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Abstract

The Burr type XII has been studied for various applications of lifetime modelings.
However, control charts related to the Burr type XII percentiles have not been seen
in the literature. In this paper, three control charts for the Burr type XII percentiles
are investigated. An extensive Monte Carlo simulation study is conducted to compare
among the Shewhart-type chart, and parametric bootstrap charts that are respectively
based on maximum likelihood estimator and a modified moment estimator by using
in-control average run length and out-control average run length. Finally, an example
is given for illustration.
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1. Introduction

The Burr type XII (BTXII) distribution was initially introduced by Burr (1942) as
one of twelve distributions based on the differential equation dF (x)/dx = F (x)(1 −
F (x))g(x, F (x)), where g(x, y) is positive for 0 ≤ y ≤ 1 and x is in the domain of F (x).
Since then, the BTXII distribution has received considerable attention in reliability study
and failure time modeling due to its flexibility in shape. The cumulative distribution func-
tion (CDF) of the BTXII distribution can be defined as follows:

F (t;α, λ) = 1− (1 + tλ)−α; t > 0, (1)

where α > 0 and λ > 0 are shape parameters. Various aspects and properties of the BTXII
distribution have been studied by many authors, for example, Al-Hussaini and Ali Mousa
(1992), Wingo (1983), Wingo (1993), Wang and Keats (1996), Moore and Papadopoulos
(2000), Chen and Yeh (2006), Lio et al (2010), and Lio and Tsai (2012). Tadikamalla (1980)
investigated the connections of the BTXII distribution with some other distributions.

In many industrial applications, a specific quality condition of the product’s lifetime is
often required for engineering design consideration. Tadikamalla (1980) mentioned that
the BTXII distribution can be used to fit almost any given unimodal lifetime data since
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it contains two shape parameters. However, to our best knowledge, no control charts for
monitoring the BTXII lifetime percentiles have been presented in the literature. The well-
known Shewhart-type control chart is constructed based on the assumption that data
comes from a near-normal distribution. Although the sampling distribution of the maxi-
mum likelihood estimator of the BTXII percentile can be shown to be a normal distribution
asymptotically, the exact sampling distribution of the maximum likelihood estimator of
the BTXII percentile is unknown. In this case, the Shewhart-type control chart using a fi-
nite subgroup size may not provide appropriate control limits. Therefore, computer-based
methods such as bootstrap methods could be good candidates to establish the control
limits for monitoring BTXII percentiles. It is suggested to refer Gunter (1992), Efron and
Tibsh (1993), and Young (1994) for comprehensive discussions of bootstrap techniques.

Bootstrap methods are helpful to establish control chart limits when the sampling dis-
tribution of a parameter estimator is not available. Many authors have studied the con-
structions of bootstrap charts. Bajgier (1992) developed a bootstrap chart to monitor the
process mean, which was a competitor to the Shewhart X chart. However, if all pre-samples
were not in control, the bootstrap chart could become conservative due to the fact that it
produces too wide control limits, regardless of the underlying distribution of the process
variable. Many referred papers, such as Liu and Tang (1996), Jones and Woodall (1998)
and Seppala et al (1995), had pointed out that bootstrap charts could alarm for out-of-
control status quicker than the Shewhart-type chart could if the underlying distribution
of process variable was skewed. An advantage of bootstrap method is to release the re-
striction from the theoretical sampling distribution of an estimator. The computation time
of a bootstrap method is perhaps a perceived disadvantage, but today’s computer power
has changed such perception. The advent of powerful and accessible computers has made
any simulation-based process to be easily implemented and the computation results to be
accomplished in an affordable amount of time.

Nichols and Padgett (2005) developed a parametric bootstrap chart (PBC) based on
Weibull distribution for monitoring the tensile strength percentile in the production pro-
cess of carbon fiber. They found out that the PBC could alarm for an out-of-control
process quicker than the Shewhart-type chart, proposed by Padgett and Spurrier (1990).
Lio and Park (2008) investigated PBCs for Birnbaum-Saunders percentiles based on max-
imum likelihood estimation method and moment method. From the simulation results,
Lio and Park (2008) discovered that both bootstrap charts provided a shorter average run
length(ARL) when the process was shifted to out-of-control. Lio and Park (2010) studied
parametric bootstrap charts for inverse Gaussian percentiles and showed that the boot-
strap charts performed better than the percentile control chart using Bonferroni bounds,
which was provided by Onar and Padgett (2000). (Lio-Tsai-Aslam-Jiang-2014) showed
that the bootstrap charts based on maximum likelihood estimation method and moment
method performed better than the Shewhart-type chart for monitoring the Burr X per-
centiles. The bootstrap method uses bootstrap samples, which are generated by using a
sample data of an estimator, to generate the sampling distribution of the estimator, and
then provides appropriate control limits for a control chart. Only the usual conditions
for a control chart setting, i.e. Phase I in-control pre-samples are available and subgroup
observations are independent and identically distributed, are assumed.

In this article, a Shewhart-type chart and two PBCs, namely maximum likelihood es-
timation bootstrap (MLE-b) chart and modified moment estimation bootstrap (MME-b)
chart, for monitoring the BTXII percentiles are studied. The rest of this paper is orga-
nized as follows: a brief introduction to the estimation methods of maximum likelihood
and modified moment for the BTXII distribution parameters and percentiles are addressed
in Section 2. Algorithms of building the Shewhart-type chart, the MLE-b chart and the
MME-b chart for the BTXII percentiles are provided in Section 3. Intensive Monte Carlo
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simulations are conducted in Section 4 to evaluate the implementations of Shewhart-type,
MLE-b, and MME-b charts for monitoring the BTXII percentiles. An example is presented
in Section 5 for illustration and some conclusions are made in Section 6.

2. The burr type xii distribution

The BTXII distribution of (1) has probability density function (PDF) and percentile func-
tion, respectively, defined as:

f(t;α, λ) = λαtλ−1(1 + tλ)−α−1; t > 0, (2)

and

Q(p;α, λ) = ((1− p)−1/α − 1)1/λ; 0 < p < 1. (3)

It can be easily shown that Q(p;α, λ) decreases with respect to α for a given value of p
with 0 < p < 1 and a value of λ with λ > 0; and for a given 0 < p < 1, Q(p;α, λ) increases
with respect to λ if α > −ln(1− p)/ln(2); otherwise, Q(p;α, λ) decreases with respect to
λ. Let ΘT = (α, λ) and T = {t1, t2, . . . , tn} denote a size n random sample drawn from the
BTXII distribution with PDF defined by Equation (2). Then the log-likelihood function
can be presented as

L(Θ) = nln(α) + nln(λ) + (λ− 1)
n∑
i=1

ln(ti)− (α+ 1)
n∑
i=1

ln(tλi + 1). (4)

The maximum likelihood estimate (MLE), Θ̂T
n = (α̂n, λ̂n), of ΘT can be obtained by

solving the following two nonlinear equations simultaneously,

α̂n =
n∑n

i=1 ln(1.0 + tλ̂ni )
, (5)

λ̂n =
n

(α̂n + 1)
∑n

i=1
tλ̂ni ln(ti)

tλ̂ni +1
−
∑n

i=1 ln(ti)
. (6)

Replacing Θ by Θ̂n in Equation (3), the MLE of the 100pth percentile is given as:

Q̂p,n(Θ̂n) = ((1− p)−1/α̂n − 1)1/λ̂n , 0 < p < 1. (7)

The exact sampling distributions of α̂n and λ̂n are not available, neither is the exact
sampling distribution of Q̂p,n(Θ̂n). It can be shown that

√
n(Θ̂n − Θ) → N(0, I−1(Θ)),

where 0 is a two-dimensional column vector of zeros and I(Θ) is the Fisher information
matrix defined by

I(Θ) =
−1
n

E(∂
2L(Θ)
∂α2 ) E(∂

2L(Θ)
∂α∂λ )

E(∂
2L(Θ)
∂λ∂α ) E(∂

2L(Θ)
∂λ2 )

 = −

[
I11 I12

I21 I22

]
(8)
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with

I11 = 1/α2,

I12 = I21 =
∫ ∞

0
λα(ey − 1)1−1/λe−y(α+1)dy,

I22 = 1/λ2 + (α+ 1)
∫ ∞

0
αln(ey − 1)(ey − 1)1−1/λe−y(α+2)dy.

It can be shown that

Q̂p,n(Θ̂n)−Q(p; Θ)
σ2
p,n

→ N(0, 1), (9)

where

σ2
p,n =

1
n
∇Q(p; Θ)T I−1(Θ)∇Q(p; Θ), (10)

and ∇Q(p; Θ) is the gradient of Q(p; Θ) with respect to Θ. Therefore, the Shewhart-type
chart could be constructed, based on the asymptotic normal distribution, to monitor the
BTXII percentile. Because the existence of I12 and I22 depends upon λ, and also the
evaluations of I12 and I22 are difficult, the observed Fisher information matrix,

În(Θ̂n) =
−1
n

 ∂2L(Θ)
∂α2

∂2L(Θ)
∂α∂λ

∂2L(Θ)
∂λ∂α

∂2L(Θ)
∂λ2


Θ=Θ̂n

, (11)

without taking expectation, is used instead of I(Θ). Denote ARL0 and ARL1 as in-control
and out-of-control ARLs, respectively. In view of the simulation results reported in Section
4, it can be found that the simulated ARL0 of the Shewhart-type chart seriously under-
estimates the corresponding nominal ARL0. Hence, the Shewhart-type chart based on the
MLE of Q̂p,n will not be recommended to monitor BTXII percentiles in practice.

Let T be the BTXII distribution random variable and Γ(x) be the gamma function.
Given a positive integer s, the sth moment for BTXII distribution can be proved to be

E(T s) = αB(s/λ+ 1, α− s/λ), where α > s/λ and B(x, y) = Γ(x)Γ(y)/Γ(x+ y).
(12)

Hence, by equating the first two sample moments to the corresponding population mo-
ments, the following equations can be used to find moment method estimates (MMEs),

E(T ) =
n∑
i=1

ti/n and E(T 2) =
n∑
i=1

t2i /n. (13)

Unfortunately, the procedure to solve Equation (13) can not be easily developed. Notice
that the median of the BTXII can be shown to be (21/α−1)1/λ. By letting sample median,
tmed, be population median and sample mean be E(T ), the solution to the following
equations,

α̃ =
ln(2)

ln(tλ̃med + 1.0)
and E(T ) =

n∑
i=1

ti/n, (14)
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seems easier to find. However, from the simulation experience, the solution of Equation
(14) is still difficult to obtain for small sample size.

Let t(1) < t(2) < · · · < t(n) be the order statistics of T = {t1, t2, . . . , tn}. It can be shown
that αln(1 + tλ(1)), αln(1 + tλ(2)), · · · , αln(1 + tλ(n)) is a random sample from the exponential
distribution with mean one. Denote

X1 = nαln(1 + tλ(1)), (15)

X2 = (n− 1)
(
αln(1 + tλ(2))− αln(1 + tλ(1))

)
, (16)

X3 = (n− 2)
(
αln(1 + tλ(3))− αln(1 + tλ(2))

)
, (17)

... (18)

Xn =
(
αln(1 + tλ(n))− αln(1 + tλ(n−1))

)
. (19)

Then X1, X2, · · · , Xn is a random sample from the exponential distribution with mean
one. Let g(λ) = 2

∑n−1
i=1 (ln(Tn) − ln(Ti)), where Ti =

∑i
j=1Xj/α. It can be shown that

g(λ) has chi-square distribution with degree of freedom of 2n − 2 and αTn has gamma
distribution G(1, n). Following the same argument of Wang (2008), λ can be estimated
by the unique solution of g(λ̃) = 2(n − 2) and α can be estimated by α̃ = (n − 1)/Tn.
The estimates λ̃ and α̃, which are called modified moment-method estimates (MMEs) of λ
and α respectively, are developed based on the first order population moment with small
sample size adjustment. Then the BTXII percentile Q(p; Θ), based on MME, Θ̃n, can be
computed and denoted by Q̃p,n(Θ̃n). However, the exact sampling distributions of Θ̃n and
Q̃p,n(Θ̃n) are not available.

3. The Shewhart-type and parametric bootstrap charts

In Phase I, it is assumed that k in-control pre-samples of each size m are drawn from the
BTXII distribution of (1) for the control chart setting. Let n = m × k denote the total
sample size used in Phase I. A Shewhart-type chart and two PBCs are constructed in the
following subsections.

3.1 Shewhart-type Chart

Through the MLE estimation procedure described in Section 2, the MLE of the 100pth
percentile, using a size m sample from a Phase I in-control process, can be obtained
via Q̂p,m(Θ̂m) = ((1.0 − p)−1/α̂m − 1)1/λ̂m , where Θ̂m = (α̂m, λ̂m) is the MLE of Θ =
(α, λ). Then, the Shewhart-type chart for monitoring the 100pth percentile, Q(p; Θ), can
be constructed as follows:

(1) Using n sample observations from Phase I in-control process, the MLE, Θ̂T
n =

(α̂n, λ̂n), via formulas (5) and (6), is obtained and the asymptotic standard error
of Q̂p,m(Θ̂m) can be estimated by

SEQm =

√
1
m
∇QT (p; Θ̂n)̂In(Θ̂n)∇Q(p; Θ̂n). (20)

(2) For the jth pre-sample of size m, the MLE of Q(p; Θ) is obtained using formulas
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(5), (6) and (7) and is denoted by Q̂jp,m(Θ̂j
m), for j = 1, 2, . . . , k. The sample mean

of Q̂jp,m(Θ̂j
m), j = 1, 2, . . . , k, is computed and labeled as

¯̂
Qp,m(Θ̂m) =

1
k

k∑
j=1

Q̂jp,m(Θ̂j
m). (21)

(3) The control limits of the Shewhart-type chart are presented as follows:

UCLSH = ¯̂
Qp,m(Θ̂m) + z(1−γ/2) × SEQm , (22)

LCLSH = ¯̂
Qp,m(Θ̂m)− z(1−γ/2) × SEQm , (23)

and the center line (CL) is CLSH = ¯̂
Qp,m(Θ̂m), where z1−γ/2 satisfies Φ(z1−γ/2) =

1 − γ/2, with 0 < γ < 1; Φ(·) is the standard normal CDF and γ is called a false
alarm rate (FAR).

After the control limits of the Shewhart-type chart are determined based on Phase I
in-control samples, future samples of each size m (Phase II samples) are drawn from the
BTXII process to compute the plot statistic Q̂p,m(Θ̂m). If Q̂p,m(Θ̂m) is plotted between
control limits, LCLSH and UCLSH, then the process is assumed to be in control. Otherwise,
signal the process out-of-control.

3.2 Bootstrap Charts

The PBC based on MLE for monitoring BTXII percentiles is constructed by the following
steps:

(1) Use n sample observations from Phase I in-control process to obtain the MLE,
Θ̂T
n = (α̂n, λ̂n), via formulas (5) and (6).

(2) Generate m parametric bootstrap observations from the BTXII distribution of (1)
but replacing α and λ by the corresponding MLEs, α̂n and λ̂n, obtained from Step
(1). Denote these parametric bootstrap observations by x∗1, x

∗
2 . . . , x

∗
m.

(3) Find the MLEs of α and λ using parametric bootstrap observations, x∗1, x
∗
2 . . . , x

∗
m,

and denote the obtained MLEs by α̂∗m and λ̂∗m, respectively.
(4) Compute the bootstrap estimate of the 100pth percentile according to the formula:

q̂∗p = Q̂∗p,m(Θ̂) = ((1.0− p)−1/α̂∗m − 1)1/λ̂∗m . (24)

(5) Repeat Step (2) to Step (4) B times to obtain a size B bootstrap sample,
q̂∗p,1, q̂

∗
p,2, . . . , q̂

∗
p,B, where B is a given large positive integer.

(6) Given a FAR, γ, find the (γ/2)th and (1− γ/2)th empirical quantiles of the boot-
strap sample, q̂∗p,1, q̂

∗
p,2, . . . , q̂

∗
p,B as the LCL and UCL, respectively. The method to

find sample quantiles proposed by Hyndman and Fan (1996) will be used for the
simulation study in Section 4.

The above bootstrap chart is called MLE-b chart. Similarly, if the MLEs, α̂(α̂∗) and
λ̂(λ̂∗), of α and λ are replaced by the MMEs, α̃(α̃∗) and λ̃(λ̃∗), respectively, and MLE
method is replaced by MME method from Step 1 to Step 3, then the corresponding boot-
strap chart is constructed based on moment method, and is called MME-b chart. The plot
statistic for MLE-b chart is Q̂p,m(Θ̂m) and the plot statistic for MME-b chart is Q̃p,m(Θ̃m).
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4. Simulation study

To examine the performance of three BTXII percentile control charts discussed in Section
3, an intensive Monte Carlo simulation study was conducted using R language which was
originally developed by Ihaka and Gentleman (1996). The R source codes can be obtained
from authors upon request.

The performance of BTXII percentile control charts are investigated in terms of sim-
ulated ARL0 and ARL1 and the standard errors of run lengths (SERLs), respectively.
Moreover, the average of upper control limits (UCLs), the average of lower control limits
(LCLs), and their associated standard errors are also evaluated through the simulation.
Simulation has been carried out with different sample sizes (specially, sample sizes 4, 5
and 6 are considered), different percentiles of interest, and different levels of FARs. Five
thousand bootstrap repetitions, B = 5000, have been used to determine the control limits
for each bootstrap chart. Moreover, all complete procedures described in Section 3 for each
control chart have been repeated five thousand times to evaluate the ARL value, the asso-
ciated SERL value and the standard errors of control limits. For brevity, some simulation
results are displayed in Table 1 to Table 12.

Tables 1 and 2 show that the simulated ARL0 and the corresponding SERL for the
Shewhart-type control charts. These two tables indicate that Shewhart-type control chart
seriously underestimate the nominal ARL0 due to narrow band of control limits that
produced in general. This means that the Shewhart-type chart will incur a higher FAR than
the expectation. Tables 3, 5, 6, 8, 9, 10 and 11 show that the simulated ARL0 and the
corresponding SERL for MLE-b and MME-b charts. Generally, MLE-b and MME-b charts
have ARL0 closer to their corresponding nominal ARL0s than the Shewhart-type control
charts for the same BTXII distribution. Therefore, it is clear that MLE-b and MME-b
charts outperform the Shewhart-type chart in terms of the simulated ARL0. Although
the MLE-b chart and MME-b chart perform satisfactory in terms of the simulated ARL0

when they are compared with the Shewhart-type chart, there are some differences between
the MLE-b chart and the MME-b chart. Tables 6, 8 and 10 show that MLE-b charts
have simulated ARLs generally much higher than the corresponding nominal ARL0s for
FAR=0.002 or FAR = 0.0027 when α < 1, and Table 3 shows that MLE-b charts have
simulated ARLs generally smaller than the corresponding nominal ARL0 when α > 1.
Table 5 shows that the MME-b chart has simulated ARLs generally much larger than the
corresponding nominal ARL0 for FAR=0.0027 when α > 1.0; and Table 9 shows that the
MME-b chart has simulated ARLs generally much smaller than the corresponding nominal
ARL0s for FAR=0.0027 and FAR=0.002 when α < 1.0. Tables 4 and 7 show the average
values of simulated LCLs, simulated UCLs, and their associated standard errors (SDER)
when the MLE-b chart is used. It can be seen that the standard errors of the LCL and
UCL are generally smaller for MLE-b chart. It can be easily to check that the coefficient
of variation, SDER/average value, is smaller than 0.009 for almost all of cases except
those cases with p = 0.01. For all those cases with p = 0.01, the coefficient of variation
is still below 0.05. That is, the proposed constructing procedures for MLE-b charts can
provide stable control limits and give a helpful guidance to construct MLE-b charts in the
practical applications. Since the UCL of MME-b chart when γ0=0.0027 and γ0=0.002 can
be infinite, the MME-b chart will not be suggested to be used for monitoring the BTXII
percentile in the practice. However, because the MLE-b and MME-b charts both have
ARL0s closer to the corresponding nominal ART0s than the Shewhart-type chart, MLE-b
and MME-b charts will be proposed for the further investigation to exam the ARL for
out-of-control process.

The main concern is the downward shift of distribution percentile which indicates a
deteriorating quality in the product lifetime. First, control limits of the MLE-b chart
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and MME-b chart are established based on generated in-control Phase I subgroups. Then
further subgroups are generated from an out-of-control process and used for evaluating the
ARL1 and its standard error. As mentioned before that for a given 0 < p < 1, the BTXII
percentile, Q(p;α, λ), is a decreasing function of α when λ is treated as a fixed positive
number, and is an increasing function of λ when the given value of α is greater than
−ln(1− p)/ln(2), else is an decreasing function of λ when the given value of α is smaller
than −ln(1− p)/ln(2). Hence, there are at least three possible ways to implement an out-
of-control process from the in-control process. We may let the value of λ0 of the in-control
process fixed and simply increase the value of α, from α0 value for the in-control process to
a larger value α1 for an out-of-control process. If the value of α0 of the in-control process
is fixed, then we can simply decrease the value of λ, from λ0 for the in-control process
to a smaller value of λ1 for an out-of-control if α0 > −ln(1 − p)/ln(2); or increase the
value of λ, from λ0 for the in-control process to a larger value of λ1 for an out-of-control if
α0 < −ln(1−p)/ln(2). It should be mentioned that it is difficult to signal an out-of-control
that is caused by increasing α alone because the corresponding ARL1 is usually very large
based on the simulation experience. Hence, α will be treated as the fixed constant from
in-control process to examine the performance of monitoring out-of-control.

For brevity, part of simulation results for monitoring out-of-control cases with α0 fixed
and is greater than −ln(1 − p)/ln(2) are displayed in Table 12. In view of Table 12, the
ARL1 values and the associated SERLs are very small. Therefore, these simulation results
support the fact that both MLE-b chart and MME-b chart are capable of monitoring the
downward shift of BTXII percentiles due to the downward shift of parameter λ. Table
12 also shows that ARL1 decreases as λ1 further decreases from in-control process with a
value of λ0.

5. Illustrative examples

Wingo (1993) assessed the reliability of a certain electronic component by using BurrXII
distribution. Based on the twenty failure times in terms of months from a total of thirty
electronic components in the life test, Wingo (1993) indicated that the BurrXII distribution
was a good lifetime model and obtained the maximum likelihood estimates of λ and α to be
1.29 and 0.64, respectively. Soliman (2002) also investigated BurrXII reliability estimation
through maximum likelihood and Bayesian approaches based on the same data set.

In this section, the MLE-b chart is applied to monitoring the lifetime quality of the
electronic component used by Wingo (1993). It is also assumed that the quality engineer
can use accelerate life testing process to project the true lifetime of the test items during the
quality monitoring process. Since the original lifetime data sets of electronic components
mentioned above was not originally for the purpose of constructing control charts, the data
set cannot be used directly for the quality control study.

To implement the process of monitoring the quality of the electronic component lifetime,
twenty subgroups of each six electronic component lifetimes are simulated independently
from an in-control BurrXII process with α0 = 0.64 and λ0 = 1.29, of which tenth percentile
is found to be Q(0.10, α, λ) = 0.263. These twenty in-control subgroups of each six lifetimes
are reported in Table 13. Assuming that the process parameter λ shifts to λ1 = 0.65 after
the first twenty in-control subgroups, another twenty out-of-control subgroups of each
six electronic lifetimes are generated from the BurrXII distribution with α = 0.64 and
λ = 0.65 and reported in Table 14. The MLE-b chart is established based on the twenty
in-control subgroups of each six lifetimes that are reported in Table 13, with FAR=0.0027
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and B = 5000. The control limits of the MLE-b chart are obtained as

UCLMLE−b = 1.359,

LCLMLE−b = 0.0201,

and the CL of the MLE-b chart is CLMLE = 0.33. Figure 1 shows that the MLE-b chart
provides asymmetric control limits from the CL and the first out-of-control signal is ob-
served immediately right after the process shifted. Hence, it is clear that this MLE-b chart
can efficiently indicate the process out-of-control.

6. Conclusions

To monitor the BTXII percentiles, a Shewhart-type chart and two PBCs have been con-
structed. The Shewhart-type control chart is constructed based on the asymptotic normal
distribution of maximum likelihood estimator and delta method. Because the Shewhart-
type chart cannot provide adequate control limits that have been shown by the simulated
average running length, also the upper limit of MME-b chart is not stable and can be
infinite when FAR is small, PBCs based on MLE is the only control chart to be proposed
for monitoring BTXII percentiles. Through an intensive Monte Carlo simulation, it has
been found that the MLE-b chart is easy to be constructed for subgroup of size small
(such as 3, 4, 5 or 6) and the MLE-b chart can efficiently signal out-of-control when the
process shifts to out-of-control. Therefore, the MLE-b chart would be recommended for
monitoring BTXII percentiles in the practice.

Extending the developed procedures of control charts in Section 3 for monitoring the
percentiles of other important life distributions is of great interest and will be investigated
in the future.
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Table 1. Shewhart in-control ARL estimate and its corresponding SD for Burr XII (α = 5.49, λ = 0.85) percentiles
and γ0 = 0.1, 0.01, 0.0027, 0.002 FAR’s (Twenty subgroups, k = 20).

Parameters n = 4 n = 5 n = 6
ARL SERL ARL SERL ARL SERL

γ0 = 0.1 (FAR) 1/γ0 = 10
p = 0.01 1.3834 0.01191 1.7992 0.02177 2.3878 0.03124
p = 0.05 4.7034 0.05913 6.4733 0.08110 7.889 0.09296
p = 0.10 8.9379 0.10820 10.5607 0.12142 12.190 0.14132
p = 0.25 19.6438 0.23898 23.3004 0.2848 26.363 0.34117

γ0 = 0.01 (FAR) 1/γ0 = 100
p = 0.01 2.6369 0.03997 4.0760 0.05599 5.8900 0.07793
p = 0.05 9.8878 0.12098 12.5429 0.15222 14.862 0.18475
p = 0.10 17.185 0.22091 21.0118 0.26586 25.5531 0.34156
p = 0.25 55.495 0.78871 74.085 1.0734 91.3495 1.2963

γ0 = 0.0027 (FAR) 1/γ0 = 370.37
p = 0.01 3.4933 0.05536 5.322 0.07106 7.4185 0.0944
p = 0.05 11.942 0.15227 15.164 0.18537 18.543 0.2368
p = 0.10 22.235 0.30180 28.048 0.37260 35.492 0.4938
p = 0.25 86.445 1.21478 122.557 1.8980 159.891 2.3877

γ0 = 0.002 (FAR) 1/γ0 = 500
p = 0.01 3.6757 0.05812 5.5902 0.07377 7.6828 0.09680
p = 0.05 12.444 0.15914 15.856 0.19850 19.463 0.25396
p = 0.10 23.422 0.31607 29.751 0.39609 38.131 0.5327
p = 0.25 95.806 1.38385 135.526 2.2634 179.328 2.745
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Table 2. Shewhart in-control ARL estimate and its corresponding SD for Burr XII (α = 0.6287, λ = 1.1953)
percentiles and γ0 = 0.1, 0.01, 0.0027, 0.002 FAR’s (Twenty subgroups, k = 20).

Parameters n = 4 n = 5 n = 6
ARL SERL ARL SERL ARL SERL

γ0 = 0.1 (FAR) 1/γ0 = 10
p = 0.01 1.1138 0.00508 1.1708 0.00725 1.2406 0.00855
p = 0.05 1.3722 0.01051 1.4706 0.01244 1.5684 0.01391
p = 0.10 1.5316 0.01301 1.5922 0.01389 1.6970 0.01574
p = 0.25 3.9232 0.13032 3.5044 0.05024 3.3582 0.04358

γ0 = 0.01 (FAR) 1/γ0 = 100
p = 0.01 1.2542 0.00942 1.4296 0.01567 1.7204 0.02388
p = 0.05 2.0212 0.02372 2.3784 0.03013 2.7950 0.03666
p = 0.10 2.4292 0.02735 2.7394 0.03325 3.0014 0.03788
p = 0.25 25.8350 0.98667 22.5360 0.90012 18.7290 0.57255

γ0 = 0.0027 (FAR) 1/γ0 = 370.37
p = 0.01 1.3822 0.01475 1.7506 0.02571 2.1444 0.03399
p = 0.05 2.6836 0.03549 3.2262 0.04441 3.9374 0.05405
p = 0.10 3.3146 0.04089 3.6928 0.04667 4.2558 0.05644
p = 0.25 45.9794 2.24265 39.5150 1.49021 35.0228 1.29941

γ0 = 0.002 (FAR) 1/γ0 = 500
p = 0.01 1.4190 0.01563 1.8192 0.02711 2.2538 0.03617
p = 0.05 2.8682 0.03879 3.4478 0.04721 4.2344 0.05824
p = 0.10 3.5734 0.04458 3.9568 0.05029 4.5810 0.06187
p = 0.25 52.1056 2.52317 45.3782 1.96845 38.9896 1.43637

Table 3. MLE in-control ARL estimate and its corresponding SD for Burr XII (α = 5.49, λ = 0.85) percentiles and
γ0 = 0.1, 0.01, 0.0027, 0.002 FAR’s (Twenty subgroups, k = 20).

Parameters n = 4 n = 5 n = 6
ARL SERL ARL SERL ARL SERL

γ0 = 0.1 (FAR) 1/γ0 = 10
p = 0.01 9.489 0.0919 9.302 0.0892 9.280 0.0894
p = 0.05 9.451 0.0919 9.494 0.0922 9.253 0.0905
p = 0.10 9.382 0.0940 9.389 0.0930 9.151 0.0898
p = 0.25 9.551 0.0955 9.284 0.0915 9.374 0.0937

γ0 = 0.01 (FAR) 1/γ0 = 100
p = 0.01 91.670 1.0159 91.756 1.0008 89.876 0.9435
p = 0.05 92.312 1.0736 92.202 1.0292 91.252 1.0344
p = 0.10 92.351 1.0957 93.422 1.0592 92.104 1.0469
p = 0.25 96.018 1.2147 92.156 1.0852 90.236 1.0322

γ0 = 0.0027 (FAR) 1/γ0 = 370.37
p = 0.01 350.522 4.3742 339.584 4.0075 335.258 3.8509
p = 0.05 352.948 4.6279 347.647 4.3994 342.048 4.2707
p = 0.10 360.585 5.0646 355.758 4.6781 340.129 4.209
p = 0.25 384.143 5.8859 351.579 4.5827 348.172 4.6368

γ0 = 0.002 (FAR) 1/γ0 = 500
p = 0.01 473.976 6.0846 463.632 5.5502 455.862 5.4084
p = 0.05 487.756 7.1034 474.699 6.1434 459.590 5.9753
p = 0.10 493.142 7.0268 494.083 6.6919 456.733 5.697
p = 0.25 517.556 8.2068 485.581 6.7314 478.182 6.737
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Table 4. MLE in-control LCL and UCL estimates and (SDER) for Burr XII (α = 5.49, λ = 0.85) percentiles and
γ0 = 0.1, 0.01, 0.0027, 0.002 FAR’s (Twenty subgroups, k = 20).

Parameters n = 4 n = 5 n = 6
LCL UCL LCL UCL LCL UCL

γ0 = 0.1 (FAR)
p = 0.01 0.000034 0.03642 0.00004 0.02390 0.000048 0.01742

(0.0000003) (0.000079) (0.0000003) (0.000053) (0.0000003) (0.000038)
p = 0.05 0.000470 0.07073 0.00054 0.05284 0.000620 0.04260

(0.0000027) (0.000126) (0.0000027) (0.000093) (0.0000027) (0.000073)
p = 0.10 0.001480 0.09719 0.00170 0.07710 0.001917 0.06462

(0.0000070) (0.000161) (0.0000068) (0.000121) (0.0000070) (0.000098)
p = 0.25 0.007184 0.16155 0.00818 0.13717 0.009054 0.12151

(0.0000238) (0.000238) (0.0000241) (0.000187) (0.0000234) (0.000156)
γ0 = 0.01 (FAR)

p = 0.01 0.000001 0.10625 0.000003 0.0698 0.000004 0.05015
(0.00000002) (0.000182) (0.00000003) (0.000119) (0.00000004) (0.000085)

p = 0.05 0.000049 0.16331 0.000076 0.1193 0.000109 0.09356
(0.0000004) (0.000255) (0.00000052) (0.000177) (0.0000006) (0.000134)

p = 0.10 0.000227 0.20340 0.000336 0.1562 0.000455 0.12714
(0.0000015) (0.000313) (0.0000018) (0.000219) (0.000002) (0.000168)

p = 0.25 0.001914 0.29678 0.002596 0.2423 0.003252 0.20822
(0.0000085) (0.000446) (0.0000099) (0.000321) (0.000011) (0.000257)

γ0 = 0.0027 (FAR)
p = 0.01 0.0000003 0.1597 0.0000007 0.10536 0.000001 0.0757

(0.00000001) (0.000279) (0.000000009) (0.000175) (0.00000001) (0.000125)
p = 0.05 0.0000150 0.2283 0.0000278 0.16530 0.000045 0.1286

(0.00000015) (0.000378) (0.00000023) (0.000249) (0.0000003) (0.000185)
p = 0.10 0.0000858 0.2752 0.0001458 0.20869 0.000218 0.1681

(0.0000007) (0.000445) (0.00000091) (0.000304) (0.0000012) (0.000229)
p = 0.25 0.0009619 0.3831 0.0014421 0.30796 0.001932 0.2617

(0.000005) (0.00062) (0.0000064) (0.000432) (0.0000073) (0.000338)
γ0 = 0.002 (FAR)

p = 0.01 0.0000002 0.1735 0.0000005 0.11456 0.0000010 0.0823
(0.000000003) (0.00031) (0.000000007) (0.000194) (0.00000001) (0.000137)

p = 0.05 0.0000115 0.2447 0.0000223 0.17678 0.0000367 0.1372
(0.00000012) (0.000415) (0.00000019) (0.000270) (0.00000026) (0.000200)

p = 0.10 0.0000692 0.2931 0.0001213 0.22163 0.0001855 0.1780
(0.0000006) (0.000486) (0.00000079) (0.000330) (0.000001) (0.000245)

p = 0.25 0.0008256 0.4039 0.0012658 0.32371 0.0017193 0.2744
(0.0000045) (0.000666) (0.0000058) (0.000463) (0.0000067) (0.000360)
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Table 5. MME in-control ARL estimate and its corresponding SD for Burr XII (α = 5.49, λ = 0.85) percentiles
and γ0 = 0.1, 0.01, 0.0027, 0.002 FAR’s (Twenty subgroups, k = 20).

Parameters n = 4 n = 5 n = 6
ARL SERL ARL SERL ARL SERL

γ0 = 0.1 (FAR) 1/γ0 = 10
p = 0.01 9.7176 0.12853 9.7766 0.13270 9.5194 0.13270
p = 0.05 9.6360 0.13179 9.7266 0.12734 9.4440 0.12713
p = 0.10 9.6993 0.13286 9.7870 0.13396 9.7010 0.13176
p = 0.25 9.5878 0.13294 10.1604 0.14027 9.5528 0.12966

γ0 = 0.01 (FAR) 1/γ0 = 100
p = 0.01 99.668 1.49705 97.1502 1.49046 90.5162 1.32451
p = 0.05 96.1738 1.49783 97.4186 1.53433 92.3276 1.4170
p = 0.10 99.0564 1.60879 99.7884 1.60474 95.7676 1.48037
p = 0.25 101.8258 1.73413 102.8149 1.71767 98.4534 1.64179

γ0 = 0.0027 (FAR) 1/γ0 = 370.37
p = 0.01 368.3414 6.15738 360.3882 6.14465 354.4038 5.80779
p = 0.05 384.0682 6.72020 380.5550 6.75787 353.4776 6.15968
p = 0.10 387.70900 7.26753 383.1900 6.93256 369.1508 6.43089
p = 0.25 416.5502 8.39249 410.6444 8.35209 393.9396 7.59261

γ0 = 0.002 (FAR) 1/γ0 = 500
p = 0.01 513.3276 9.08390 492.6596 8.89021 477.9740 7.91654
p = 0.05 530.7884 10.13229 522.7432 9.68210 499.9750 9.07411
p = 0.10 539.8073 10.47616 520.9810 9.60464 513.6212 9.62915
p = 0.25 584.4068 14.19618 547.3264 10.60332 545.0452 11.28614

Table 6. MLE in-control ARL estimate and its corresponding SD for Burr XII (α = 0.08, λ = 5.47) percentiles and
γ0 = 0.1, 0.01, 0.0027, 0.002 FAR’s (Twenty subgroups, k = 20).

Parameters n = 4 n = 5 n = 6
ARL SERL ARL SERL ARL SERL

γ0 = 0.1 (FAR) 1/γ0 = 10
p = 0.01 9.5298 0.1412 9.3873 0.1384 9.6031 0.1420
p = 0.05 9.6710 0.1541 9.6918 0.1584 9.6277 0.1509
p = 0.10 9.7906 0.1546 9.5872 0.1527 9.5037 0.1516
p = 0.25 9.9644 0.1475 9.5256 0.1345 9.6662 0.1363

γ0 = 0.01 (FAR) 1/γ0 = 100
p = 0.01 96.0906 2.0424 96.1712 2.0356 97.3494 2.1109
p = 0.05 95.7430 2.2902 100.1690 2.3573 102.6900 2.6672
p = 0.10 103.1736 2.7254 100.1868 2.5098 99.7786 2.4224
p = 0.25 101.1328 2.2240 99.5562 2.2487 101.1302 1.9161

γ0 = 0.0027 (FAR) 1/γ0 = 370.37
p = 0.01 377.6082 10.4431 375.0289 9.8843 381.3017 10.3995
p = 0.05 372.4666 11.4847 390.7094 12.1085 429.0386 23.6215
p = 0.10 439.1992 23.7574 409.2720 14.3653 384.6976 11.0866
p = 0.25 401.9918 13.7038 382.2936 10.7416 389.5548 10.3047

γ0 = 0.002 (FAR) 1/γ0 = 500
p = 0.01 523.8520 15.1520 534.2442 16.9458 532.6824 16.0324
p = 0.05 523.2488 19.0018 558.5619 19.5558 584.0950 26.5399
p = 0.10 617.2196 31.7013 568.7408 19.7148 540.4306 17.4381
p = 0.25 566.3458 21.5265 526.1670 15.8597 530.0650 14.8798
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Table 7. MLE in-control LCL and UCL estimates and (SDER) for Burr XII (α = 0.08, λ = 5.47) percentiles and
γ0 = 0.1, 0.01, 0.0027, 0.002 FAR’s (Twenty subgroups, k = 20).

Parameters n = 4 n = 5 n = 6
LCL UCL LCL UCL LCL UCL

γ0 = 0.1 (FAR)
p = 0.01 0.331147 1.016391 0.322579 1.017691 0.322958 1.018548

(0.002597) (0.000063) (0.002083) (0.000045) (0.001774) (0.000034)
p = 0.05 0.589821 1.225620 0.598627 1.214041 0.610306 1.205447

(0.002422) (0.000466) (0.002073) (0.000371) (0.001809) (0.000317)
p = 0.10 0.784760 1.573339 0.809836 1.532531 0.831728 1.504863

(0.002064) (0.001179) (0.001819) (0.000967) (0.001614) (0.000815)
p = 0.25 1.141261 3.583147 1.188931 3.308213 1.232259 3.146491

(0.001004) (0.007366) (0.000885) (0.005624) (0.000796) (0.004742)
γ0 = 0.01 (FAR)

p = 0.01 0.120004 1.036936 0.127383 1.035598 0.137907 1.034597
(0.000170) (0.000087) (0.001342) (0.000065) (0.001150) (0.000052)

p = 0.05 0.317830 1.350468 0.344782 1.318678 0.369802 1.296670
(0.002155) (0.000730) (0.001870) (0.000565) (0.001659) (0.000469)

p = 0.10 0.502754 1.917649 0.545498 1.814336 0.581290 1.746971
(0.002251) (0.00208) (0.002019) (0.001598) (0.001807) (0.001289)

p = 0.25 0.878338 6.162181 0.931290 5.243810 0.971345 4.719448
(0.001514) (0.018527) (0.001143) (0.012702) (0.000831) (0.009859)
γ0 = 0.0027 (FAR)

p = 0.01 0.074541 1.047298 0.081486 1.044338 0.091395 1.042335
(0.001338) (0.000107) (0.001060) (0.000079) (0.000914) (0.000067)

p = 0.05 0.236981 1.422078 0.264146 1.376609 0.289620 1.346390
(0.002002) (0.000924) (0.001739) (0.000688) (0.001550) (0.000568)

p = 0.10 0.405450 2.131727 0.450221 1.981210 0.487617 1.887025
(0.002256) (0.002766) (0.002024) (0.002033) (0.001817) (0.001612)

p = 0.25 0.776175 8.264172 0.839282 6.687169 0.890617 5.840448
(0.001846) (0.030349) (0.001514) (0.019440) (0.001187) (0.014458)
γ0 = 0.002 (FAR)

p = 0.01 0.067201 1.049665 0.073955 1.046294 0.083481 1.044049
(0.001264) (0.000132) (0.001004) (0.000083) (0.000869) (0.000067)

p = 0.05 0.222260 1.438751 0.248986 1.389969 0.274334 1.357823
(0.001965) (0.000977) (0.001709) (0.000719) (0.001525) (0.000594)

p = 0.10 0.386727 2.184468 0.431582 2.020981 0.469200 1.919738
(0.002253) (0.002962) (0.002021) (0.002154) (0.001814) (0.001699)

p = 0.25 0.754931 8.848224 0.818745 7.071897 0.872401 6.138254
(0.001900) (0.034122) (0.001585) (0.021456) (0.001266) (0.015947)
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Table 8. MLE in-control ARL estimate and its corresponding SD for Burr XII (α = 0.6287, λ = 1.1953) percentiles
and γ0 = 0.1, 0.01, 0.0027, 0.002 FAR’s (Twenty subgroups, k = 20).

Parameters n = 4 n = 5 n = 6
ARL SERL ARL SERL ARL SERL

γ0 = 0.1 (FAR) 1/γ0 = 10
p = 0.01 9.4150 0.13201 9.6220 0.13632 9.3410 0.12929
p = 0.05 9.5638 0.14381 9.6684 0.13894 9.4558 0.13258
p = 0.10 9.4874 0.14721 9.6500 0.14665 9.4704 0.13930
p = 0.25 9.6636 0.15440 9.7216 0.14783 9.5822 0.14184

γ0 = 0.01 (FAR) 1/γ0 = 100
p = 0.01 100.7326 1.82686 100.7298 1.77273 98.3096 1.66977
p = 0.05 107.7196 2.34663 105.9360 2.15765 103.5364 2.09587
p = 0.10 102.2632 2.26380 103.5140 2.14112 103.3632 2.10837
p = 0.25 104.0292 2.25916 102.1952 2.26906 100.1510 1.94429

γ0 = 0.0027 (FAR) 1/γ0 = 370.37
p = 0.01 397.9636 9.07985 404.1122 8.95056 389.0514 7.94027
p = 0.05 454.1206 12.97278 436.5634 10.64892 426.0436 10.53851
p = 0.10 416.3770 12.23871 421.1686 10.99402 413.1744 10.28794
p = 0.25 424.0622 11.89269 426.5126 10.55059 418.8490 10.92879

γ0 = 0.002 (FAR) 1/γ0 = 500
p = 0.01 550.3726 12.93418 566.3390 13.19474 547.2370 12.24395
p = 0.05 629.9942 18.61569 613.0124 17.66224 609.3994 16.24447
p = 0.10 583.6988 17.21763 583.3014 18.56409 578.4706 15.76502
p = 0.25 604.0076 17.70668 599.6066 17.75492 573.1262 14.75778

Table 9. MME in-control ARL estimate and its corresponding SD for Burr XII (α = 0.6287, λ = 1.1953) percentiles
and γ0 = 0.1, 0.01, 0.0027, 0.002 FAR’s (Twenty subgroups, k = 20).

Parameters n = 4 n = 5 n = 6
ARL SERL ARL SERL ARL SERL

γ0 = 0.1 (FAR) 1/γ0 = 10
p = 0.01 10.2918 0.15131 10.1830 0.15006 10.0550 0.13937
p = 0.05 10.1550 0.14767 10.1682 0.15174 9.9608 0.13781
p = 0.10 10.4208 0.15280 10.2852 0.14984 9.8646 0.14093
p = 0.25 10.2948 0.15396 10.1638 0.15112 10.1486 0.15198

γ0 = 0.01 (FAR) 1/γ0 = 100
p = 0.01 127.3104 2.61127 122.3928 2.46522 120.3358 2.4614
p = 0.05 120.2924 2.34216 115.9948 2.25263 113.2856 2.33937
p = 0.10 122.2716 2.41879 119.6858 2.43758 114.2008 2.21692
p = 0.25 112.4390 2.12890 114.2208 2.22453 107.8744 2.03964

γ0 = 0.0027 (FAR) 1/γ0 = 370.37
p = 0.01 310.4800 5.35882 318.1268 5.35569 350.3406 6.16744
p = 0.05 303.2566 5.22455 316.4058 5.38817 331.1858 5.80927
p = 0.10 306.0644 5.15079 315.5124 5.45777 335.1776 5.95371
p = 0.25 290.5098 5.00318 306.2186 5.45141 326.5658 5.84490

γ0 = 0.002 (FAR) 1/γ0 = 500
p = 0.01 350.7946 5.86756 363.8666 5.88299 412.4976 6.98893
p = 0.05 341.6172 5.68974 362.2930 5.96056 389.8286 6.56699
p = 0.10 348.7050 5.66114 361.2808 6.05692 395.7262 6.87873
p = 0.25 330.2448 5.41132 349.1800 5.90239 383.8220 6.66151
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Table 10. MLE in-control ARL estimate and its corresponding SD for Burr XII (α = 0.64, λ = 1.29) percentiles
and γ0 = 0.1, 0.01, 0.0027, 0.002 FAR’s (Twenty subgroups, k = 20).

Parameters n = 4 n = 5 n = 6
ARL SERL ARL SERL ARL SERL

γ0 = 0.1 (FAR) 1/γ0 = 10
p = 0.01 9.561 0.1340 9.451 0.1333 9.3498 0.1302
p = 0.05 9.721 0.1476 9.716 0.1457 9.5574 0.1392
p = 0.10 9.707 0.1523 9.582 0.1430 9.5218 0.1353
p = 0.25 9.736 0.1512 9.673 0.1453 9.7502 0.1464

γ0 = 0.01 (FAR) 1/γ0 = 100
p = 0.01 99.992 1.4071 97.472 1.6857 96.4556 1.6311
p = 0.05 111.907 2.8284 104.834 2.2176 106.851 2.3239
p = 0.10 106.881 2.4504 99.306 2.0311 102.798 2.0213
p = 0.25 102.712 2.2068 103.154 2.0665 102.795 2.1567

γ0 = 0.0027 (FAR) 1/γ0 = 370.37
p = 0.01 418.510 13.599 409.033 9.259 393.928 8.7907
p = 0.05 434.100 12.515 436.393 10.806 451.500 32.928
p = 0.10 426.500 12.224 418.756 11.107 420.345 9.972
p = 0.25 440.226 12.885 431.731 11.547 410.829 10.720

γ0 = 0.002 (FAR) 1/γ0 = 500
p = 0.01 567.939 17.3066 575.799 13.4838 557.086 13.4318
p = 0.05 620.678 19.4844 598.680 15.4241 616.803 34.827
p = 0.10 607.643 18.8936 576.826 16.2036 588.089 14.549
p = 0.25 619.974 18.596 601.064 17.0387 573.126 15.860

Table 11. MME in-control ARL estimate and its corresponding SD for Burr XII (α = 0.64, λ = 1.29) percentiles
and γ0 = 0.1, 0.01, 0.0027, 0.002 FAR’s (Twenty subgroups, k = 20).

Parameters n = 4 n = 5 n = 6
ARL SERL ARL SERL ARL SERL

γ0 = 0.1 (FAR) 1/γ0 = 10
p = 0.01 10.547 0.154 10.066 0.148 9.792 0.142
p = 0.05 10.317 0.149 10.087 0.146 9.963 0.144
p = 0.10 10.392 0.151 10.005 0.144 10.079 0.147
p = 0.25 10.094 0.154 10.329 0.1556 9.984 0.146

γ0 = 0.01 (FAR) 1/γ0 = 100
p = 0.01 126.390 2.882 121.289 2.453 118.649 2.289
p = 0.05 127.755 2.536 124.592 2.509 115.1036 2.240
p = 0.10 130.878 2.862 119.787 2.660 117.393 2.269
p = 0.25 120.317 2.734 114.632 2.271 113.353 2.332

γ0 = 0.0027 (FAR) 1/γ0 = 370.37
p = 0.01 417.422 8.092 412.251 8.076 410.480 7.964
p = 0.05 438.158 8.979 420.947 8.259 408.486 8.191
p = 0.10 411.924 7.983 409.484 8.352 416.038 8.445
p = 0.25 392.707 7.666 398.708 7.924 394.587 7.707

γ0 = 0.002 (FAR) 1/γ0 = 500
p = 0.01 510.375 9.516 501.348 9.363 522.244 9.582
p = 0.05 522.896 10.286 503.637 9.393 515.792 9.974
p = 0.10 496.208 9.040 498.247 9.599 527.908 10.212
p = 0.25 472.369 8.811 489.305 9.155 496.125 9.383
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Table 12. Simulated ARL1 and SERL values when λ shifts to λ1 from λ0 = 1.29 for m = 6, k = 20 and α = 0.64.

p γ λ0 λ1 ARL1(MLE) SERL ARL1(MME) SERL
0.10 0.10 1.29 0.65 2.1824 0.0237 2.1454 0.0233

1.29 0.43 1.4780 0.0121 1.4036 0.0109
1.29 0.32 1.2898 0.0088 1.2318 0.0077
1.29 0.26 1.2142 0.0069 1.1536 0.0059
1.29 0.21 1.1478 0.0057 1.1076 0.0048

0.10 0.01 1.29 0.65 4.3208 0.0237 4.3286 0.0608
1.29 0.43 1.9874 0.0203 1.8922 0.0190
1.29 0.32 1.5380 0.0133 1.4714 0.0120
1.29 0.26 1.3774 0.0105 1.2940 0.0087
1.29 0.21 1.2620 0.0081 1.1962 0.0068

0.10 0.0027 1.29 0.65 6.4236 0.0908 6.8638 0.1068
1.29 0.43 2.4112 0.0272 2.3438 0.0269
1.29 0.32 1.7168 0.0163 1.6520 0.0152
1.29 0.26 1.4925 0.0125 1.3860 0.0105
1.29 0.21 1.3314 0.0095 1.2596 0.0080

0.10 0.002 1.29 0.65 7.1050 0.1043 7.6462 0.1226
1.29 0.43 2.5344 0.0290 2.4636 0.0286
1.29 0.32 1.7614 0.0171 1.6956 0.0157
1.29 0.26 1.5205 0.0129 1.4122 0.0108
1.29 0.21 1.3506 0.0097 1.2784 0.0084

0.25 0.1 1.29 0.65 2.3520 0.0251 2.4080 0.0261
1.29 0.43 1.6628 0.0151 1.6188 0.0140
1.29 0.32 1.4186 0.0111 1.4112 0.0111
1.29 0.26 1.3160 0.0092 1.2960 0.0088
1.29 0.21 1.2496 0.0077 1.2208 0.0077

0.25 0.01 1.29 0.65 4.8886 0.0634 5.1186 0.0681
1.29 0.43 2.3712 0.0256 2.3986 0.0271
1.29 0.32 1.8024 0.0175 1.8144 0.0178
1.29 0.26 1.5992 0.0140 1.5524 0.0134
1.29 0.21 1.4554 0.0113 1.3958 0.0106

0.25 0.0027 1.29 0.65 7.4906 0.1049 8.4132 0.1302
1.29 0.43 2.9454 0.0337 3.1672 0.0393
1.29 0.32 2.0610 0.0217 2.1784 0.0243
1.29 0.26 1.7802 0.0168 1.7728 0.0169
1.29 0.21 1.5694 0.0132 1.5776 0.0138

0.25 0.002 1.29 0.65 8.4338 0.1210 9.6480 0.1563
1.29 0.43 3.1014 0.0365 3.3952 0.0425
1.29 0.32 2.1274 0.0226 2.3306 0.0273
1.29 0.26 1.8194 0.0174 1.8750 0.0189
1.29 0.21 1.5958 0.0136 1.6528 0.0148
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Table 13. Top twenty subgroups of electronic component lifetimes generated from the BTXII distribution with
α0 = 0.64 and λ = 1.29.

Subgroup
number lifetime observations

1 0.545523 0.111869 3.562735 4.468829 0.481474 1.897821
2 1.021759 17.51915 0.272386 0.881968 5.378379 0.382019
3 9.267913 31.51052 2.834265 15.74311 1.191486 0.205128
4 2.335865 19.62976 0.729407 3.788054 3.209420 0.514025
5 0.920839 3.458564 0.095770 1.394487 5.919687 0.201121
6 1.197991 8.852825 2.452986 8.003429 0.444778 3.099667
7 1.668747 0.483094 2.756992 4.265422 0.969981 0.779199
8 1.365622 2.653202 7.651898 3.170058 2.745687 3.548740
9 1.256711 0.743504 0.768741 0.218993 0.857355 3.861241

10 4.032995 2.281709 8.527115 0.132912 3.334109 138.6888
11 2.469075 1.610966 20.34522 0.264265 6.221741 65.97923
12 2.925442 1.021302 11.68723 0.782228 2.034763 5.303781
13 6.298546 26.79470 7.331502 4.307616 0.280723 0.839558
14 0.142750 3.693631 17.18273 4.659451 10.20538 1.745063
15 17.08135 30.98131 1.045303 5.300879 28.17504 2.037199
16 38.20007 0.736304 0.637200 109.0852 0.409012 0.082647
17 1.785511 1.043847 0.346231 0.673403 350.9389 5.438014
18 1.882098 2.347502 0.297302 4.046231 1.655644 31.81990
19 3.055799 13.70062 0.573477 0.211356 1.449541 1.484838
20 0.475345 0.414347 1.672673 4.536216 0.802389 0.489192

Table 14. Twenty out-of-control subgroups of electronic component lifetimes generated from the BTXII distribution
with α1 = 0.64 and λ = 0.65.

Subgroup
number lifetime observations

21 0.011139 0.603066 1790.836 4.850877 0.124040 0.172081
22 76.13965 15.24739 1.163399 1.017178 116.4952 195.5026
23 3038.643 93.54499 9.263096 2.691029 10.17255 1.975991
24 5130.794 47.76424 0.071867 1.241000 1.666116 1.180654
25 0.262417 0.009454 0.772823 4.227578 579.6631 3.003024
26 0.064320 7057.562 85.67451 42.93172 32.71423 1.157400
27 6.807197 0.186522 5.003434 0.622301 2039.907 0.969570
28 2.346855 35.77861 303.1503 0.795887 0.203652 7.285395
29 5.439290 2.678413 247.7381 39.21904 0.305026 1.086270
30 0.276058 29.53337 0.844077 1.415701 7.046816 38764.32
31 66.64765 0.099803 0.252450 4.347114 5.626255 0.429788
32 0.314641 8.444252 0.316886 330.7342 9.144874 1.049583
33 0.966376 7.771045 121.9134 0.062052 3.787511 5131.382
34 0.225502 3.796028 0.019064 0.042123 0.162977 0.775827
35 0.182925 0.000217 6392.907 264.1949 862.0526 1.529213
36 0.521124 0.007930 15.57398 7.756012 5.296139 4686.697
37 0.690275 0.008445 0.024687 0.057587 86.76206 0.238617
38 0.183715 2045.861 13.17467 899.0267 7.692057 6.137891
39 0.722723 44.07850 52.17710 2.564983 49.58774 4192.347
40 2.598001 220.7679 5.439253 14.08382 18.34224 1.137503
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Figure 1. The MLE-b chart for the lifetime data of electronic component with FAR=0.0027.
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