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Abstract

This paper proposes a class of estimators based on information of two auxiliary at-
tributes. The expressions of mean square errors of the proposed class of estimators are
derived in a general form. It is shown that the proposed class of estimators is always
more efficient than regression estimator based on two attributes, estimators recently
proposed by Verma et al. (2013) and Malik and Singh (2013). In addition, we support
this theoretical result by an empirical study using original data to show the superiority
of the constructed estimators over others.
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1. Introduction

In the theory of sample surveys, it is usual to make use of the auxiliary information at the
estimation stage in order to improve the precision or accuracy of an estimator of unknown
population parameter of interest. Sometimes there exist situations when information is
available in the form of attributes, which is highly correlated with study variable y. Several
authors including Naik and Gupta (1996), Jhajj et al. (2006), Shabbir and Gupta (2007),
Singh et al. (2008), Abd-Elafattah et al. (2010), Koyuncu (2012), Singh and Solanki (2012)
Sharma et al. (2013a,b) and Malik and Singh (2014) proposed a set of estimators, taking
the advantage of point bi-serial correlation between auxiliary attribute and study variable,
using information on a single auxiliary attribute. In most of the cases, we see that instead of
one auxiliary attribute, information of two qualitative variables are available. For instance,
to estimate the hourly wages we can use the information on marital status and region of
resident (see, Gujrati and Sangeeta, 2007). In such situations both auxiliary attributes
have significant point bi-serial correlation with study variable and there is significant pi-
correlation between the two auxiliary attributes. Verma et al. (2013) Malik and Singh
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(2013) and Sharma and Singh (2014), proposed some estimators using information on two
auxiliary attribute in simple random sampling.

Consider a sample of size n drawn by simple random sampling without replacement
(SRSWOR) from a population of size N . Let yi and φij (i=1,2) denote the observations
on variable y and φi (i = 1, 2) for the jth unit (j = 1, 2, . . . , N). We note that

φij =

{
1, if ith unit posses attributes.
0, otherwise.

Let

Ai =
N∑

j=1

φij and ai =
n∑

j=1

φij ,

for i = 1, 2 denotes the total number of units in the population and sample possessing
attribute φi respectively. Similarly, Pi = Ai/N and pi = ai/n denotes the proportion of
units in the population and sample, respectively, possessing attribute φi .

Let us define,

e0 =
(ȳ − Ȳ )

Ȳ
, e1 =

(p1 − P1)
P1

and e2 =
(p2 − P2)

P2
.

Such that E(ei) = 0, (i = 0, 1, 2)

E(e2
0) = f1C

2
y , E(e2

1) = f1C
2
p1

, E(e2
2) = f1C

2
p2

,

E(e0e1) = f1Kyp1C
2
p1

, E(e0e2) = f1Kyp2C
2
p2

, E(e1e2) = f1KφC2
p2

,

Kyp1 = ρyp1

Cy

Cp1

, Kyp2 = ρyp2

Cy

Cp2

, Kφ = ρφ
Cp1

Cp2

.

where,

f1 =
(

1
n
− 1

N

)
, C2

pj
=

S2
pj

P 2
j

, (j = 1, 2).

2. Estimators in Literature

In order to have an estimate of the study variable y, using the information of population
proportion P , Naik and Gupta (1996) and Singh et al. (2007) proposed the following
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estimator respectively

ta = ȳ
P1

p1
(1)

tb = ȳ
p2

P2
(2)

tc = ȳ exp
(

P1 − p1

P1 + p1

)
(3)

td = ȳ exp
(

p2 − P2

p2 + P2

)
(4)

The MSE expressions of the estimators ta, tb, tc and td are respectively given as

MSE(ta) = f1[Ȳ C2
y + C2

p1
(1− 2Kyp1)] (5)

MSE(tb) = f1[Ȳ C2
y + C2

p2
(1 + 2Kyp2)] (6)

MSE(tc) = f1

[
Ȳ C2

y + C2
p1

(
1
4
−Kyp1

)]
(7)

MSE(td) = f1

[
Ȳ C2

y + C2
p2

(
1
4

+ Kyp2

)]
(8)

The regression estimator for estimating the unknown population mean of y, when infor-
mation on an auxiliary attribute say p, correlated with study variable y, is available

tr1 = ȳ + b(P − p), (9)

where b is an estimate of the change in y when p is increased by unity.
The MSE expression of regression estimator using an auxiliary attribute is

MSE(tr1) = f1Ȳ
2C2

y (1− ρ2), (10)

where Cy and Cp are the coefficients of variation of the variates y and p respectively.
When there are two auxiliary attributes P1 and P2, the regression estimator of population

mean is

tr2 = ȳ + b1(P1 − p1) + b2(P2 − p2), (11)

where b1 =
syp1

s2
p1

and b2 =
syp2

s2
p2

. s2
p1

and s2
p2

are the sample variances of p1 and p2 respec-

tively , syp1 and syp2 are the sample covariance between y and p1 and p2 respectively.
The MSE expression of the tr2 is

MSE(tr2) = f1Ȳ
2C2

y (1− ρ2
yp1

− ρ2
yp2

+ 2ρyp1ρyp2ρφ). (12)

Verma et al. (2013) proposed following three estimators using two auxiliary attributes

tv1 = ȳ

[
K51

P1

p1
+ K52

P2

p2

]
, (13)

where K51 and K52 are constants such that, K51 + K52 = 1.
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The minimum MSE of estimator tv1 is given as

MSE(tv1) =f1Ȳ
2(C2

y + K2
51C

2
p1

+ K2
52C

2
p2
− 2K51Kyp1C

2
p1
− 2K52Kyp2C

2
p2

+ 2K51K52KφC2
p2

),

where

K51 =
Kyp1C

2
p1
−KφC2

p2

C2
p1
−KφC2

p2

and K52 = 1−K51.

And

tv2 = [K61ȳ + K62(P1 − p1)] exp
[
P2 − p2

P2 + p2

]
,

where K61 and K62 are constants.
The minimum MSE of estimator tv2 is given as

MSE(tv2) = K2
61Ȳ

2G1 + K2
62P

2
1 G2 − 2K61K62P1Ȳ G3 + Ȳ 2(1− 2K61), (14)

where

G1 = 1 + f1

(
C2

y + C2
p2

(
1
4
−Kyp2

))
,

G2 = f1C
2
p1

and G3 = f1

(
Kyp1C

2
p1
− 1

2
KφC2

p2

)
.

And

tv3 = [ȳ + K71(P1 − p1) + K72(P2 − p2)] ,

where K71 and K72 are constants.
The minimum MSE of estimator tv3 is given as

MSE(tv3) =f1

[(
Ȳ 2C2

y + K2
71P

2
1 C2

p1
+ K2

72P
2
2 C2

p2

−2K71P1Ȳ Kpb1C
2
p1
− 2K72P2Ȳ Kpb2C

2
p2

)

+2K71K72P1P2Ȳ KφC2
p2

]
, (15)

where the optimum values of K71 and K72 are

K71 =
Ȳ

P1

(
Kpb1C

2
p1
−Kpb2KφC2

p2

C2
p1
−K2

φC2
p2

)
= K∗

71

K72 =
Ȳ

P2

(
Kpb2C

2
p1
−Kpb1KφC2

p1

C2
p1
−K2

φC2
p2

)
= K∗

71

Malik and Singh (2013) proposed a multivariate ratio estimator using information on
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two Auxiliary attributes

tM1 = ȳ

[
m1P1 + m2P2

m1p1 + m2p2

]α

(16)

where m1 and m2 are weights such that, m1 + m2 = 1.
The minimum MSE of estimator tM1 is given as

MSE(tM1) = f1(C2
y + m2

1α
2θ2S2

p1
+ m2

2α
2θ2S2

p2
− 2m1θαSyp1 − 2m2θαSyp2

+ 2m1m2α
2θ2Sp1p2), (17)

where

θ =
Ȳ

m1P1 + m2P2
, m1 =

αθSp1p2 − αθS2
p2
− Syp1 + Syp2

αθ(S2
p1

+ S2
p2
− 2Sp1P2)

and m2 = 1−m1.

Malik and Singh (2013) proposed an exponential type estimator as

tM2 = ȳ exp
(

P1 − p1

P1 + p1

)β1

exp
(

P2 − p2

P2 + p2

)β2

(18)

The minimum MSE of tM2 is:

MSE(tM2) = Ȳ 2f1

[
C2

y + C2
p1

(
β2

1

4
− β1Kpb1

)
+ C2

p2

(
β2

2

4
+

β1β2

2
Kφ − β2Kpb2

)]
(19)

where β1 and β2 are real constant.
Malik and Singh (2013) proposed another exponential type estimator as

tM3 = ȳ exp
(

P1 − p1

P1 + p1

)β1

exp
(

P2 − p2

P2 + p2

)β2

+ b1(P1 − p1) + b2(P2 − p2) (20)

The minimum MSE of estimator tM3 is given as

MSE(tM3) =
[
Ȳ 2

{
C2

y +
β2

1C2
p1

4
+

β2
2C2

p2

4
− β1Kyp1C

2
p1
− β2Kyp2C

2
p2

}
+ B2

1P 2
1 C2

p1

+ B2
2P 2

2 C2
p2

+ 2B1B2P1P2KφC2
p2
− 2Ȳ

{
B1P1Kyp1C

2
p1

+ B2P2Kyp2C
2
p2

− β1B1P1C
2
p1

2
− β2B2P2C

2
p2

2
− β1B2P2KφC2

p2

2
− β2B1P1KφC2

p2

2

}]
, (21)

where

B1 =
Syp1

S2
p1

, B2 =
Syp2

S2
p2

,

β1 =
A1 −A2Kφ

Ȳ (C2
p1
−K2

φC2
p2

)
and β2 =

A1 − Ȳ C2
p1

β1

Ȳ KφC2
p2

.
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With

A1 = 2Ȳ Kyp1Cp2
1
− 2P1B1C

2
p1
− 2P2B2KφC2

p2
and

A2 = 2Ȳ Kyp2Cp2
2
− 2P2B2C

2
p2
− 2P1B1KφC2

p2
.

3. The Proposed class of estimator

We propose another improved family of estimators for estimating ȳ when information of
two auxiliary attributes available, as

tN = ȳ

[
w1

(
p1

P1

)δ

exp
{

η1(P1 − p1)
η1(P1 + p1) + 2λ1

}
+ w2

(
p2

P2

)β

exp
{

η2(P2 − p2)
η2(P2 + p2) + 2λ2

}]
(22)

where δ and β are constants that can takes values (0,1,-1) for designing different estimators;
η1, λ1, η2 and λ2 are either real numbers or the function of the known parameters. w1 and
w2 are suitable chosen constants to be determined such that mean square error (MSE) of
the class of estimator tN is minimum.

It is to be mentioned that

(i) For (w1, w2) =(1,0), the class of estimator tN reduces to the class of estimator as

tNK = ȳ

{(
p1

P1

)δ

exp
(

η1(P1 − p1)
η1(P1 + p1) + 2λ1

)}
(23)

(ii) For (w1, w2) = (0, w2), the class of estimator tN reduces to the class of estimator as

tNR = ȳ

{
w2

(
p2

P2

)β

exp
(

η2(P2 − p2)
η2(P2 + p2) + 2λ2

)}
(24)

A set of new estimators generated from (25) using suitable values of δ, β, η1, η2, λ1 and
λ2 are listed in Table 2.

Table 1. Set of estimators generated from the estimator tN

Subset of proposed estimator δ η1 λ1 β η2 λ2

tN1 = ȳ

[
w1

(
p1

P1

)
exp

{
(P1 − p1)

(P1 + p1) + 2

}
+ w2

(
p2

P2

)
exp

{
(P2 − p2)

(P2 + p2) + 2

}]
1 1 1 1 1 1

tN2 = ȳ

[
w1 exp

{
(P1 − p1)

(P1 + p1) + 2

}
+ w2 exp

{
(P2 − p2)

(P2 + p2) + 2

}]
0 1 1 0 1 1

tN3 = ȳ

[
w1

(
p1

P1

)
exp

{
(P1 − p1)

(P1 + p1) + 2P1

}
+ w2

(
p2

P2

)
exp

{
(P2 − p2)

(P2 + p2) + 2P2

}]
1 1 P1 1 1 P2

tN4 = ȳ

[
w1

(
p1

P1

)
exp

{
P1(P1 − p1)

P1(P1 + p1) + 2

}
+ w2

(
p2

P2

)
exp

{
P2(P2 − p2)

P2(P2 + p2) + 2

}]
1 P1 1 1 P2 1

tN5 = ȳ

[
w1

(
p1

P1

)
exp

{
Cp1 (P1 − p1)

Cp1 (P1 + p1) + 2P1

}
+ w2

(
p2

P2

)
exp

{
Cp2 (P2 − p2)

Cp2 (P2 + p2) + 2P2

}]
1 Cp1 P1 1 Cp2 P2

tN6 = ȳ

[
w1

(
P1

p1

)
exp

{
P1(P1 − p1)

P1(P1 + p1) + 2

}
+ w2

(
p2

P2

)
exp

{
P2(P2 − p2)

P2(P2 + p2) + 2

}]
-1 P1 1 1 P2 1

tN7 = ȳ

[
w1

(
P1

p1

)
exp

{
P1(P1 − p1)

P1(P1 + p1) + 2

}
+ w2

(
P2

p2

)
exp

{
P2(P2 − p2)

P2(P2 + p2) + 2

}]
-1 P1 1 -1 P2 1

tN8 = ȳ

[
w1 exp

{
P1(P1 − p1)

P1(P1 + p1) + 2

}
+ w2

(
P2

p2

)
exp

{
P2(P2 − p2)

P2(P2 + p2) + 2

}]
0 P1 1 -1 P2 1

tN9 = ȳ

[
w1 exp

{
P1(P1 − p1)

P1(P1 + p1) + 2

}
+ w2

(
p2

P2

)
exp

{
P2(P2 − p2)

P2(P2 + p2) + 2

}]
0 P1 1 1 P2 1

tN10 = ȳ

[
w1 exp

{
P1(P1 − p1)

P1(P1 + p1) + 2

}
+ w2 exp

{
P2(P2 − p2)

P2(P2 + p2) + 2

}]
0 P1 1 0 P2 1
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Expressing the class of estimators tN at equation (25) in terms of e’s, we have

tN =Ȳ (1 + e0)
[
w1(1 + e1)δ

{
1 + γ1e1 +

3
2
γ2
1e2

1

}

+ w2(1 + e2)β

{
1 + γ2e2 +

3
2
γ2
2e2

2

}]
(25)

where

γ1 =
η1P1

2(η1P1 + λ1)
and γ2 =

η2P2

2(η2P2 + λ2)
.

Simplifying equation (28) and retaining terms to the first order of approximation, we
have

(tN − Ȳ ) = Ȳ [w1(1 + e0 −A(e1 + e0e1) + De2
1)

+w2(1 + e0 − C(e2 + e0e2) + De2
2)− 1, ] (26)

where

A = δ − γ1, B =
3
2
γ2
1 − δγ1 +

δ(δ − 1)
2

,

C = β − γ2 and D =
3
2
γ2
2 − βγ2 +

β(β − 1)
2

.

Squaring both sides of equation (29) and taking expectations of both sides, we get the
MSE of the estimator tN to the first order of approximation, as

MSE(tN ) = Ȳ 2[1 + w2
1A1 + w2

2A2 − 2w1A3 − 2w2A4 + 2w1w2A5] (27)

where

A1 =
{
1 + f1(C2

y + C2
p1

(A2 + 2B − 4AKyp1))
}

A2 =
{
1 + f1(C2

y + C2
p2

(C2 + 2D − 4CKyp2))
}

A3 =
{
1− f1C

2
p1

(AKyp1 −B)
}

A4 =
{
1− f1C

2
p2

(CKyp2 −D)
}

A5 =
{
1 + f1(C2

y + C2
p1

(B − 2AKyp1) + C2
p2

(D − 2CKyp2))
}

The MSE of the class of estimator tN at equation (30) is minimised for the optimum
values of w1 and w2 given as

w∗1 =
(A2A3 −A4A5)

A1A2 −A2
5

and w∗2 =
(A1A4 −A3A5)

A1A2 −A2
5

.

The minimum MSE of estimator tN is

MSE(tN ) = Ȳ 2[1 + w∗1
2A1 + w∗2

2A2 − 2w∗1A3 − 2w∗2A4 + 2w∗1w
∗
2A5] (28)
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4. Empirical Study

Population I

The data used for empirical study has been taken from government of Pakistan (2004) for
the population consists rice cultivation areas in 73 districts of Pakistan. The variables are
defined as:

Y : Rice production (in 000’ tonnes during 2003).
P1: Production of farms where rice production is more than 20 tonnes during the year

2002.
P2: Production of farms where rice cultivation area is more than 20 hectares during the

year 2003.

Using raw data we have calculated the following values.

N = 73, n = 15, Ȳ = 61.3, P1 = 0.4247, P2 = 0.3425,

S2
y = 12371.4, S2

φ1
= 0.2254, S2

φ2
= 0.2283,

ρyp1 = 0.621, ρyp2 = 0.673, ρφ = 0.889.

Population II

The data used for empirical study has been taken from Singh and Chaudhary (1986, p.
177) for the population consists of 34 wheat farms in 34 villages in certain region of India.
The variables are defined as:

Y : Area under wheat crop (in acres) during 1974.
P1: Proportion of farms under wheat crop which have more than 500 acres land during

1971.
P2: Proportion of farms under wheat crop which have more than 100 acres land during

1973.

Using raw data we have calculated the following values.

N = 34, n = 15, Ȳ = 199.4, P1 = 0.6765, P2 = 0.7353,

S2
y = 22564.6, S2

φ1
= 0.225490, S2

φ2
= 0.200535,

ρyp1 = 0.599, ρyp2 = 0.559, ρφ = 0.725.

The following Table shows comparison between some existing estimators and proposed
estimators with respect to usual estimator.

Table 2 exhibits that the estimators based on auxiliary attributes are more efficient than
the one (ȳ) which does not utilize the auxiliary information. Most of the members of the
proposed family of estimators tN are more efficient than the estimators considered here.
Scrupulously, estimator tN6 of proposed class of estimator tN is best among them.
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Table 2. Variances / MSEs / minimum MSEs and PRE’s of different Estimators

Population I Population II
Estimator MSE PRE MSE PRE
ȳ 655.34 100.00 840.64 100.00
ta 402.59 162.76 632.11 132.99
tb 1343.14 48.78 2579.79 32.59
tc 497.97 131.58 518.45 162.13
td 1087.05 60.28 1357.89 61.91
tr1 402.58 142.16 539.02 155.96
tr2 598.19 109.32 684.48 122.81
tv1 395.04 165.87 617.37 136.17
tv2 331.45 197.70 512.71 163.96
tv3 572.23 114.92 474.89 177.02
tM1 358.67 182.69 535.29 157.04
tM2 383.52 170.62 579.14 145.19
tM3 357.61 183.56 511.45 164.36
tN1 305.52 214.20 546.82 153.73
tN2 647.10 101.20 1384.44 60.62
tN3 247.36 264.91 491.50 171.04
tN4 267.62 205.95 433.05 194.04
tN5 318.17 244.85 390.42 215.32
tN6 109.54 598.21 259.90 323.43
tN7 777.69 84.34 2226.06 37.76
tN8 459.44 142.65 1130.71 74.35
tN9 359.65 182.20 444.02 189.33
tN10 267.58 244.64 1152.37 72.99

5. Conclusion

This paper proposed a family of estimators for estimating unknown population mean using
information on two auxiliary attributes. Moreover, it was found that the proposed family
of estimators were more efficient than the estimators which utilize information on single
attribute (ta, tb, tc and td ) , estimators of Verma et al. (2013) and Malik and Singh (2013).
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