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Abstract

This paper studies the impact of a number of volatile data sets on volatility spillover
tests. We investigate a type of data generating process, AR(1)-GARCH(1,1), with an
extensive set of Monte Carlo simulations. It is found that causation pattern, due to
causality between two series, is influenced by the intensity of volatility clustering. Two
testing procedures are applied for testing causality in the variance. We notice a severe
size and power distortion when the clustering parameter is high and when the process
is near integration. Furthermore, whenever there is a severe size distortion, there is a
serial autocorrelation in the standardized residuals. This is seen when the asymptotic
distribution of the statistics is used to define a critical region. So, instead of relying on
the asymptotic distribution, we calculate the percentiles of the test statistic with the
null hypothesis of no spillover effect and use them as a critical region for both size and
power. We observe a significant improvement in the results.
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1. Introduction

The recent financial crunch and its ramifications all around the world highlight the need to
understand the linkages across financial markets. If the volatility of one economic funda-
mental in a specific market changes the behavior of another market, both the two markets
are interrelated with respect to volatility. This mechanism is well known as volatility
spillover. Volatility spillover can be seen as the transmission of volatility across markets.
Such spillover effects, across different markets and assets, have recently been studied by
e.g., Asgharian and Bengtsson (2006), Bollio and Pelizzon (2003), Forbes and Rigobon
(2002), Kanas (2000), Li et al. (2008), Rigobon and Sack (2003). One way of measuring
spillover effects is via establishing cross-correlation between the processes. This approach
is easy to implement compared to applying multivariate GARCH models, which requires
simultaneous modeling of inter- and intra-series dynamics (Cheung and Ng, 1996).
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Stock returns often exhibit volatility clustering, such as high volatility ”today” tends
to give high volatility ”tomorrow”. Such clusters result in persistence of the amplitudes
of price changes. The clustering mechanism also tells us something about the predictabil-
ity of volatility. If large changes in financial markets tend to be followed by more large
changes, and small changes by small change, then volatility must be highly predictable.
Good insight into such behavior is very helpful for investors developing investment strate-
gies. For instance, from a portfolio perspective, a substantial increase in volatility has a
negative effect on risk averse investors, and whenever there is a crisis, risk averse investors
choose to adjust their portfolios either by selling highly risky assets or by adopting other
approaches such as hedging. As asset prices are interrelated due to a number of common
driving forces (e.g., macroeconomic development, central bank’s policy over interest rates
or risk preferences), analyzing single series in isolation may amount to ignore important
information about its true behaviour.

Javed and Mantalos (2012) have observed an impact of volatility structure of time se-
ries on the performance of information criteria. In Mantalos and Shukur (2005), strong
GARCH effects have been shown to affect tests for autocorrelation in the stationary dy-
namic system of equations. Phenomena such as these inspired us to study the impact of
volatility clustering on tests for causality in the simple GARCH framework. This is the
central theme of this paper and, to our knowledge, it has not been analyzed in previous
studies. Van Dijk et al. (2005) discuss how the performance of the causality in variance
tests proposed by Cheung and Ng (1996) and Hong (2001) are affected by the presence
of breaks. Van Dijk et al. (2005) found severe size distortion in the presence of breaks
that were ignored. In Hecq (1996), the author noticed how information criteria determine,
in the presence of five integrated highly volatility GARCH errors, an optimal lag length
in univariate time series and causality tests. The author also stresses that one should be
cautious in the use of ADF unit root tests as well as in the augmented EngleGranger coin-
tegration test for large volatile parameters. The Granger causality (Granger, 1969, 1980)
tests are popularly known methods for investigating the direction of causality in various
set of time series due to its simplicity and easy applicability. Having noticed the impor-
tance of GARCH process with respect to the level of persistence of volatility, in this work,
we study the Granger causality in variance in the presence of GARCH effects at high and
medium levels of persistence with the sum of parameters (α, β) indicating the level of the
conditional heteroskedastic process moving towards integration.

A financial market is said to be complete if it is arbitrage free, that is no profit can be
made by taking an advantage of a price difference between two or more markets. According
to Ross (1989), in an arbitrage free economy the variance of price change is directly related
to the rate of information flow into the market. War, regime changes, or economic crises
could be some of the possible reasons for volatile behaviour. This issue led us to investigate
the effect of GARCH processes on the causality in variance tests. We simulated a num-
ber of financial series, based on various volatile structures, with GARCH(1,1) errors. An
extensive set of data generating processes was used to reach the above-mentioned objec-
tive. We consider high and medium level GARCH(1, 1) processes with different parameter
combinations.

Causality in variance tests are used for assessing the causation pattern between two
time series. The tests require the residuals of the tested series to be serially independent
(Cheung and Ng, 1996). However, some financial time series models do not account for
serial autocorrelation. In such cases, serial autocorrelation might influence the ability of the
tests to detect causality in mean and variance. We investigate various volatile behavior
of time series by means of Monte Carlo simulations. The causality tests appear to be
sensitive with respect to the parameters of simulated series. Whenever there is a severe
size distortion, there is a serial autocorrelation in the standardized residuals. Moreover, a
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change in the shape of the distribution of the test statistics is also noticed. We therefore
calculated the empirical critical values based on the 90% and 95% percentiles of the one-way
and two-way causality test statistics (Q1, Q2, S1 and S2) for all the simulated processes.
These critical values (instead of asymptotic critical values) were later used to study the
size and power of the test statistics.

The remaining paper proceeds as follows: Section 2 discusses the hypotheses of volatility
spillover and the test procedures used. Section 3 describes the extensive set of Monte Carlo
simulations designed for the present study. In Section 4, we summarize the size result of
these tests for no spillover. Results for the size adjusted power are summarized in Section
5. Finally, in the last section, general conclusions of the analysis are drawn.

2. Hypotheses of interest and test procedures

Following the work of Cheung and Ng (1996), we let Ii,t, i = 1, 2, be the information set
of the time series Yi,t available at period t, and It = (I1,t, I2,t). Let

εi,t = Yi,t − µi,t, i = 1, 2, (1)

where µi,t is the mean of Yi,t conditioned on Ii,t−1 and assume that

εi,t = ξi,t(hi,t)1/2. (2)

Here hi,t is a positive time-varying measurable function that is the conditional variance of
εi,t and ξi,t is an innovation process with

E(ξi,t|Ii,t−1) = 0, and E(ξ2
i,t|Ii,t−1) = 1. (3)

The null hypothesis that y2,t does not Granger-cause y1,t in variance is:

H0 : Var(ξ1,t|I1,t−1) = Var(ξ1,t|It−1),

versus the alternative

HA : Var(ξ1,t|I1,t−1) 6= Var(ξ1,t|It−1).

As the squared innovations, ξ2
i,t, are not observable, the squared standardized residual is

used as an estimate of ξ2
i,t and the normalized residuals are defined as:

ût = ε̂21,t/ĥ1,t − 1 and v̂t = ε̂22,t/ĥ2,t − 1. (4)

where ˆ indicates suitable estimates of the corresponding entities.
Cheung and Ng (1996) proposed a test statistic for H0 by using the sample cross-

correlation function between ût and v̂t, defined as

ρ̂uv(j) = {Ĉuu(0)Ĉvv(0)}−1/2Ĉuv(j), (5)

where the sample cross-covariance function is
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Ĉuv(j) =

{
T−1

∑T
t=j+1 ûtv̂t−j , j ≥ 0

T−1
∑T

t=−j+1 ût+j v̂t, j < 0,
(6)

Ĉuu(0) = T−1
∑T

t=1 û
2
t and Ĉvv(0) = T−1

∑T
t=1 v̂

2
t . These authors suggest a testing proce-

dure for H0 using a statistic based on M squared cross-correlations as given by

S1 = T
M∑
j=1

ρ̂2
uv(j). (7)

They claim that under H0, the statistic S1 has an asymptotic χ2
M distribution. Here M

is the number of lags from the sample cross-correlation. The squared cross-correlations
from lag −M to −1 can be used for testing the reverse hypothesis of Y1,t does not cause
Y2,t in variance. When there is no prior information about the direction of causality, it is
appropriate to test the two-way hypothesis that neither Y1,t Granger-cause Y2,t nor Y2,t

Granger-cause Y1,t in variance with respect to (I1,t, I2,t−1) or (I1,t−1, I2,t) respectively. The
test statistic for testing the two-way hypothesis is

S2 = T

M∑
j=−M

ρ̂2
uv(j). (8)

The same authors have shown that under H0, the statistic S2 has an asymptotic χ2
2M+1

distribution.
An interesting feature of financial markets is that the volatility of a current asset or

market is often more affected by the recent volatility pattern of another asset or market
than by the distant past values. Hong (2001) introduced a weighting scheme to incorporate
such a situation. According to Hong, when large M is used, the S1 and S2 statistic may
not efficiently estimate volatility spillover as it gives equal weights to each of the M sample
cross-correlations. A more efficient test may hence be obtained by assigning higher weights
to more recent information. Hong (2001) proposed a test statistic described as

Q1 = {T
T−1∑
j=1

k2(j/M)ρ̂2
uv(j)− C1T (k)}/{2D1T (k)}1/2}. (9)

where

C1T (k) =
T−1∑
j=1

(1− j/T )k2(j/M),

and

D1T (k) =
T−1∑
j=1

(1− j/T ){1− (j + 1)/T}k4(j/M).

The constants C1T (k) and D1T (k) can be seen as the mean and variance of the sum in
equation (9) and k(.) is a kernel function. Hong (2001) has shown through simulations that
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the test provides better power performance when non-uniform kernels are used. Similarly,
for the bidirectional hypothesis a proposed statistic was given by

Q2 = {T
T−1∑
j=1−T

k2(j/M)ρ̂2
uv(j)− C2T (k)}/{2D2T (k)}1/2}. (10)

where

C2T (k) =
T−1∑
j=1−T

(1− |j|/T )k2(j/M),

and

D2T (k) =
T−1∑
j=1−T

(1− |j|/T ){1− (|j|+ 1)/T}k4(j/M).

According to Hong (2001), Q1 and Q2 have asymptotic N(0, 1) distributions. We use a
non-uniform Bartlett kernel (Priestley, 1981), as a weighting function in our simulation:

k(z) =
{

1− |z|, |z| ≤ 1
0 otherwise

We use M = 1, 5, 10, 15 and 20 for our analysis.

3. The Monte Carlo design

In this section we describe our data generating processes with a number of GARCH spec-
ifications that will be used to study the size and power of the above-mentioned tests. The
model we consider is given by:

Yi,t = 0.8Yi,t−1 + εi,t and εi,t = ξi,th
1/2
i,t , i = 1, 2, t = 1, . . . , T,

where ξi,t ∼ NID(0, 1) and the conditional variance is driven as:

hi,t = wi + αiε
2
i,t−1 + βihi,t−1 + φiε

2
j,t−1 + ψihj,t−1, i 6= j, i, j = 1, 2,

For simplicity, we can rewrite it as:[
h1,t

h2,t

]
=
[
w1

w2

]
+
[
α1 φ1

φ2 α2

] [
ε21,t−1

ε22,t−1

]
+
[
β1 ψ1

ψ2 β2

] [
h1,t−1

h2,t−1

]
or

ht = ω + Aε(2)
t−1 + Bht−1 (11)

Based on the above conditional variance processes, we design a data generation process.
Since the clustering effect and persistence are the two integral features observed in financial
data, a GARCH(1, 1) is an obvious for capturing such effects (from now on we will call
them a GARCH effect, for simplicity). However, the data generally varies with respect to
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the strength of clustering and persistence effects it has. A high value of β means that the
volatility is persistent and will take a longer time to stabilize. Similarly a high value of α
means that the volatility is spiky and will react to the market movements very quickly. If
for cases when they are close to unity (α + β = 1), it means the persistence in volatility
is high. Awareness of these properties is paramount when modelling financial data. And
since they can have different effects on volatility, they can have different implications on
the spillover effect, also known as causality pattern.The following Monte Carlo design is
made by keeping in mind the significance of variation in financial data. Below we present
set of models, that varies with respect to their strength of persistence and clustering.

H0(Model 1) :
{

(α1, β1, φ1, ψ1) = (0.19, 0.8, 0, 0),
(α2, β2, φ2, ψ2) = (0.19, 0.8, 0, 0),

H0(Model 2) :
{

(α1, β1, φ1, ψ1) = (0.09, 0.9, 0, 0),
(α2, β2, φ2, ψ2) = (0.09, 0.9, 0, 0),

H0(Model 3) :
{

(α1, β1, φ1, ψ1) = (0.05, 0.94, 0, 0),
(α2, β2, φ2, ψ2) = (0.05, 0.94, 0, 0),

H0(Model 4) :
{

(α1, β1, φ1, ψ1) = (0.15, 0.8, 0, 0),
(α2, β2, φ2, ψ2) = (0.15, 0.8, 0, 0),

H0(Model 5) :
{

(α1, β1, φ1, ψ1) = (0.05, 0.9, 0, 0),
(α2, β2, φ2, ψ2) = (0.05, 0.9, 0, 0),

H0(Model 6) :
{

(α1, β1, φ1, ψ1) = (0.2, 0.7, 0, 0),
(α2, β2, φ2, ψ2) = (0.2, 0.7, 0, 0),

HA(Model 7) :
{

(α1, β1, φ1, ψ1) = (0.1, 0.8, 0.09, 0.8),
(α2, β2, φ2, ψ2) = (0.19, 0.8, 0, 0),

HA(Model 8) :
{

(α1, β1, φ1, ψ1) = (0.3, 0.4, 0.15, 0.4),
(α2, β2, φ2, ψ2) = (0.45, 0.5, 0, 0),

HA(Model 9) :
{

(α1, β1, φ1, ψ1) = (0.3, 0.4, 0.20, 0.4),
(α2, β2, φ2, ψ2) = (0.3, 0.65, 0, 0),

HA(Model 10) :
{

(α1, β1, φ1, ψ1) = (0.2, 0.5, 0.14, 0.15),
(α2, β2, φ2, ψ2) = (0.2, 0.5, 0.14, 0.15),

HA(Model 11) :
{

(α1, β1, φ1, ψ1) = (0.2, 0.5, 0.2, 0.15),
(α2, β2, φ2, ψ2) = (0.2, 0.5, 0.2, 0.15),

HA(Model 12) :
{

(α1, β1, φ1, ψ1) = (0.15, 0.45, 0.15, 0.3),
(α2, β2, φ2, ψ2) = (0.15, 0.45, 0.15, 0.3),

In the first three models, the strength of persistence is kept high and they are equal
in parametric value (α + β = 1), but the way they drive individual volatility process
is different. Similarly model 4 and 5 are chosen to have slightly lower persistence but
behave in a different manner. For the Model 6, we chose to simulate with slightly lower
persistence(α+β = 0.9). The whole idea is to investigate how difference in persistence affect
the causality pattern evaluated by a single test statistic. Moreover, there is no volatility
spillover between Y1,t and Y2,t under H0 for the first six models. For Model 7 to Model 9
under HA there is a one-way volatility spillover from Y2,t to Y1,t but not from Y1,t to Y2,t.
For the last three models there is two-way volatility spillover from Y1,t to Y2,t as well as
from Y2,t to Y1,t.
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As we discussed earlier, different GARCH(1,1) processes can have different implications
for the causality pattern. In addition to this, there are some assumptions which must be
satisfied for the causality test to be asymptotically distributed as χ2

M . The asymptotic
distribution of the cross-correlation between standardized residuals follows a χ2

M if the
standardized residuals are independent of each other. It also requires that the squared
cross-correlations at any lag must be independent of at any other lag. Dependence be-
tween the squared cross-correlation vectors at any stage can violate the assumption of
χ2
M . Moreover, unequal variance or strong dependence between the residuals can affect the

asymptotic properties of the distribution. It is quite likely that the presence of serial auto-
correlation will influence the ability of the test to detect a causality pattern in mean and
variance. Moreover, a significant autocorrelation in the standardized residuals can change
the distribution shape of the test statistic.

Models such as these considered here, are very common in financial data such as, ex-
change rates data. Discussing the strength of the test statistic require a separate paper
with more focus and it has been done in few other papers by the same authors. In this
paper we focus on discussing the discrepancies found in the test statistic though extensive
simulations. Therefore, we only report results obtained through simulations in this paper,
and interested reader may refer to articles such as, Javed (2013) and Mantalos and Shukur
(2010) on detailed analysis and discussion on the causality test when applied to empirical
data.

We consider two sample sizes, T = 300 and T = 1000. All simulations are further
replicated 1000 times to study the size and power of the tests. For each series we generate
T + 1000 observations and then the first 1000 are discarded to reduce the possible effect of
the start-up values. An autoregressive model Yi,t with GARCH errors is considered first.
To obtain this model, we first simulate the variance process as a GARCH(1, 1) process with
αi = 0.19 and βi = 0.8, as the GARCH process depends on its lag value. Unconditional
variance is used as an initial value for hi,0. The simulated results are used to generate
Yi,t. Then we fit an AR(1)-GARCH(1,1) model to the simulated Yi,t series to obtain the
estimates of residuals and conditional variances. Using these estimates, we compute the
squared standardized residuals for the two series Y1,t and Y2,t. Finally, the correlation
structure computed from these standardized residuals is used to calculate the test statistics
Si and Qi, i = 1, 2. The same procedure of simulation and computation is applied to the
remaining models.

4. Size of the tests

To examine the effect of these GARCH processes on the proposed tests discussed in section
2 (Si and Qi for i = 1, 2), we consider a number of squared cross-correlations at lag M =
1, 5 and 15.

The performance of the chosen causality tests is investigated with the help of volatility
models described in section 3. We notice a change of behavior with the change of parameter
combinations in the GARCH process. Our findings for the size and power of the tests
depend on the use of the asymptotic distribution of test statistics (either chi-square, with
appropriate degree of freedom, or Gaussian) as basis for choosing critical values. The
actual figures obtained from this investigation are not reported here – they will however
be provided upon request – instead the general tendencies that were found are summarized
below. The critical values from the χ2

j distribution are reported in Table 1 in the appendix.
For the size investigation, the simulated processes are divided into three classes. In the

first class, three processes (Model 1 to Model 3) are considered with different parameter
combinations. All these GARCH models indicate a process near integration. First, in Model
1 with αi = 0.19 and βi = 0.8, both tests (S1 and Q1) for one-way causality are over-
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rejected at all lags (for M = 1 the rejection probability is 20% at the nominal 10% level)
and the rate of over-rejection increases with larger M . For the two-way causality tests,
the over-rejection rate is 30% at the 10% level, which is higher than what we observed for
the one-way tests. For model 2, another process is simulated with a slightly lower value of
αi (αi = 0.09) compared to Model 1 while keeping βi = 0.8. A low rate of over-rejection
has been noticed comparing with the first model with around 10% at the 5% level of
significance. The tests Q1 and S1 perform better than their two-way counterparts, Q2

and S2. A third combination is considered in Model 3, with αi = 0.05 and βi = 0.94. In
this model, we notice that the proportion of rejection approaches the nominal size. The
rejection probability is around 7% (10%) at the 5% (10%) level of significance. A slightly
higher over-rejection is observed in the case of the two-way causality tests. The purpose of
using three different combinations of the same kind of model (αi + βi = 0.99) is to study
the effect of parameter change on the tests. We noticed an increasing over-rejection rate
with an increase in the clustering parameter αi for processes near integration.

In the second class of models αi + βi = 0.95. Two different parameter combinations are
studied here. In Model 4, where αi = 0.15 and βi = 0.8, Q1 and S1 perform better at initial
lags (the over-rejection rate is 10% at the 5% significance level). However, the rejection
rate increases with larger lags (say, 10% for M = 15). Of the two-way causality tests,
S2 performs better than Q2. However, they both have high over-rejection rates compared
to the one-way tests. In Model 5, where αi = 0.05 and βi = 0.9, the results are close to
the nominal sizes for S1 and S2. Their performance seems consistent with the lags (the
rate of rejection is around 6% (10%) at the 5% (10%) levels) while the other two tests
(Q1 and Q2) showed some over-rejection especially at higher M . Similar to what we
observed in the first class of models (αi +βi = 0.99), a low value of αi yields rejection rate
close to the nominal sizes (i.e. 0.10 or 0.05) for these tests.

In the third class we find Model 6 with a slightly higher value of αi. We consider a model
with αi = 0.2 and βi = 0.7. This model is even further below unity than in the previous
models. Both tests S1 and S2 perform much better at lower order M(5% at M = 1) but
they over-reject at higher M (10% at M = 15) at the 5% level of significance. As we expect
the model to perform near nominal sizes both at 10% and 5%, for both Q1 and Q2, the
performance is far from expectation (the probability of rejection is 14% (17%) at the 5%
(10%) level). If we compare the same parameter value for αi, namely αi = 0.05 in two
Models (say, Model 3 and Model 5), we can say that the further away the process is from
integration in the GARCH process, the less is the impact of over rejection on the tests for
causality.

As mentioned earlier, the presence of autocorrelation can affect the ability of the tests to
capture the causality pattern. We found serial autocorrelation in our estimated standard-
ized residuals for models in which there was severe size distortion. We therefore estimated
the percentiles of the test statistics for each of the data generating processes. Tables B-E
(in the appendix) report the findings of these estimations. It is worth noticing that the
percentiles estimated from the data generating processes are far away from the critical val-
ues given by the asymptotic distribution (see Table A). Due to these large discrepancies,
the critical values from the asymptotic distribution do not seem to be suitable for use in
such processes. We estimate the 90% and 95% percentiles of the statistics Q1, Q2, S1 and
S2 for all the simulated processes. The distributions of percentiles for Models 3- 6 are very
close to each other.

We tried several combinations of model structures, and used the estimated percentiles to
calculate the size and power of the tests. The estimated results for T = 1000 are presented
in Tables 1 and 2 (for T = 300, see Tables F and G in the appendix). From these tables, we
clearly see that the nominal size has been achieved in all cases. This shows that changing
the parameter combination in the model does indeed change the distribution of the process.
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Table 1. The size of the tests at 10% and 5% levels for T = 1000 using empirical critical values given in Table C.
The numbers represent the empirical probability of rejection of the null-hypothesis

M

Model Statistic Levels 1 5 15

10% 0.10 0.09 0.10
Model 1 Q1

5% 0.04 0.04 0.05

10% 0.10 0.10 0.10
S1

5% 0.05 0.05 0.05

10% 0.10 0.11 0.11
Q2

5% 0.06 0.07 0.07

10% 0.11 0.10 0.10
S2

5% 0.05 0.07 0.06

10% 0.10 0.10 0.09
Model 2 Q1

5% 0.05 0.05 0.05

10% 0.08 0.09 0.10
S1

5% 0.041 0.04 0.05

10% 0.10 0.11 0.11
Q2

5% 0.04 0.06 0.06

10% 0.10 0.09 0.10
S2

5% 0.06 0.05 0.04

10% 0.09 0.08 0.08
Model 3 Q1

5% 0.04 0.04 0.04

10% 0.10 0.10 0.08
S1

5% 0.06 0.04 0.03

10% 0.13 0.13 0.12
Q2

5% 0.08 0.07 0.07

10% 0.07 0.07 0.08
S2

5% 0.04 0.04 0.05

Table 2. The size of the tests at 10% and 5% levels for T = 1000 using empirical critical values given in Table C.
The numbers represent the empirical probability of rejection of the null-hypothesis

M

Model Statistic Levels 1 5 15

10% 0.08 0.08 0.08
Model 4 Q1

5% 0.04 0.05 0.04

10% 0.11 0.10 0.10
S1

5% 0.05 0.06 0.05

10% 0.11 0.10 0.10
Q2

5% 0.06 0.05 0.04

10% 0.11 0.11 0.12
S2

5% 0.07 0.06 0.07

10% 0.09 0.10 0.10
Model 5 Q1

5% 0.06 0.05 0.05

10% 0.09 0.08 0.10
S1

5% 0.05 0.05 0.05

10% 0.10 0.10 0.10
Q2

5% 0.05 0.04 0.05

10% 0.10 0.10 0.10
S2

5% 0.05 0.05 0.05

10% 0.13 0.13 0.10
Model 6 Q1

5% 0.05 0.06 0.05

10% 0.10 0.12 0.11
S1

5% 0.06 0.07 0.07

10% 0.107 0.09 0.10
Q2

5% 0.03 0.04 0.05

10% 0.09 0.10 0.11
S2

5% 0.05 0.05 0.06
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5. Power of the size adjusted tests

The powers of the tests were initially investigated on the basis of the asymptotic distribu-
tion. The results obtained in this analysis were far away from the expectations. For brevity
reasons, we do not report the results here, they will, however, be provided upon request.
Instead the power of the size adjusted tests, i.e., these using the empirical critical values
discussed in previous sections, is investigated, using several GARCH processes. The results
are reported in Tables 3-8.

Table 3. The size adjusted power of the tests for one-way spillover using Model 7. The numbers represent the
empirical probability of rejection of the null-hypothesis

M

Sample Size Statistic Levels 1 5 15

10% 0.08 0.07 0.07
T=300 Q1

5% 0.05 0.04 0.04

10% 0.11 0.09 0.10
S1

5% 0.04 0.05 0.05

10% 0.07 0.10 0.10
Q2

5% 0.05 0.05 0.05

10% 0.09 0.09 0.10
S2

5% 0.04 0.06 0.06
10% 0.07 0.07 0.09

T=1000 Q1
5% 0.05 0.05 0.04

10% 0.12 0.10 0.09
S1

5% 0.06 0.04 0.04

10% 0.10 0.09 0.09
Q2

5% 0.04 0.05 0.05

10% 0.10 0.10 0.09
S2

5% 0.04 0.05 0.05

Table 4. The size adjusted power of the tests for one-way spillover using Model 8. The numbers represent the
empirical probability of rejection of the null-hypothesis

M

Sample Size Statistic Levels 1 5 15

10% 0.12 0.19 0.15
T=300 Q1

5% 0.07 0.07 0.11

10% 0.13 0.15 0.18
S1

5% 0.06 0.11 0.13

10% 0.11 0.14 0.16
Q2

5% 0.06 0.09 0.11

10% 0.13 0.18 0.19
S2

5% 0.09 0.11 0.15
10% 0.15 0.12 0.15

T=1000 Q1
5% 0.08 0.08 0.10

10% 0.13 0.15 0.21
S1

5% 0.06 0.09 0.12

10% 0.09 0.15 0.21
Q2

5% 0.07 0.11 0.14

10% 0.14 0.18 0.22
S2

5% 0.08 0.12 0.16

For the process generated from Model 7, we simulated a series with high persistence and
low volatility clustering. We observed a small rate of proportion defining power of one-way
spillover which increases with the lag length. Adding more sample observation do increase
the power but still seems unsatisfactory. Both of the causality tests hardly captured the
one-way spillover effect at all. The tests suggest that there is no spillover in the underlying
process. Similar observation has been noticed for Models 8 and 9. It can be seen that the
results are still not satisfactory and probably large lags are required to capture the one-
way spillover effect. According to Nakatani and Teräsvirta (2008), the GARCH process in
Eqn. (11) is said to be weekly stationary if and only if the module of the largest eigenvalue
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of (A + B) is less than 1. In order to identify the effect of such processes on the causality
tests, we simulate processes with different eigenvalues and evaluate the size adjusted power
performance. The results are summarized below.

Table 5. The size adjusted power of the tests for one-way spillover using Model 9. The numbers represent the
empirical probability of rejection of the null-hypothesis

M

Sample Size Statistic Levels 1 5 15

10% 0.13 0.12 0.13
T=300 Q1

5% 0.06 0.05 0.08

10% 0.11 0.15 0.21
S1

5% 0.07 0.10 0.14

10% 0.10 0.13 0.17
Q2

5% 0.06 0.08 0.10

10% 0.11 0.13 0.18
S2

5% 0.08 0.08 0.13
10% 0.14 0.11 0.16

T=1000 Q1
5% 0.06 0.07 0.11

10% 0.09 0.14 0.19
S1

5% 0.06 0.08 0.10

10% 0.10 0.14 0.19
Q2

5% 0.05 0.09 0.10

10% 0.14 0.17 0.22
S2

5% 0.07 0.11 0.14

Table 6. The size adjusted power of the tests for two-way spillover using Model 10. The numbers represent the
empirical probability of rejection of the null-hypothesis

M

Sample Size Statistic Levels 1 5 15

10% 0.14 0.12 0.15
T=300 Q1

5% 0.08 0.08 0.11

10% 0.11 0.15 0.24
S1

5% 0.06 0.11 0.17

10% 0.11 0.15 0.20
Q2

5% 0.07 0.10 0.14

10% 0.14 0.18 0.21
S2

5% 0.09 0.13 0.16
10% 0.19 0.20 0.22

T=1000 Q1
5% 0.09 0.10 0.15

10% 0.15 0.21 0.22
S1

5% 0.09 0.14 0.16

10% 0.13 0.21 0.27
Q2

5% 0.09 0.13 0.20

10% 0.22 0.28 0.34
S2

5% 0.13 0.21 0.25

For the size adjusted power analysis, we chose three different processes, Models 10 to
12 in section 3. For Model 10, the largest eigenvalue is 0.99, whereas for Models 11 and
12, it is slightly greater than 1 (1.05 each). We deliberately choose such models which
are non-stationary in order to analyze the power property. Rodrigues and Rubia (2007)
showed severe finite sample size distortions for nonstationary volatility processes. They
argue that the size departures are not mainly due to the small sample effect but will
remain asymptotically because of the failure to consistently estimate cross-correlation in
this context. We observe similar results for power analysis because if the test is over-
rejected for some processes, the power of the test for such processes will be high. For
processes away from nonstationarity as in Model 10, we find less power and only S2 has
managed to get almost 35% rejection rate for n = 1000. But for nonstationary processes as
in Model 11 and 12, we observe an increase in power which is up to 65% and 85% percent
for Model 11 and 12 respectively. All three models gain more power with increased sample
size and lag values.
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Table 7. The size adjusted power of the test for two-way spillover using Model 11. The numbers represent the
empirical probability of rejection of the null-hypotheses

M

Sample Size Statistic Levels 1 5 15

10% 0.17 0.28 0.38
T=300 Q1

5% 0.12 0.22 0.30

10% 0.23 0.35 0.42
S1

5% 0.16 0.29 0.34

10% 0.27 0.39 0.47
Q2

5% 0.19 0.30 0.40

10% 0.35 0.44 0.49
S2

5% 0.28 0.36 0.44
10% 0.33 0.45 0.54

T=1000 Q1
5% 0.24 0.38 0.47

10% 0.41 0.51 0.55
S1

5% 0.32 0.44 0.48

10% 0.38 0.50 0.57
Q2

5% 0.31 0.42 0.52

10% 0.52 0.57 0.63
S2

5% 0.44 0.52 0.59

Table 8. The size adjusted power of the test for two-way spillover using Model 12. The numbers represent the
empirical probability of rejection of the null-hypothesis

M

Sample Size Statistic Levels 1 5 15

10% 0.51 0.54 0.61
T=300 Q1

5% 0.40 0.47 0.57

10% 0.42 0.60 0.65
S1

5% 0.36 0.55 0.62

10% 0.50 0.61 0.68
Q2

5% 0.42 0.55 0.63

10% 0.57 0.66 0.68
S2

5% 0.50 0.59 0.65
10% 0.78 0.79 0.82

T=1000 Q1
5% 0.65 0.75 0.79

10% 0.42 0.60 0.65
S1

5% 0.36 0.55 0.62

10% 0.79 0.83 0.85
Q2

5% 0.77 0.81 0.83

10% 0.83 0.86 0.88
S2

5% 0.79 0.85 0.86

6. Conclusion

The causality in variance tests are sensitive to the presence of various volatile data. We
analyzed the size and power properties of the causality tests using asymptotic null dis-
tribution. Our findings show severe distortion in the size, especially for processes near
integration. Moreover, we noticed serial correlation between the standardized residuals for
cases in which there is size distortion. Due to these findings, we calculate the empirical
percentiles of the tests for several volatility structures. When these percentiles were used as
critical values for the causality tests, we obtained a significant improvement in the results.
The tests attained the nominal size for one- and two-way spillover hypotheses. We con-
clude that the asymptotic distribution should not be used without a proper understanding
of the underlying processes. Without such understanding, the risk is immediate that the
analyst is inferring a wrong causation pattern.

These findings contributes to the existing literature by (1) analyzing the sensitivity of
causality in variance tests to several GARCH processes and (2) investigating the perfor-
mance of the tests using the asymptotic null distribution and the true percentile of the
test statistics for each of the underlying processes. Future extension of this study can be
seen as a thorough investigation of GARCH processes with different parameterizations.
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These findings will help to overcome the problems, such as one mentioned in this paper,
and build more robust statistical methods based on such process.
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8. Appendix

Table A. Critical values for the χ2
j distribution at 10% and 5% levels

M

Statistic Levels 1 5 10 15 20

10% 2.71 9.24 15.99 22.31 28.41
χ2

M 5% 3.84 11.07 18.37 24.99 31.41

10% 6.25 17.28 29.62 41.42 52.95
χ2

2M+1 5% 7.81 19.67 32.67 44.99 56.94

Table B. The percentiles of the one-way spillover tests for T=300. The numbers represent the critical values of the
test

M

Model Statistic Levels 1 5 15

10% 1.86 2.57 3.51
Model 1 Q1

5% 3.43 4.52 6.48

10% 3.23 14.21 38.6
S1

5% 5.16 19.71 52.7

10% 2.55 3.30 4.47
Q2

5% 4.33 5.32 7.86

10% 9.22 29.7 75.2
S2

5% 15.3 40.5 97.2

10% 1.25 1.77 2.14
Model 2 Q1

5% 2.02 2.54 3.33

10% 2.81 10.9 27.5
S1

5% 4.12 15.1 34.9

10% 1.81 2.08 2.59
Q2

5% 3.06 3.51 4.15

10% 6.93 20.7 50.1
S2

5% 8.63 25.9 63.3

10% 1.04 1.27 1.55
Model 3-Model 6 Q1

5% 1.83 1.98 2.38

10% 2.67 9.76 23.8
S1

5% 3.83 11.9 28.4

10% 1.34 1.61 1.78
Q2

5% 2.48 2.56 2.67

10% 6.85 18.8 45.7
S2

5% 9.25 23.3 51.9
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Table C. The percentiles of the one-way spillover tests for T=1000. The numbers represent the critical values of
the test

M

Model Statistic Levels 1 5 15

10% 2.71 3.87 5.48
Model 1 Q1

5% 4.32 6.87 9.25

10% 4.26 18.4 52.3
S1

5% 6.26 26.3 78.5

10% 2.96 4.58 6.97
Q2

5% 4.92 6.95 10.7

10% 11.3 37.7 104
S2

5% 16.9 51.9 142

10% 1.84 2.26 3.24
Model 2 Q1

5% 2.82 3.87 5.05

10% 4.07 13.7 35.9
S1

5% 5.53 19.5 47.5

10% 2.44 3.25 4.30
Q2

5% 4.21 5.03 6.55

10% 9.36 30.1 75.7
S2

5% 13.0 40.5 110

10% 1.54 1.72 1.88
Model 3-Model 6 Q1

5% 2.48 2.49 2.87

10% 3.05 10.8 27.3
S1

5% 4.40 13.5 34.5

10% 1.50 1.78 1.98
Q2

5% 2.35 2.75 3.17

10% 7.19 19.8 47.9
S2

5% 9.01 23.7 56.7

Table D. The percentiles of the two-way spillover tests for T=300. The numbers represent the critical values of the
test

M

Model Statistic Levels 1 5 15

10% 1.86 2.57 3.51
Model 7 Q1

5% 3.43 4.52 6.48

10% 3.23 14.2 38.6
S1

5% 5.16 19.7 52.7

10% 2.55 3.30 4.47
Q2

5% 4.33 5.32 7.86

10% 9.22 29.7 75.2
S2

5% 15.3 40.5 97.2

10% 1.04 1.27 1.55
Model 8-Model 12 Q1

5% 1.83 1.98 2.38

10% 2.67 9.76 23.8
S1

5% 3.83 11.9 28.4

10% 1.34 1.61 1.78
Q2

5% 2.48 2.56 2.67

10% 6.85 18.8 45.7
S2

5% 9.25 23.33 51.9
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Table E. The percentiles of the two-way spillover tests for T=1000. The numbers represent the critical values of
the test

M

Model Statistic Levels 1 5 15

10% 2.71 3.87 5.48
Model 7 Q1

5% 4.32 6.87 9.25

10% 4.26 18.4 52.3
S1

5% 6.26 26.3 78.5

10% 2.96 4.58 6.97
Q2

5% 4.92 6.95 10.7

10% 11.3 37.7 104
S2

5% 16.9 51.9 143

10% 1.54 1.72 1.88
Model 8-Model 12 Q1

5% 2.48 2.49 2.87

10% 3.05 10.8 27.3
S1

5% 4.40 13.5 34.5

10% 1.50 1.78 1.98
Q2

5% 2.35 2.75 3.17

10% 7.19 19.8 47.9
S2

5% 9.01 23.6 56.7

Table F. The size of the test for T=300. The numbers represent the empirical probability of rejection of the
null-hypothesis

M

Model Statistic Levels 1 5 15

10% 0.08 0.08 0.10
Model 1 Q1

5% 0.04 0.04 0.05

10% 0.09 0.08 0.10
S1

5% 0.04 0.04 0.05

10% 0.10 0.11 0.11
Q2

5% 0.06 0.07 0.07

10% 0.11 0.10 0.10
S2

5% 0.05 0.06 0.06

10% 0.11 0.09 0.09
Model 2 Q1

5% 0.06 0.05 0.04

10% 0.09 0.07 0.10
S1

5% 0.04 0.03 0.05

10% 0.09 0.09 0.08
Q2

5% 0.04 0.04 0.04

10% 0.12 0.12 0.12
S2

5% 0.07 0.06 0.06

10% 0.10 0.11 0.10
Model 3 Q1

5% 0.06 0.07 0.06

10% 0.08 0.11 0.10
S1

5% 0.04 0.07 0.05

10% 0.10 0.11 0.12
Q2

5% 0.05 0.07 0.06

10% 0.09 0.10 0.10
S2

5% 0.04 0.05 0.05
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Table G. The size of the test for T=300. The numbers represent the empirical probability of rejection the null-
hypothesis

M

Model Statistic Levels 1 5 15

10% 0.12 0.10 0.10
Model 4 Q1

5% 0.05 0.05 0.05

10% 0.07 0.07 0.07
S1

5% 0.04 0.04 0.04

10% 0.10 0.10 0.09
Q2

5% 0.05 0.04 0.04

10% 0.09 0.10 0.09
S2

5% 0.04 0.04 0.06

10% 0.09 0.10 0.10
Model 5 Q1

5% 0.07 0.07 0.05

10% 0.09 0.08 0.10
S1

5% 0.05 0.05 0.04

10% 0.11 0.10 0.11
Q2

5% 0.04 0.05 0.06

10% 0.11 0.11 0.10
S2

5% 0.05 0.04 0.05

10% 0.11 0.12 0.09
Model 6 Q1

5% 0.05 0.06 0.05

10% 0.08 0.10 0.10
S1

5% 0.05 0.06 0.05

10% 0.07 0.09 0.11
Q2

5% 0.05 0.06 0.06

10% 0.11 0.11 0.11
S2

5% 0.05 0.08 0.05


