3307 0.4155 11.5097 12.3300 13.1300

M3 β1 -1.6597 0.1168 -1.8800 -1.6610 -1.4280
δ 11.2473 2.3883 7.0839 11.1200 16.2300
τ2 0.0196 0.0169 0.0010 0.0150 0.0635
ν 1.0813 0.8760 0.1153 0.8419 3.3532

We can observe in Table 4 that the inferential results for β0, β1 and δ in the three models
are quite similar to the equivalent one obtained in classical approach presented in Table 3.
Since the zero is not contained in the credible intervals of the regression coefficients, we can
assume that the model presents an intercept and the variable x has significant information
about the response Y . In Figure 2 we can see that the results for calibration were very
similar in the three models (the correlations were greater than 0.99), meaning that the
choice of the prior distribution would not have great influence on diagnostic analysis.
Also, most points have a calibration value close to 0.5 and 0.6, with some exceptions that
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are the points #2, #4, #5, #12, #32 and #46. These observations might be diagnosed as
influential on further analysis.

Calculating the log pseudo-marginal likelihood (LPML) on these models, is obtained
LPML(M1) = −317.9599, LPML(M2) = −317.9022 and LPML(M3) = −318.0876, which
are quite close, with M2 a little larger. Using the pseudo-Bayes factor we obtained
PBF(M1, M2) = 0.9439, PBF(M1, M3) = 1.1362 and PBF(M2, M3) = 1.2036, therefore,
again we concluded that model M2 is slightly better among those three for the data set
in study. However, there are no strong evidence in favor of one model. This result shows
that the model it is quite robust on the choice of the prior distribution of the coefficients
regression.

Figure 2. Calibrations of the Bayesian models.

7.3 Influence diagnostic comparison

The quantities for influence diagnostic and generalized leverage were calculated and nor-
malized (divided by their norms) for comparison. The total local influence was used con-
sidering case-weight perturbation and covariate perturbation schemes, which had better
results in the simulation study than the response perturbation scheme. For the Bayesian
analysis the model M2 was considered and the influence measure was the Kullback-Leibler
divergence using two different cut-off points, Kcut1 = 0.14 and Kcut2 = 2K-L. We could
observe in the Figure 3 that LIcw and K-L divergence appeared to be equivalent, hav-
ing almost the same results for each observation, with correlation 0.9986 for their values.
This result is interesting because Ci is obtained under classical approach while K-L is a
Bayesian methodology, being criteria of influence of different methodologies, but identify-
ing the influence points almost in the same way. The plots of LIcov and GL were different
from the others, but with common observations detected as leverage or influential points.
The cut-off points of each method were also divided by their respective values of norm and
plotted as the horizontal dotted line. We can observe that Kcut1 from K-L is clearly more
rigorous than LIcw and Kcut2 in defining an observation as influential, which agrees with
the results obtained in the simulations in section 6.2. Observations #4 and #5 were the
most detected by all methods.

To verify the influence of the observations detected by the total local influence and
K-L divergence, the model (16) was refitted excluding individually the observations #2,
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Figure 3. Influence diagnostic plots of local influence under case-weight (a) and covariate (c) perturbations, gen-
eralized leverage (d) and Kulback-Leibler divergence (b). All measures in this plot were normalized for comparison
reasons.

#4, #5, #12, #32 and #46, with results given in Table 5. There, estimates from the
regression models under classical and Bayesian approach were obtained and the relative
changes

∣∣(α̂− α̂[i])/α̂
∣∣ were calculated, where α̂ represents a estimate obtained with the

full data and α̂[i] the same estimate without the ith observation in the data. We can
observe that for both methodologies the greatest changes are on the estimates about δ,
with difference of 7.7% of observation #12 in the classical model. The observations #2,
#12 and #32 were not detected as influential in the Bayesian model using Kcut1, and we
can see that the change in the regression coefficients caused by the elimination of these
observations were the least in the Bayesian approach. Observation #5, was the only one
detected in the generalized leverage plot and caused a change quite similar to that made
by observation #4, suggesting that #5 could be viewed as influent and leverage point.
For the estimates of parameters β0 and β1, in both methodologies, we can observe that
observations #4, #5 and #46 were detected as the most influential, which could also be
observed previously in the analysis of Figure 2, where these observations had the largest
values of calibrations.
Table 5. Estimates under classical and Bayesian approach eliminating each observation identified as influential in
Figure 3. The relative changes of the estimates are in parenthesis.

Eliminated Classical Bayesian
case β0 β1 δ β0 β1 δ
None 12.361(0.000) -1.671(0.000) 11.877(0.000) 12.318(0.000) -1.657(0.000) 11.355(0.000)

2 12.202(0.013) -1.630(0.024) 12.118(0.020) 12.161(0.013) -1.616(0.025) 11.502(0.013)
4 12.160(0.016) -1.621(0.030) 12.713(0.07) 12.091(0.018) -1.600(0.034) 12.084(0.064)
5 12.543(0.015) -1.718(0.029) 12.697(0.069) 12.491(0.014) -1.702(0.027) 12.058(0.062)
12 12.455(0.008) -1.694(0.014) 12.745(0.073) 12.403(0.007) -1.677(0.012) 12.069(0.063)
32 12.280(0.007) -1.644(0.016) 12.793(0.077) 12.232(0.007) -1.629(0.017) 12.162(0.071)
46 12.488(0.014) -1.710(0.032) 11.776(0.037) 12.548(0.015) -1.729(0.035) 12.459(0.049)

Through the latter result, we might conclude that two models fitted under different
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approaches detected quite the same results in identifying possible influent points, which is
a indicator of the equivalence of classical and Bayesian methodologies for the BS regression
models. This approach consists in a more intensive way to carry out influence detection
in BS regression models, specially using Kcut2 for the K-L divergence, which arrived at
the same results of the classical approach and is better than the previous cut-off point
proposed, according to the simulation study for the BS model.

8. Discussion

In this paper we developed a Bayesian approach for the regression model proposed by
Leiva et al. (2014), where we directly analyze the expected value of variable with the
reparametrized distribution. Different model structures for Bayesian modeling were given
as well as comparison criteria from the literature to decide on which model to use. Local
influence diagnostic for classical and Bayesian approaches was discussed. In simulation
studies we could observe that the model is quite robust for different prior distributions
choices and that the cut-off points of the influence measures in the classical models per-
formed better than the Bayesian model using cut-off points suggested in the literature,
especially the total local influence under case-weight perturbation (LIcw). On the other
hand, we proposed the use of a cut-off point similar from the classical method in the
Bayesian model, which improved the results from the latter. An application to real data
was presented to illustrate the usage of the model under both methodologies and we could
conclude that besides the differences, both handled equivalent results, giving special atten-
tion for the similarities between the influence diagnostic plots of LIcw and K-L divergence.
The compared model consists in a more intensive approach to analyze possible influent
observations, which can be used by practioners that wish to pay more attention for such
data points that usually affect the estimates significantly. We could observe that under
both methodologies the results were equivalent using the best methods from the simulation
study, but the comparison is a good way to confirm the results from one way or another.
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