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Abstract

In this paper, we present a Bernoulli difference Markov model and a Bernoulli difference
time series model based on Jacobs-Lewis mixture method. The limiting distribution of
Jacobs-Lewis mixture model is obtained. The Bernoulli difference Markov model allows
for positive and negative correlation. Maximum likelihood, conditional maximum like-
lihood, and Yule Walker methods of estimation are considered. Simulations are carried
out. The paper concludes with an analysis of a real data set.
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1. Introduction

In recent years, increasing attention has been given to the analysis of discrete variate time
series, reflecting a need for models that accounts for the count nature of the data. Discrete
time series of small counts occur in many areas; some examples are the number of customers
waiting to be served at a counter recorded at discrete points in time, the monthly number
of accidents in a manufacturing plant, the monthly number of AIDS diagnosed people in
a specific area, daily count of epileptic seizures of a patient.

Models for non-negative discrete time series have been suggested by many researchers.
Jacobs and Lewis (1978 a, b, 1983) defined discrete autoregressive-moving average
(DARMA) models based on mixtures. Al-Osh and Alzaid (1987), Alzaid and Al-Osh
(1990) and McKenzie (1986) proposed the integer-valued autoregressive-moving average
(INARMA) process based on thinning operator.

In many applications of modeling count series, we are faced with non-stationary pro-
cess. This necessitates taking the difference which gives rise to the need of time series
models taking negative and positive integers. Kim and Park (2008) defined the signed
binomial thinning operator and proposed a non-stationary integer valued autoregressive
model. Karlis and Anderson (2009) introduced a time series process on Z: a ZINAR model.
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Zhang et al. (2010) considered inference of integer valued autoregressive models (INAR(p))
with signed generalized power series thinning operator. Kachour and Truquet (2011) de-
fined a p-order signed integer-valued autoregressive model (SINAR(1)). Bulla et al. (2012)
introduced a bivariate first order signed integer valued autoregressive process. Alzaid and
Omair (2014) introduced a Poisson difference integer-valued autoregressive model of order
one.

Odhah (2013) studied the Bernoulli difference distribution in details and discussed some
of its properties. Omair et al. (2016) defined a trinomial difference distribution and applied
the distribution to traffic accident.

The following gives the definition and the moments of the distribution.

Definition 1.1 A random variable X has Bernoulli difference distribution with param-
eters α and β denoted by X v BerD(α, β) if it takes the values -1, 0, and 1 with the
probabilities β, 1−α−β, and α respectively. The probability mass function of BerD(α, β)
can be written as

f(x;α, β) = α
|x|+x

2 β
|x|−x

2 (1− α− β)1−|x|;x = −1, 0, 1,where α, β ≥ 0 and α+ β ≤ 1.

The mean and the variance are

E(X) = α− β, V (X) = α(1− α) + β(1− β) + 2αβ.

The aim of this paper is to introduce two time series models with first order autoregres-
sive structure for Bernoulli difference distribution. The first model is the Markov model
which assumes that the conditional distribution of Yt|Yt−1 follows Bernoulli difference dis-
tribution. This model allows for positive and negative correlation. The second model is the
Jacobs-Lewis mixture model which is based on the Jacobs-Lewis mixture methods with
Bernoulli difference distribution. This model can only be fitted to positively correlated
data.

The remainder of this paper proceeds as follows: In Section 2, Bernoulli difference Markov
model is introduced and estimation of the parameters were discussed. In Section 3, Jacobs-
Lewis Mixture Model is presented and the estimates of the parameters were obtained. In
Section 4, a simulation studies are performed to enhance the conclusions for the two
models. In Section 5, a real application of the Bernoulli Difference (BerD) Markov model
is illustrated. Finally, we present our conclusions in Section 6.

2. Bernoulli Difference Markov Model

We consider here a Markov chain model with marginal Bernoulli difference distribution.
The model is defined as follow.

Let {Yt : t = 1, 2, ...} be a Markov sequence of Bernoulli difference random variables
such that

α(yt−1) = P (Yt = 1|Yt−1 = yt−1) =
eδ00+δ01yt−1

1 + eδ00+δ01yt−1 + eδ10+δ11yt−1

and

β(yt−1) = P (Yt = −1|Yt−1 = yt−1) =
eδ10+δ11yt−1

1 + eδ00+δ01yt−1 + eδ10+δ11yt−1

This implies that the conditional distribution of Yt given Yt−1 = yt−1 is
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BerD(α(yt−1), β(yt−1)). Hence, the conditional mean is

E(Yt|Yt−1) = α(yt−1)− β(yt−1),

the conditional variance is

V ar(Yt|Yt−1) = α(yt−1) + β(yt−1)− [α(yt−1)− β(yt−1)]2

and the covariance between any two adjacent variables is

Cov(Yt, Yt−1) = E[Cov(Yt, Yt−1|Yt−1)] + Cov[E(Yt|Yt−1), E(Yt−1|Yt−1)]

= Cov[α(Yt−1)− β(Yt−1), Yt−1].

The conditional maximum likelihood function is

CL = f(y1, y2, ..., yt|y1) =
n∏
t=2

f(yt|yt−1) =
n∏
t=2

α
|yt|+yt

2
t β

|yt|−yt
2

t (1− αt − βt)1−|yt|.

The conditional maximum likelihood estimators δ̂00, δ̂01, δ̂10 and δ̂11 are obtained by
solving the following four nonlinear equations

∂logCL

∂δ00
=

n∑
t=2

|yt|+ yt
2

−
n∑
t=2

eδ00+δ01yt−1

1 + eδ00+δ01yt−1 + eδ10+δ11yt−1
= 0,

∂logCL

∂δ01
=

n∑
t=2

|yt|+ yt
2

yt−1 −
n∑
t=2

eδ00+δ01yt−1

1 + eδ00+δ01yt−1 + eδ10+δ11yt−1
yt−1 = 0,

∂logCL

∂δ10
=

n∑
t=2

|yt| − yt
2

−
n∑
t=2

eδ10+δ11yt−1

1 + eδ00+δ01yt−1 + eδ10+δ11yt−1
= 0, and

∂logCL

∂δ11
=

n∑
t=2

|yt| − yt
2

yt−1 −
n∑
t=2

eδ10+δ11yt−1

1 + eδ00+δ01yt−1 + eδ10+δ11yt−1
yt−1 = 0.

The maximum likelihood estimator δ̂ = (δ̂00, δ̂01, δ̂10, δ̂11) is asymptotically normally
distributed N4(δ, I−1(δ)) or more accurately

√
n(δ̂ − δ) is asymptotically N4(0, nI−1(δ))

where I(δ) is the Fisher information matrix with entries Iij,kl = E(−∂2logCL
∂δij∂δkl

).
If |δij | are finite then clearly from the definition of the model all the probabilities of

the transition matrix are positive. Hence, all the states are communicates. Therefore, the
stationary distribution always exists and can be obtained as the limit of the power of
transition matrix.

3. Jacobs-Lewis Mixture Model

Jacobs and Lewis (1978 a, b) introduced a model for obtaining a sequence of discrete ran-
dom variables with first order Markov dependence and with a given marginal distribution.
The process is a Markov chain and has correlation structure of a first order autoregressive
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process (AR(1)). We define Jacobs-Lewis Bernoulli difference AR(1) model as

Yt = UtYt−1 + (1− Ut)εt, t = 2, . . . , n,

where Ut are independent identically distributed (i.i.d.) Ber(p) and independent from
εt v BerD(α, β), also ε2 is independent of Y1.

The conditional probability of Yt given Yt−1 is

f(yt|yt−1) = pδyt
(yt−1) + (1− p)α

|yt|+yt
2 β

|yt|−yt
2 (1− α− β)1−|yt|,

where δyt
(yt−1) =

{
1, if yt = yt−1

0, Otherwise.

Proposition 3.1

(1) The mean is E(Yt) = ptE(Y1) + (1− pt)(α− β).
(2) The variance is V (Yt) = ptE(Y 2

1 ) + (1− pt)(α+ β)− (α− β)2.
(3) The covariance between two successive observations is

Cov(Yt, Yt−1) = pV ar(Yt−1) = pt+1E(Y 2
1 ) + p(1− pt)(α+ β)− (α− β)2.

Thus,

Cov(Yt, Yt−k) = pkV ar(Yt−k) = pt+kE(Y 2
1 ) + pk(1− pt)(α+ β)− (α− β)2.

Now if we assume that the initial distribution of Y1 is BerD(α, β), then {Yt} is a Bernoulli
difference stationary process.

Corollary 3.2

(1) limE(Yt) = α− β.
(2) limV (Yt) = α+ β − (α− β)2.
(3) ρk = corr(Yt, Yt−k) = pk.

Note that this model can only be fitted to positive correlated data, contrary to the Bernoulli
difference Markov model which can be fitted to both positively and negatively correlated.
Proof of proposition 3.1 is provided in Appendix A.

3.1 Estimation of the Parameters

Let {Yt; t = 1, 2, ..., n} be a Jacobs-Lewis Bernoulli difference AR(1) process. In this sec-
tion, three methods of estimation are considered: Yule worker method, conditional maxi-
mum likelihood method and maximum likelihood method.

The Yule-Walker estimators α̂YW , β̂YW and p̂YW of the parameters α, β and p respec-
tively are obtained from the following moments equations

Ȳ = α̂YW − β̂YW ,

s2
y = α̂YW + β̂YW − (α̂YW − β̂YW )2, and

r = p̂YW ,

where Ȳ , s2
y and r are the sample mean, the sample variance and the sample autocorrelation

respectively.
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Therefore; α̂YW = s2y+Ȳ 2+Ȳ

2 , β̂YW = s2y+Ȳ 2−Ȳ
2 and p̂YW = r =

∑n
t=2(Yt−Ȳ )(Yt−1−Ȳ )∑n

t=1(Yt−Ȳ )2
.

The conditional likelihood function is

CL =
n∏
t=2

f(yt|yt−1) =
n∏
t=2

[pδyt
(yt−1) + (1− p)α

|yt|+yt
2 β

|yt|−yt
2 (1− α− β)1−|yt|]

The conditional maximum likelihood estimators α̂CML, β̂CML and p̂CML are obtained
by solving the following nonlinear equations

∂logCL

∂α
=

n∑
t=2

1
A

(1− p)α
|yt|+yt

2 −1β
|yt|−yt

2 (1− α− β)−|yt|[
|yt|+ yt

2
(1− β) + (

|yt| − yt
2

− 1)α]

= 0,

∂logCL

∂β
=

n∑
t=2

1
A

(1− p)α
|yt|+yt

2 β
|yt|−yt

2 −1(1− α− β)−|yt|[
|yt| − yt

2
(1− α) + (

|yt|+ yt
2

− 1)β]

= 0, and

∂logCL

∂p
=

n∑
t=2

1
A

[δyt
(yt−1)− α

|yt|+yt
2 β

|yt|−yt
2 (1− α− β)1−|yt|] = 0,

where A = pδyt
(yt−1) + (1− p)α

|yt|+yt
2 β

|yt|−yt
2 (1− α− β)1−|yt|.

The likelihood function is

L =
n∏
t=2

f(yt|yt−1)f(y1)

= α
|yt|+yt

2 β
|yt|−yt

2 (1− α− β)1−|yt|
n∏
t=2

[pδyt
(yt−1) + (1− p)α

|yt|+yt
2 β

|yt|−yt
2 (1− α− β)1−|yt|].

The maximum likelihood estimators α̂ML, β̂ML and p̂ML are obtained by solving the
following nonlinear equations

∂logL

∂α
=
|y1|+ y1

2α
− 1− |y1|

1− α− β

+
n∑
t=2

1
A

(1− p)α
|yt|+yt

2 −1β
|yt|−yt

2 (1− α− β)−|yt|[
|yt|+ yt

2
(1− β) + (

|yt| − yt
2

− 1)α] = 0,

∂logL

∂β
=
|y1| − y1

2β
− 1− |y1|

1− α− β

+
n∑
t=2

1
A

(1− p)α
|yt|+yt

2 β
|yt|−yt

2 −1(1− α− β)−|yt|[
|yt| − yt

2
(1− α) + (

|yt|+ yt
2

− 1)β] = 0, and

∂logL

∂p
=

n∑
t=2

1
A

[δyt
(yt−1)− α

|yt|+yt
2 β

|yt|−yt
2 (1− α− β)1−|yt|] = 0,

where A = pδyt
(yt−1) + (1− p)α

|yt|+yt
2 β

|yt|−yt
2 (1− α− β)1−|yt|.



60 Alzaid et al.

4. Simulation Studies

To validate our results, we simulate 1000 samples of sizes n = 100, 200 and 500 from
the Markov model of BerD(αt, βt) and the Jacobs-Lewis mixture model. For the Markov
model, we assigned the following combinations of the parameters

(δ00, δ01, δ10, δ11) ∈ {(1,−1, 1, 1), (−1, 2,−1, 2), (1, 2, 1, 2), (−1,−2,−1,−2)}.

For the Jacobs-Lewis mixture model, the parameters selected are

(α, β) ∈ {(0.2, 0.2), (0.2, 0.5), (0.4, 0.1)}, p = 0.3, 0.7.

We used the bias and the mean square error (MSE) as performance measures of the
estimates, Tables B1 and B2 in Appendix B illustrate some of the results. For the Markov
Model we found that the MSE and bias of each parameter are reciprocally related to the
sample sizes as expected (except in two cases where the bias increase out of 48 cases).
Also, we noticed that in most cases the bias has similar sign as the initial parameter. For
the Jacobs-Lewis Mixture Model we found that the MSE of each parameter is reciprocally
related to the sample size (except in one case of Yule-Walker method out of 162 cases).
The MSE of CML and ML estimates are compatible. The ML estimates have smaller MSE
followed by CML and last are the Yule-Walker. As p decreses the MSE of p decreases
when β > α, while as p increases the MSE of p decreases when α 6= β. The MSE of α
and β decreases with small values of p. Regarding the bias it can be seen that, p is biased
negatively except in one case. In addition, the magnitude of the biases of p using ML
method is less than that of the two other methods except in two cases. Hence, in terms of
bias, p is better estimated using ML method while for α and β, nothing can be said. The
simulation study demonstrates the efficiency and consistency of the estimates.

5. Application (SABIC Stock)

The Saudi Stock Exchange opens at 11:00 a.m. and closes at 3:30 p.m. We consider the
closing price at every minute of Saudi Basic Industry (SABIC) stock on February 22, 2012.
Missing minutes have been added with a zero price change. We deleted the first and final 15
minutes of the trading day in order to study the price formation during ordinary trading.
SABIC share price varies in increments of ±0.25 SAR. Hence, the tick size is 0.25. The
price change is therefore characterized by discrete jumps. The frequency distribution for
the difference series is presented in Table 1. The price change on that day took the values
-0.5, -0.25, 0 and 0.25. The value of -0.5 occurred only once.

Table 1. Frequency distribution for the difference of SABIC.

Difference of SABIC Count Percent
-0.5 1 0.42
-0.25 46 19.25
0 143 59.83
0.25 49 20.50

To fit the data using our models discussed in previous sections, we set Yt equal -1, 0
and 1 if the price change in the tth minute is less than 0, equal 0 and greater than 0,
respectively.
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In order to get some information about the data, Tables 2 and 3 display the frequency
distribution and some descriptive statistics for the transformed variable Yt respectively. It
can be seen from Table 2 that we have almost symmetric distribution with excess of zero.

Table 2. Frequency distribution for Yt.

Yt Count Percent
-1 47 19.67
0 143 59.83
1 49 20.50

Table 3. Descriptive statistics for SABIC and Yt.

Variable No. of observations Mean Standard deviation Median Range
SABIC 240 100.94 0.387 101 1.75
Yt 239 0.0126 0.6383 0 2

The time series plot of the transformed stock is exhibited in Figure 1. The autocorrelation
function (ACF) for Yt is shown in Figure 2.

Figure 1. Time series plot for Yt.

Figure 2. ACF for Yt.

Figure 1 shows that the process is reasonably stationary in mean and variance. From
Figure 2, we note that the only significant correlation is that of order one with nega-
tive correlation -0.39. Therefore, the Jacobs-Lewis Mixture model cannot be applied. The
Markov model is fitted.

The estimates are obtained using maximum likelihood method of Section 2 and the
standard errors are presented in Table 4. It is clear that all the parameters are significant.
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Table 4. MLE and standard errors of the parameters for Markov model.

Parameter MLE Standard Error
δ00 -1.17286 0.181604
δ01 -0.76720 0.290276
δ10 -1.43280 0.221337
δ11 1.48363 0.324114

Thus, the estimated conditional distribution of Yt|Yt−1 stock is BerD(αt, βt), where

αt =
e−1.17−0.77yt−1

1 + e−1.17−0.77yt−1 + e−1.43+1.48yt−1
, and

βt =
e−1.43+1.48yt−1

1 + e−1.17−0.77yt−1 + e−1.43+1.48yt−1
.

Therefore, we can write the estimated probability transition matrix as0.032 0.580 0.389
0.154 0.645 0.200
0.479 0.456 0.065


The transition matrix reveals that the probability of visiting zero in the next transition

is the highest (almost greater than 0.5). On the other hand, the transition matrix also
indicates the inverse relation between two successive times as the off diagonal probabilities
are higher. Using this transition matrix, we get the predicted values of the change in
SABIC prices as

E(Yt|Yt−1 = −1) = 0.356, E(Yt|Yt−1 = 0) = 0.047 and E(Yt|Yt−1 = 1) = −0.414

Taking the limit of the power of this transition matrix, we get the corresponding
estimated limiting distribution as P (Y = −1) = 0.198, P (Y = 0) = 0.593 and
P (Y = 1) = 0.209. This means on the long run the probability that the SABIC price
will not change is almost 0.6. The distribution is symmetric with the probability of in-
crease or decrease price change equal 0.2. From Table 2 we can see that the empirical
distribution and the limiting distribution of Yt are almost identical.

6. Conclusions

In this paper we developed two time series models based on Bernoulli Difference distri-
bution. The Bernoulli Difference Markov model allows positive and negative correlation,
while the Jacob-Lewis mixture model allows positive correlation only. The methods of esti-
mation discussed are compatible. Many real life applications can be fitted to these models
such as price change in stock market.
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Appendix A.

Proof of Proposition 3.1

(1) E(Yt) = E(Ut)E(Yt−1) + E(1− Ut)E(εt)

= pE(Yt−1) + (1− p)(α− β)

= p2E(Yt−2) + p(1− p)(α− β) + (1− p)(α− β)

...

= pt(α− β) + (1− p)(α− β)
n−1∑
k=0

pk, 0 < p < 1

= pt(α− β) + (1− p)(α− β)
1− pt

1− p
= α− β.

(2) V (Yt) = E(Y 2
t )− E2(Yt). The second moments is

E(Y 2
t ) = E(U2

t )E(Y 2
t−1) + E(1− Ut)2E(ε2

t ) + 2E(Yt−1)E(Ut − U2
t )E(εt)

= pE(Y 2
t−1) + (1− p)(α+ β)

= p2E(Y 2
t−2) + p(1− p)(α+ β) + (1− p)(α+ β)

...

= pt(α+ β) + (1− p)(α+ β)
t−1∑
k=0

pk , 0 < p < 1

= pt(α+ β) + (1− p)(α+ β)
1− pt

1− p
= α+ β.

Therefore, V ar(Yt) = α+ β − (α− β)2.
(3) The covariance between two successive observations is given by

Cov(Yt, Yt−1) = E(Cov(Yt, Yt−1|Yt−1)) + Cov(E(Yt|Yt−1), E(Yt−1|Yt−1)),

= Cov(E(Yt|Yt−1), Yt−1) = Cov(pYt−1 + (1− p)(α− β), Yt−1),

= pV ar(Yt−1) = p(α+ β − (α− β)2).
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Appendix B.

Table B1. Bias and MSE for Bernoulli difference Markov model for different assumed parameters.

n Bias(δ00) Bias(δ01) Bias(δ10) Bias(δ11) MSE(δ00) MSE(δ01) MSE(δ10) MSE(δ11)
100 0.1303 -0.0152 0.0905 0.0411 0.2623 0.2742 0.2589 0.2800
200 0.0498 -0.0185 0.0300 0.0098 0.0846 0.0907 0.0832 0.0911
500 0.0135 -0.0070 0.0037 0.0020 0.0301 0.0334 0.0287 0.0332
(δ00, δ01, δ10, δ11) = (1,−1, 1, 1)

n Bias(δ00) Bias(δ01) Bias(δ10) Bias(δ11) MSE(δ00) MSE(δ01) MSE(δ10) MSE(δ11)
100 -0.0338 0.0374 -0.0712 0.1427 0.0958 1.0859 0.1184 1.1579
200 -0.0156 -0.0034 -0.0329 0.0307 0.0466 0.1526 0.0489 0.1604
500 -0.0046 -0.0020 -0.0116 0.0015 0.0178 0.0567 0.0175 0.0563
(δ00, δ01, δ10, δ11) = (−1, 2,−1, 2)

n Bias(δ00) Bias(δ01) Bias(δ10) Bias(δ11) MSE(δ00) MSE(δ01) MSE(δ10) MSE(δ11)
100 0.0842 0.1068 0.0739 0.1490 0.3798 0.4420 0.3848 0.4707
200 0.0294 0.0346 0.0227 0.0513 0.0998 0.1315 0.0975 0.1354
500 0.0211 0.0276 0.0165 0.0312 0.0352 0.0473 0.0342 0.0484
(δ00, δ01, δ10, δ11) = (1, 2, 1, 2)

n Bias(δ00) Bias(δ01) Bias(δ10) Bias(δ11) MSE(δ00) MSE(δ01) MSE(δ10) MSE(δ11)
100 0.0049 -0.1181 -0.0015 -0.0388 0.1040 0.7505 0.0988 0.7899
200 0.0028 -0.0482 -0.0025 -0.0226 0.0479 0.1651 0.0468 0.1735
500 -0.0003 -0.0139 0.0006 -0.0023 0.0191 0.0579 0.0170 0.0589
(δ00, δ01, δ10, δ11) = (−1,−2,−1,−2)

Table B2. MSE and Bias results for Jacobs-Lewis Mixture model (α, β, p) = (0.2, 0.5, 0.3).

Bias MSE
Parameter n YW CML ML YW CML ML
p 100 -0.01733 -0.0155 -0.01514 0.01366 0.00771 0.00769

200 -0.00699 -0.00589 -0.00567 0.00679 0.003732 0.003734
500 -0.00201 -0.00211 -0.00203 0.00238 0.001373 0.001373

α 100 0.00308 0.00012 0.00089 0.00299 0.002827 0.002811
200 0.00259 0.001249 0.001725 0.00157 0.001513 0.001501
500 0.00142 0.000955 0.001139 0.00058 0.000544 0.000542

β 100 0.00367 0.00012 0.00089 0.00285 0.002827 0.002811
200 0.00088 0.001249 0.001725 0.00152 0.001513 0.001501
500 0.00097 0.000955 0.001139 0.00061 0.000544 0.000542
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