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Emilio Gómez–Déniz1 and Enrique Caldeŕın–Ojeda2,∗
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Abstract

In credibility theory, the premium charged to a policyholder is computed on the basis
of his past claims and the accumulated past claims of the corresponding portfolio of
policyholders. In order to obtain an appropriate expression for this quantity, different
approaches within Bayesian statistical decision theory, such as empirical Bayes, gamma–
minimax and posterior regret gamma–minimax estimation have been proposed in the
actuarial literature. This paper introduces a new parametric family of Bayesian estima-
tors into the methodology of premium calculation principles. This is achieved by using
a general class of 0–1 loss function when the natural exponential family of distribution
is used. Consequently, new credibility expressions are obtained.
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1. Introduction

Credibility theory is an experience rating technique that it is frequently used in assessing
automobile insurance, workers’ compensation premium, loss reserving and IBNR–Incurred
But Not Reported claims. Under this theory, policyholders’ premiums are computed by
combining the experience of the individual (contract or policyholder) with the experience
of a collective (portfolio) by using the expression

P = Z(N)X̄ + (1− Z(N))℘, (1)

where P is the credibility adjusted premium, ℘ is the overall mean (the expected claim
size for the whole portfolio), X̄ is the mean for individual risk and 0 ≤ Z(N) ≤ 1 is
the credibility factor, being N the time of exposition of the risk. This expression can
be obtained under different methodologies of Bayesian statistical decision theory such as
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empirical Bayes, gamma–minimax and posterior regret gamma–minimax estimation. See
Whitney (1918), Eichenauer et al. (1988), Heilmann (1989) and Gómez–Déniz et al. (2006),
among others. In this regard, credibility theory is used to determine the expected claims
experience of an individual risk when risks are not homogeneous, since the individual risk
belongs to a heterogeneous collective. Some old and new references on this topic can be
found in Bühlmann (1967), Bühlmann and Gisler (2005), Jewell (1974), Gerber and Arbor
(1980), Heilmann (1989), Hooge and Goovaerts (1975), Landsman and Makov (1998, 1999),
Eichenauer et al. (1988), Young (1997, 2000), Gómez–Déniz et al. (2006), Gómez–Déniz
(2008), Payandeh (2010) and Payandeh et. al (2012), among others.

Basically, credibility theory deals with the problem of estimating the collective (a pri-
ori) and Bayes (experience rated) premium under an appropriate loss function (Heilmann,
1989). The weighted squared–error loss function (Furman and Zitikis, 2008) has been tradi-
tionally considered to achieve exact credibility premiums under adequate pairs of likelihood
and prior distributions (Heilmann, 1989). Furthermore, as a result of its quadratic factor,
a convex function is obtained. Alternatively, some authors have pointed out that Bayes
estimates should be computed under bounded loss rather than convex loss (Kadane and
Chuang, 1978; Smith, 1980). In this sense, convex loss functions have been traditionally
preferred due to their simplicity and computational advantages, with a unique optimum
value; however, they offer poor approximations to the 0–1 loss and they also show lack of
robustness to outliers due to their boundlessness (Hastie et al., 2001).

For the suggestions mentioned above, the general 0–1 loss function appearing in Berger
(1985, p.63) is considered in this work. One of its advantages is that, unlike the weighted
squared–error loss function, the computation of the Bayes estimator does not require in-
tegration. On this subject, its simplicity is based on the fact that only maximization of
a given function is needed. This obviously provides more flexibility to choose the prior
distribution. Consequently, new credibility expressions will be derived when the natural
exponential family of distribution is considered. It is important to point out that many
of the most common continuous and discrete probabilistic models, such as Poisson, bi-
nomial, negative binomial and gamma, among others, do belong to natural exponential
families, which makes their manipulation particularly convenient. The 0–1 loss function
has received significant attention in the area of signal processing (Vaseghi, 2000, chapter
4); however, it never has been used in credibility theory to obtain appropriate premium
calculation principles. Furthermore, we show that the use of this loss leads to similar but
not equal expressions for the credibility factor as those obtained in previous works for a
different kind of Bayesian (and collective) premium.

The rest of the paper is organized as follows. Firstly, Section 2 reviews the procedure of
premium calculation principle under the Bayesian decision theory. Next, Section 3 describes
the generalized loss function used in this manuscript. General expressions for the collective
and Bayesian premium are obtained under this loss when the natural exponential family
of distributions and its natural conjugate prior are employed. Then, in Section 4 specific
examples of new credibility expressions for different pairs of probabilistic models are shown.
Later in Section 5 two numerical applications by using two different sets of actuarial data
are provided. Finally, some concluding remarks are made in the last Section.

2. Preliminaries

A premium calculation principle can be viewed as a procedure of obtaining an estimate of
an unknown risk parameter (assumption usually taken in the credibility theory) θ, from
observations X obtained according to a likelihood f(X|θ), in the presence of a prior dis-
tribution (structure function) π(θ) for a given loss function L(θ, θ̂). Here θ̂ is an estimator
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of θ. The number of claims (or size of a claim) of one contract in one period is specified
by a random variable X ∈ X following a probability density function f(x|θ) depending on
an unknown risk parameter θ ∈ Θ. Let Xi, i = 1, 2, . . . , N be independent and identically
distributed random variables with values in X ⊂ IR representing the number of claims
(in the discrete case) and the claim size of a single risk (in the continuous case) during
the last N periods. In risk theory, a premium calculation principle P assigns to each risk
parameter θ a fair premium P (θ), usually called risk premium, within the set P ⊂ IR of
admissible premiums.

In the case of the net premium principle the function P : Θ −→ IR is given by

P (θ) = E(X|θ), θ ∈ Θ.

This premium calculation principle can be obtained by minimizing with respect to P the
expected loss Ef [L(x, P )] where L is taken as the squared–error loss function L(a, x) =
(x− P )2. Other premium calculation principles can also be generated by using a different
loss function. For example for the weighted squared–error loss L(x, P ) = ω(x)(x − P )2

and by taking ω(x) = exp(s x), s > 0 and ω(x) = x we obtain the Esscher and variance
premium principles, respectively (Heilmann, 1989; Gómez–Déniz et al., 2006; Furman and
Zitikis, 2008).

In practical situations, the premium computed above can only be applied if the distri-
bution of the risk X is known; likewise, the ratemaking procedure incorporates individual
claim experience. Henceforward, as it is usually assumed in credibility framework, the
distribution of X is specified up to an unknown parameter.

Firstly, if experience is not available, the actuary computes the collective premium,
℘, by minimizing the risk function, i.e. minimizing Eπ [L(P (θ), ℘)], where π(θ) is the
prior distribution on the unknown parameter θ ∈ Θ. On the other hand, if experience
is available, the actuary takes a sample X = (X1, X2, . . . , XN ) from the random vari-
ables Xi, i = 1, 2, . . . , N , assuming Xi independent and identically distributed, and
then the practitioner uses this information to estimate the unknown risk premium P (θ),
through the Bayes premium Π(X), obtained by minimizing the Bayes risk, i.e. minimizing
EπX

[L(P (θ),Π(X))]. Here, πX is the posterior distribution of the risk parameter, θ, given
the sample information X.

Furthermore, as Heilmann (1989) and Gómez–Déniz (2008) have pointed out, it is pos-
sible to use different premium calculation principles to obtain the risk, collective and
Bayesian premium. Hereafter, following this spirit, we will suppose that the practitioner
chooses the squared–error loss function only to obtain the risk premium and a different
premium calculation principle to compute the collective and Bayesian premium. In this
regard, the squared–error loss function has been traditionally used by decision–theoretic
statisticians and economists for many years. In addition to this, it has been preferred in
actuarial statistics since the net premium derived from this loss function fulfils some desir-
able properties such as translation invariance, sub–additivity, iterativity and homogeneity,
among others.

Let θ be a risk parameter characterizing a member of a risk collective, and given θ, let
now f(x|θ), the distribution of the claims (or size of a claim) X ∈ X ⊂ IR, be a member
of a family of distributions {f(x|θ), θ ∈ Θ ⊂ IR}. Let us also assume that the distribution
of X is a member of the Natural Exponential Family (NEF) of distributions. We say that
the random variable X, given Θ = θ, is distributed according the NEF of distributions if
its probability density function (probability mass function in the discrete case) is given by

f(x|θ) = q(x) exp [−xθ − log(κ(θ))] , (2)
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where the natural parameter can be written as θ = φ(ε) with parameter ε being θ = φ(ε)
for a function φ and κ(θ) =

∫
X q(x) exp(−xθ) dx < ∞ .

The NEF is a wide class of distributions studied by numerous authors (Diaconis and
Ylvisaker, 1979; MacEachern, 1993). In the field of actuarial statistics and particularly in
credibility theory, perhaps the most important work dealing with the NEF of distributions
is due to Jewell (1974). In his paper, it is proved that when conjugate priors are used
and the squared–error loss function is chosen to compute the risk, collective and Bayesian
premium, then the latter can be written as in (1). It is important to recall that many of
the most common continuous and discrete probabilistic models belong to this family of
distributions, which makes their manipulation particularly convenient.

Furthermore, by using the squared–error loss function it is simple to observe that under
this family of distributions the risk premium is given by P (θ) = E(X|θ) = −κ′(θ)/κ(θ)
and under appropriate reparameterization, the risk premium can be expressed as P (θ) = θ.
This is the case of Poisson, negative binomial, binomial, gamma and normal distribution.

3. Using the general 0–1 loss function

Broadly speaking, loss functions are used in actuarial statistics, among other settings, to
quantify losses associated with deviation from a desired target value. The loss is usually
defined as a function of the deviation of an estimator from the true value of the parameter.
The general statistical decision problem is described by possible states of nature θ ∈ Θ,
decisions θ̂ and a loss function L(θ, θ̂).

Let us now consider the loss function given by

L(θ, θ̂) =

{
0, θ̂ = θ,

η g(θ), θ̂ 6= θ.
(3)

Here, η is a normalization constant which provides that ηg(θ)π(θ) is a proper probability
distribution. When the function g(x) is chosen such that g(x) > 0, the function above
represents a genuine loss function. Here θ ∈ Θ represents the state of nature and θ̂ the
action to be taken. Therefore, the loss function given in (3), as whichever loss function,
measures the loss sustained by a decision–maker who takes the action θ̂ instead of the true
value of the parameter θ. In this case the loss is zero if a correct decision is taken and
ηg(θ) > 0 if a wrong decision is made.

The loss function (3) includes as special cases the 0–1 loss function when ηg(θ) = 1 and
the 0–k loss function when ηg(θ) = k > 0, being k an appropriate constant value. See
Berger (1985, p.63) for details on their use. The latter author pointed out that this general
loss function is needed to measure in some sense the severity of the mistake by taking an
incorrect decision.

Although convex losses have been traditionally preferred because of their simplicity
and computational advantages, with a unique optimum value; however, they offer poor
approximations to the 0–1 loss and they also show lack of robustness to outliers due to
their boundlessness (Hastie et al., 2001). On this subject, some authors have pointed out
that Bayes estimates should be made under bounded loss rather that convex loss (Kadane
and Chuang, 1978; Smith, 1980; Kamińska and Porosiński, 2009). This is the case when
the loss function given in (3) is taken and g(θ) is chosen as a bounded function or simply
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a constant value, said k. As it can be observed we have that

inf
θ,θ̂

L(θ, θ̂) = 0,

sup
θ,θ̂

L(θ, θ̂) = ηg(θ) > 0.

Figure 1 illustrates the loss sustained under squared–error loss function (SEL) and the
general 0–1 loss function introduced above. As it can be observed the error is 0, i.e. the
same for the two losses, when θ̂ = θ. When those values do not coincide, then it can occur
that the error under SEL is either smaller or larger than the one calculated under the
general 0–1 loss function. In any case, the general 0–1 loss function guarantees that an
upper bound on the loss can be achieved. Besides, a bounded loss avoids the potential
explosion of the squared–error loss function.

On the other hand by choosing the function g(θ) appropriately, it is obvious that the loss
is not symmetric. As Kamińnska and Porosiński (2009) pointed out, there exist situations
where over and under estimation can lead to different consequences and therefore, we
should consider estimators based on an asymmetric and bounded loss.

Maximum value of the loss

Loss

Θ - Θ
^

Η gHΘL

Figure 1. Illustration of the loss sustained under quadratic error loss function and the general 0-1 loss function

As we mentioned in the previous section, if experience is not available, the actuary
computes the collective premium, ℘, which is given by minimizing the risk function, i.e.
minimizing Eπ [L(P (θ), ℘)], where P (θ) is the unknown risk premium and π(θ) is the prior
distribution on the unknown parameter θ ∈ Θ. Likewise, the collective premium under the
general 0–1 loss function given in (3) is provided by the following proposition.

Proposition 3.1 Let us assume that the risk premium is given by P (θ) = θ > 0. Then,
for the general 0–1 loss function given in (3) the collective premium is given by

℘ = arg max
θ

g(θ)π(θ). (4)

Proof Let π∗(θ) = ηg(θ)π(θ), then the result follows by taking into account that under
the loss function (3) ℘ coincides with the maximum a priori estimate given by

℘ = arg max
θ

π∗(θ) = arg max
θ

g(θ)π(θ).

¥
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The Bayes premium, Π(X), is computed in a similar way by replacing π∗(θ) by the
posterior π∗(θ|X). Then Π(X) is obtained as

Π(X) = arg max
θ

π∗(θ|X), (5)

which can be written as

Π(X) = arg max
θ

π∗(θ|X)

= arg max
θ
{f(X|θ)π∗(θ)}

= arg max
θ
{log f(X|θ) + log(π∗(θ))}. (6)

Expression (6) emphasizes on the fact that the estimator tries to reach a compromise
between the a priori knowledge about the risk parameter and the evidence provided by
the data via the likelihood function.

One of its advantages is that, unlike the weighted squared–error loss function, the compu-
tation of the Bayes estimator does not require integration. On this subject, its simplicity
is based on the fact that only maximization of a given function is needed. This clearly
provides more flexibility to choose the prior distribution.

As mentioned above, the loss function (3) includes as a particular case the 0–1 loss
function (Berger, 1985 and Robert, 2007) when g(x) = 1. In this case (5) extracts the value
of θ that causes the maximum of the posterior distribution and it is known in the Bayesian
literature as the maximum a posteriori (MAP) estimator (the mode), which coincides with
the maximum likelihood estimator of the posterior distribution of the parameter θ. See
Micheas and Dey (2004) for a detailed reading of this Bayesian estimator. In this regard,
the optimal estimator is the most likely value of θ given the data and the prior π(θ). If θ is
assumed to be fixed but unknown, then there is no knowledge about θ, which is equivalent
to a non–informative improper prior, i.e. π(θ) constant. Then, equation (5) reduces to the
familiar maximum likelihood formulation.

Let us now consider the natural conjugate prior for θ, given by

π(θ) = exp{−θx0 − n0 log(κ(θ))− log d(n0, x0)}, (7)

with d(n0, x0) =
∫
Θ exp{−θx0 − n0 log(κ(θ))} dθ.

It is easy to see that the posterior distribution of the parameter θ when X =
(X1, X2, . . . , Xn) is observed is given by

π(θ|X) ∝ exp{−θx∗0 − n∗0 log(κ(θ))},

where n∗0 and x∗0 are the updated parameters given by n∗0 = n0 + N and x∗0 = x0 + NX̄,
being X̄ = (1/N)

∑N
i=1 Xi the sample mean.

In the following we will consider ε as natural parameter. Next result provides the col-
lective premium under the general 0–1 loss function given in (3).

Theorem 3.2 Let us assume that the number of claims or size of a claim follows the
distribution given in (2) where the function φ is monotically decreasing and the prior
distribution of the risk parameter ε is given in (7) with n0 > 0. Let us also suppose that
g′(ε) = g(ε)h(ε), with h(ε) = a + b φ(ε), b > 0 and g(ε) > 0, and that the practitioner
chooses the net premium principle to compute the risk premium and the premium based
in the general 0–1 loss function to compute the collective and the Bayes premium. Then,
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the collective premium is given by

℘ =
x0 − a

n0 + b
. (8)

Proof By using (4), the derivative of the function Φ(ε) = g(ε) π(ε) must be computed
and set equal to zero. In this case we get

Φ′(ε) = g(ε)π(ε)
[
a + bφ(ε)− x0 − n0

κ′(ε)
κ(ε)

]
.

Now, since θ = φ(ε) = −κ′(ε)
κ(ε) , after equating to zero and by isolating θ expression (8) is

obtained.
In order to ensure that the value of ℘ is a maximum and having into account that

the derivative of κ′(ε)/κ(ε) is the variance of X|ε, we have, after some algebra, that
Φ′′(ε)|ε=℘ = g(℘)π(℘)b φ′(℘)− n0 var(X|ε = ℘) < 0.

Then the theorem holds. ¥

In practice, the Bayes premium is directly obtained from the collective premium when
conjugate distributions are used, by only replacing the parameters upon which the collec-
tive premium depends by the updated parameters. Then, after replacing n0 and x0 in (8)
by the updated parameters, we obtain the Bayes premium,

Π(X) =
x0 + NX̄ − a

n0 + N + b
. (9)

Note that (9) can be rewritten as a credibility expression as in (1) with the credibility
factor given by Z(N) = N/(n0 + N + b).

4. Specific examples and applications

We are now interested in illustrating the methodology described in the previous section.
For that reason, five examples are considered to supply specific credibility premiums under
different pairs of likelihood and prior distributions. Certainly, we must focus our work on
conjugate families of distributions. In the following, we will assume that the practitioner
chooses the quadratic loss to obtain the risk premium and the loss (3), with appropriate
function g(x), to obtain the collective and the Bayes premium.

The Poisson–Gamma case

Let us suppose that the number of claims of an insurer follows a Poisson distribution
with parameter θ > 0. In this case q(x) = 1/x!, the natural parameter is ε = − log θ and
κ(ε) = exp(exp(−ε)). Therefore P (θ) = −κ′(ε)/κ(ε) = exp(−ε) = θ.

Let us now suppose that the prior is a gamma distribution π(θ) ∝ θσ−1e−λ θ, σ >
0, λ > 0 and let us also assume that g(x) = xγ exp(−c x), γ > 0, c > 0, x > 0, which
gives an upper bound of the loss function given by (γ/c)γe−γ . In this case, we have that
φ(ε) = exp(−ε) and h(ε) = −γ + c φ(ε). Therefore, we have that a = −γ, b = c and then,
the collective premium is obtained by using (8) and having into account that x0 = σ − 1
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and n0 = λ, getting

℘ =
γ + σ − 1

λ + c
, σ > γ − 1. (10)

By replacing in (10) σ and λ by the updated parameters, we obtain the Bayes premium

Π(X) =
NX̄ + σ + γ − 1

λ + N + c
. (11)

Remark 4.1 Observe that when σ = 1, we are under the Poisson–exponential model
and,in this case, ℘ = γ/(λ + c) and Π(X) = (NX̄ + γ)/(λ + N + c).

The Binomial–Beta case

Let us now suppose that the number of claims of an insurer follows a binomial distribution
with parameters n > 0 (assumed known), 0 < θ < n, and probability mass function given
by

f(x|θ) =
(

n

x

)(
θ

n

)x (
1− θ

n

)n−x

, x = 0, 1, . . .

Now, q(x) =
(
n
x

)
, the natural parameter is ε = log(n/θ − 1) and κ(ε) = (1 + exp(−ε))n.

Therefore P (θ) = −κ′(ε)/κ(ε) = θ. Let us suppose that the prior is a shifted beta distri-
bution with pdf

π(θ) =
1

nαB(α, β)
θα−1

(
1− θ

n

)β−1

, 0 < θ < n, α > 0, β > 0,

where B(α, β) represents the beta function and let us also assume that g(x) = xγ(1 −
x/n)c, γ > 0, c > 0, 0 < x < n, which gives an upper bound of the loss function given
by ( γ n

c+γ )γ(1 − γ
c+γ )c. Besides, φ(ε) = n/(1 + exp(ε)). Some tedious computations yields

h(ε) = −γ + c+γ
n φ(ε) and x0 = α − 1, n0 = (β + α − 2)/n. Therefore, a = −γ, b = c+γ

n
and the collective premium is

℘ =
n(α + γ − 1)

α + β + c + γ − 2
, α > γ − 1. (12)

Observe again that h′(x) = −γ/x2 − c/(n(1 − x/n))2 < 0, ensuring that the estimator
of the risk premium corresponds to a maximum.

By replacing in (12) α and β by the updated parameters, we obtain the Bayes premium

Π(X) =
n(α + NX̄ + γ − 1)

α + β + N n + c + γ − 2
. (13)
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The negative binomial–inverted gamma case

Let us assume that the number of claims follows a negative binomial distribution with
probability mass function

f(x|θ) =
(

r + x− 1
x

)(
r

r + θ

)r (
θ

r + θ

)x

, x = 0, 1, . . .

where r > 0 (assumed known) and 0 < θ < 1. We have now that q(x) =
(
r+x−1

x

)
,

ε = log(1 + r/θ) and κ(ε) = (exp(ε)/(exp(ε)− 1))r, from which P (θ) = θ.
Let us now suppose that the prior is an inverted beta distribution with probability

density function

π(θ) =
rβ

B(α, β)
θα−1

(r + θ)α+β
, θ > 0, α > 0, β > 0

and let us also assume that g(x) = xγ(r+x)c, c > γ > 0, x > 0. Here φ(ε) = r/(exp(ε)−1)
and h(ε) = −γ − 1

r (γ + c)φ(ε). From the prior distribution we have that x0 = α − 1 and
n0 = β+1

r . Finally using (10), we obtain the collective premium

℘ =
r(α + γ − 1)
β − c− γ + 1

, α > γ − 1. (14)

Additionaly, by replacing in (14) α and β by the updated parameters, we have the
Bayesian premium,

Π(X) =
r(α + NX̄ + γ − 1)
β + N r + c− γ + 1

. (15)

The gamma–inverted gamma case

Let us suppose that the claim size follows a gamma distribution with probability density
function

f(x|θ) =
(σ

θ

)σ 1
Γ(σ)

xσ−1 exp
(
−σ x

θ

)
, x > 0,

where σ > 0 (assumed known) and θ > 0. Then, in this case q(x) = xσ−1/Γ(σ), ε = σ/θ
and κ(ε) = ε−σ. Therefore, the risk premium is P (θ) = θ. Let us suppose that the prior is
an inverted gamma distribution with probability density function

π(θ) ∝ θ−(α+1) exp[−1/(β θ)],

and let us also assume that g(x) = x−γ exp(−c/x), γ > 0, c > 0, x > 0. Then, the upper
bound for the loss function is given by ( c

γ )−γe−γ . Now, we have that φ(ε) = σ/ε, from
which it is easy to see that h(ε) = −c/σ + γ/σ φ(ε). From the prior distribution we have
that x0 = 1/(β σ) and n0 = (α + 1)/σ, therefore the collective premium is

℘ =
β c + 1

β(α + γ + 1)
. (16)
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From (16) and updating the parameters we obtain the Bayesian premium

Π(X) =
β(σNX̄ + c) + 1

β(α + N σ + γ + 1)
. (17)

The normal–normal case

Finally, let us also suppose that the claim size follows a normal distribution N (θ, σ2),
σ > 0 (assumed known) and θ ∈ IR. We have now that q(x) = 1

σ
√

2π
exp(− x2

2σ2 ), the

natural parameter is ε = −θ/σ2 and κ(ε) = exp( ε2σ2

2 ). Thus, the risk premium is given by
P (θ) = θ.

Let us now suppose that the prior is a normal distribution N (α, α2), α ∈ IR, and let us
also assume that g(x) = xγ exp(−x), γ > 0. After some simple computation, the collective
and the Bayes premiums are provided by

℘ =
√

γ α,

Π(X) =
√

γ(N α2X̄ + α σ2)
N α2 + σ2

, (18)

respectively. Observe also that h′(x) = −γ/x2 < 0.
It can be noted that the Bayes premiums given in (11), (13), (15), (17) and (18) are

credibility formula, i.e. in all cases considered the experience rated premium adopts the
attractive form

Π(X) = Z(N)t(X̄) + (1− Z(N))℘, (19)

where Z(N) = N/(λ + N + c), Z(N) = nN/(α + β + Nn + c + γ − 2), Z(N) = r N/(β +
Nr − c − γ + 1), Z(N) = Nβσ/(β(α + Nσ + γ + 1)) and Z(N) = Nα2/(Nα2 + σ2) for
(11), (13), (15), (17) and (18), respectively and t(x) = x in all the cases, except for (18),
where t(x) =

√
γ x. Therefore, (11), (13), (15) and (17) are exact credibility expressions.

Moreover, in the cases given above, under appropriate values of γ and c the bound
function g(x) es equal to 1. Likewise, expressions (11), (13), (15), (17) and (18) reduce to
the MAP estimate of the risk premium.

Finally, it is possible to extend the result obtained for the pair Poisson–gamma under
the Esscher premium principle, i.e. the Esscher loss, L(x, a) = es x(x− a)2, s > 0, is used
to obtain the risk premium, and the loss given in (3) to calculate the collective and Bayes
premiums, as shown in the following example.

Example 4.1 Again, under the same assumptions as those in the previous cases, let us
also suppose that the practitioner chooses the Esscher loss to compute the risk premium
and the loss (3) to obtain the a priori and the experience rated premiums. Then the
collective and Bayes premiums are given by

℘ =
es(γ + σ − 1)

λ + c
,

Π(X) =
es(γ + σ + NX̄ − 1)

λ + N + c
, (20)

respectively. This is easy to observe by following the same argument as in the Poisson–
gamma case and also by having into account that in this case the risk premium is P (θ) =
E(Xes X)/E(es X) = θ es.
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Besides, note also that (20) can be rewritten as in (19) with Z(N) = N/(λ+N + c) and
g(X̄) = es X̄.

Remark 4.2 Values of c and γ can be appropriately chosen by the practitioner to ensure
that the loss incurred by him does not take a value larger than a fixed value.

Appropriate values of the parameters γ and c in the g(x) function can be selected by
setting equal the upper bound of the loss function, say M . For example, we could fix one
of the value or assume γ = c and numerical computation can be used to obtain the value
of the parameter.

Non–conjugate distributions

Although the examples provided above include conjugate family of distributions, the
methodology proposed here can be extended in other circumstances in order to give more
flexibility to the practitioner when choosing the prior distribution. As an illustration, a
specific example is given. Suppose that X follows a Poisson distribution with parameter
αθ, where α > 0 and θ > θm and that the prior distribution is the Pareto distribution
with probability density function given by π(θ) ∝ θ−(β+1), θ > θm. Since the Pareto
distribution is non–conjugate with the Poisson distribution we cannot apply the result
in Theorem 3.2. Nevertheless, by using the same methodology, we could calculate the
collective premium by computing arg maxθ g(θ)π(θ). Assuming without loss of generality
that α = 1 and that g(x) = xγe−cx, γ > 0, c > 0, it is a simple exercise to see that in
this case ℘ = (γ − β − 1)/c, γ > β + 1. Now, the posterior distribution is proportional
to π(θ|X) ∝ θNX̄−β−1e−Nθ and similarly as above, the Bayes premium, which is given by
Π(X) = ZNX̄ + (1− ZN )℘ where the credibility factor is ZN = N/(c + N), is obtained.

5. Numerical experiment

Two numerical applications will be considered in this section. One related to discrete claims
and other with claim size, i.e. continuous random variable. Let us first consider a Poisson
model where the Poisson parameter θ represents a driver’s propensity to make a claim
and the prior indicates how that propensity is distributed throughout the population of
insured drivers. This pattern has been used successfully to model the number of vehicle
motor accidents in actuarial literature.

The data set corresponds to the number of claims generated by Belgium (1975–76) auto-
mobile drivers (Denuit, 1997). It is well–known that the Poisson–gamma model produces
as marginal distribution the negative binomial distribution in the following way,

f(x) =
λσ

x!Γ(σ)

∫ ∞

0
e−θ(λ+1)θσ+x−1 dθ =

(
σ + x− 1

x

)(
λ

λ + 1

)σ (
1

λ + 1

)x

.

Maximum likelihood estimation method has been used to obtain the estimates of
the parameters of the model. Those numerical values are λ̂ = 16.138 (1.506) and σ̂ =
1.631 (0.151), where the standard errors are given in brackets. The value of the maximum
log–likelihood function is −36104.1.

In the following, expression (11) is used to compute the premiums obtained under the
squared–error loss function (γ = 1, c → 0), the maximum a posteriori (MAP) premium
(γ → 0, c → 0) and the premium under the general 0–1 loss introduced in this paper.
Different values for γ and c in the neighborhood of the previous ones together with different
values of N and k = NX̄, the number of claims. The obtained results are displayed in
Table 1. As it can be observed, the MAP (0–1 loss function) premium is always lower than
the premium based on the squared–error loss function. In addition to this, the former loss
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function is lower than the general 0–1 loss function except for larger values of k and values
of γ and c close to zero. This is in accord with the fact for those parameter values g(θ)
decays quickly to zero as k increases. Besides, the premiums calculated under the general
0–1 loss function can be either lower or larger than the ones calculated under the squared
error loss function depending on the values of the parameters. In this sense, for values
close to zero they are lower, but as γ and c increase (see the most right–hand column of
Table 1) they are larger.

Expression (17) is now used to compute the premiums for the exponential–inverted
gamma distributions. This can be obtained by assuming that σ = 1. Then, by having into
account the following dataset (in millions),

2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3,
3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 8,
8, 9, 15, 17, 22, 23, 24, 24, 25, 27, 32, 43;

which correspond to 40 wind–related catastrophes in 1977 appearing, for instance, in Hogg
and Klugman (1984, p.64) and where only values greater than or equal to $2,000,000 have
been included. It is a simple exercise to see that the marginal distribution is now given by

f(x) =
α

βα

(
1

x + 1/β

)α+1

, x > 0, α > 0, β > 0, (21)

which is a Pareto type distribution (Lomax distribution).
Note that although this set of data is assumed to arise from a continuous distribution,

as Brazauskas and Serfling (2003) and Rizzo (2009) have pointed out, observations can be
discretized by grouping. Then, by using the method proposed by these authors, they are
de–grouped as follows

xj =
(

1− j

m + 1

)
a +

j

m + 1
b, j = 1, 2, . . . ,m,

where (a, b) contains m groups of sample observations.
Now using (21), the parameters of this probability density function have been by maxi-

mum likelihood estimation method. The resulting estimates are β̂ = 0.018829 (0.030) and
α̂ = 6.72654 (9.573) and the maximum of the log–likelihood function evaluated at those
estimates is −128.598. Different values of the premiums obtained for the Exponential–
Inverted Gamma case are shown n Table 2. Similar comments as in the previous case
apply here.

In conclusion, the methodology proposed suggests that these parameter values (c and γ)
can be viewed as a mechanism to assess the influence of the prior on the Bayes premium or
the influence of the loss function on the same quantity. This procedure, that has received
a lot of attention in the past decades, is called sensitivity or robustness analysis. See
Berger (1985) and Micheas and Dey (2004), among others. Therefore, the actuary might
choose the value of γ and c to calculate a premium according to his preferences. A similar
procedure can be developed for other models.
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Table 1. Bayes premiums obtained for different loss functions and selected values of N , k, c and γ. Poisson–Gamma
case.

SEL MAP General 0-1 loss

N
γ = 1
c → 0

γ → 0
c → 0

γ = 0.2
c = 0.1

γ = 0.1
c = 0.2

γ = 2
c = 1

k = 0
1 0.095166 0.036817 0.048206 0.042160 0.145051
2 0.089919 0.034788 0.045563 0.039861 0.137472
3 0.085221 0.032970 0.043194 0.037800 0.130646
4 0.080989 0.031333 0.041060 0.035941 0.124465
5 0.077158 0.029850 0.039127 0.034257 0.118843

k = 2
1 0.211863 0.153515 0.164226 0.157512 0.255315
2 0.200183 0.145051 0.155222 0.148922 0.241974
3 0.189723 0.137472 0.147154 0.141222 0.229959
4 0.180302 0.130646 0.139883 0.134278 0.219080
5 0.171773 0.124465 0.133296 0.127985 0.209184

k = 4
1 0.328560 0.270212 0.280246 0.272863 0.365578
2 0.310446 0.255315 0.264881 0.257983 0.346476
3 0.294225 0.241974 0.251112 0.244643 0.329271
4 0.279615 0.229959 0.238705 0.232614 0.313695
5 0.266387 0.219080 0.227465 0.221713 0.299525

k = 10
1 0.678651 0.620303 0.628307 0.618915 0.696368
2 0.641236 0.586105 0.593857 0.585166 0.659982
3 0.607731 0.555480 0.562989 0.554906 0.627210
4 0.577553 0.527897 0.535171 0.527623 0.597538
5 0.550231 0.502924 0.509973 0.502896 0.570547

Table 2. Bayes premiums obtained for different loss functions and selected values of N , k, c and γ. Exponential–
Inverted Gamma case.

SEL MAP General 0-1 loss

N
γ = 1
c → 0

γ → 0
c → 0

γ = 0.2
c = 0.1

γ = 0.1
c = 0.2

γ = 2
c = 1

k = 0
1 5.46027 6.08598 5.96082 6.03969 5.04445
2 4.95123 5.46027 5.36033 5.42506 4.61428
3 4.52900 4.95123 4.86975 4.92397 4.25171
4 4.17313 4.52900 4.46144 4.50762 3.94196
5 3.86911 4.17313 4.11630 4.15619 3.67429

k = 2
1 5.66589 6.31516 6.18487 6.26627 5.23091
2 5.13768 5.66589 5.56181 5.62859 4.78483
3 4.69956 5.13768 5.05279 5.10870 4.40886
4 4.33028 4.69956 4.62913 4.67673 4.08767
5 4.01482 4.33028 4.27102 4.31212 3.8101

k = 20
1 7.51650 8.37784 8.20133 8.30558 6.90899
2 6.81576 7.51650 7.37513 7.46036 6.31981
3 6.23454 6.81576 6.70016 6.77128 5.82323
4 5.74465 6.23454 6.13837 6.19873 5.39900
5 5.32614 5.74465 5.66351 5.71546 5.03238

k = 40
1 9.57273 10.6697 10.4418 10.5715 8.77352
2 8.68029 9.57273 9.38993 9.49566 8.02534
3 7.94007 8.68029 8.53056 8.61859 7.39475
4 7.31617 7.94007 7.81530 7.88984 6.85603
5 6.78318 7.31617 7.21071 7.27472 6.39047
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6. Concluding remarks

In this paper a new premium calculation principle has been proposed for the Bayesian es-
timation by considering non–standard and bounded loss functions. As a result of this, new
Bayesian premiums that can be expressed as a credibility formula, have been obtained.
These expressions have been found to be useful in actuarial practice when experience rat-
ing, via Bayesian analysis, is used to compute premiums written as a compromise between
the past claims of the policyholder within the portfolio, and the past claims of this port-
folio as a whole. The methodology proposed is simple and the credibility formulae are
straightforwardly achieved. Additionally, they include as particular case premiums previ-
ously obtained under the squared–error loss function and also those ones obtained by using
the maximum a posteriori (MAP) estimate.

Finally, after observing the numerical results calculated in the previous section, it can be
pointed out that the practitioner has the option to choose a Bayes premium either lower
or larger than the one obtained under the square error–loss function.
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