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Department of statistics, Universidade Federal de Pernambuco, Recife, PE, Brazil

(Received: 24 July 2014 · Accepted in final form: 22 April 2015)

Abstract

The Weibull distribution has been highlighted in recent decades for its wide use in
important applied areas, Murthy (2004). The modified Weibull was proposed as a more
flexible alternative for modeling data, Lai et al. (2003). Zografos and Balakrishnan
(2009) pionnered a new class of distributions called the gamma-G with the advantage of
having only one parameter to transform an arbitrary distribution. This simple fact allows
us to explore a large number of skewed and non-skewed behaviors. In this paper, we
present the main properties of the gamma modified Weibull distribution. We provide the
moments, quantile function and other important measures. In addition, an application
to a real data set demonstrates the usefulness of the new model.

Keywords: Gamma-G family · Gamma Weibull modified distribution · Hazard rate
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1. Introduction

The Weibull distribution is a highly known distribution due to its utility in modeling
lifetime data where the hazard rate function (hrf) is monotone, Murthy et al. (2004).
Moreover, it has the exponential and Rayleigh distributions as special models. Then, it
may be adequate for fitting several types of data. When failure rates are modelled with the
property of been monotone, the Weibull distribution is a good tool due to the fact that it
may adapt negative and positive skewed density shapes. However, it can not be adopted
to fit data sets with non-monotone hrf. This is a delicate issue because it is known that
many data sets in survival analysis present bathtub and unimodal curves.

In 1980, Hjorth proposed a distribution with the special feature of being able to adapt
failure rates with bathtub and unimodal shape curves, Hjorth (1980). This distribution
had not the expected impact due to its complicated form. In recent years new classes of
distributions were proposed based on modifications of the Weibull distribution to cope
with bathtub hrf, Xie and Lie (1996). Among these, the exponentiated Weibull (EW)
Mudholkar et al. (1995), additive Weibull Xie and Lie (1996) , extended Weibull, Xie et
al. (2002), modified Weibull (MW) Lai et al. (2003), exponenciated Weibull, Mudholkar
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and Hudson (1996) and extended flexible Weibull Bebbington et al. (2007), among others.
A good review of these models is presented in Pham and Lai (2007).

The cumulative distribution function (cdf) of the Weibull distribution with scale pa-
rameter α > 0 and shape parameter β > 0 (for x > 0) is given by H(x;α, β) =
1 − exp(−αxβ). The corresponding probability density function (pdf) is given by
h(x;α, β) = βαxβ−1exp(−αxβ).

The Weibull distribution has been widely studied and used in several areas such as
survival analysis (Kollia et al., 1996), reliability engineering (Kapur and Lamberson, 1977),
weather forecasting (Stevens and Smulders, 1979), among others, since it is very flexible
and its pdf curve changes drastically with the values of β.

The MW distribution (with parameters α > 0, λ > 0 and β > 0), was pioneered by
Sarhan and Zaindin (2009) as a generalization of the Weibull distribution with cdf given
by Cordeiro et al. (2010a)

G(x;α, λ, β) = 1− exp{−αxβ exp(λx
)
}, x > 0, (1)

where α is a scale parameter and λ and β are shape parameters. The associated pdf is
given by

g(x, α, λ, β) = αxβ−1(β + λx) exp{λx− αxβ exp(λx)}, x > 0. (2)

We shall write Z ∼MW (α, λ, β) to denote that the random variable Z has pdf (2).
Zografos and Balakrishnan proposed, in Zografos and Balakrishnan (2009), a family of

univariate distributions generated by gamma random variables. For any baseline cdf G(x),
they defined the gamma-G distribution with pdf f(x) and cdf F (x) by

f(x) =
1

Γ(a)
[− log{1−G(x)}]a−1g(x), (3)

and

F (x) =
γ(a,− log{1−G(x)})

Γ(a)
=

1
Γ(a)

∫ − log{1−G(x)}

0
ta−1e−t dt, (4)

respectively, for a > 0, where g(x) = dG(x)/dx, Γ(a) =
∫∞

0 ta−1e−t dt and γ(a, z) =∫ z
0 t

a−1e−t dt. The gamma-G distribution has the same parameters of the G distribution
plus an additional shape parameter a > 0. Each new gamma-G distribution can be obtained
from a specified G distribution. For a = 1, the G distribution is a basic exemplar of the
gamma-G distribution with a continuous crossover towards cases with different shapes (for
example, a particular combination of skewness and kurtosis). For example, Cordeiro et al.
(2013) explores the properties of the gamma lomax distribution.

We define the gamma modified Weibull (GMW) density function by insterting (1) and
(2) in equation (3). Then, we obtain a new four-parameter pdf given by

f(x) =
1

Γ(a)
αxβ−1(β + λx){αxβ exp(λx)}a−1 exp{λx− αxβ exp(λx)}, (5)

The corresponding cdf follows from equations (1) and (4) as

F (x) =
γ(a, αxβ exp(λx))

Γ(a)
=

1
Γ(a)

∫ αxβ exp(λx)

0
ta−1e−t dt. (6)
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Henceforth, if X is a random variable with pdf (5), we write X ∼ GMW (a, α, λ, β). The
hrf of X reduces to

τ(x) =
αxβ−1(β + λx){αxβ exp(λx)}a−1 exp{λx− αxβ exp(λx)}

Γ(a)− γ(a, αxβ exp(λx))
. (7)

The GMW distribution can also be applied in several areas such as the Weibull and
MW distributions. Plots of the GMW pdf for selected parameter values are displayed in
Figure 2. Note that skewed distributions and left and right heavy tail distributions have
been obtained. Plots of the hrf are also displayed in Figure 3. We can note that, in general,
the hrf plot is a non-decreasing function.

GMW

GME GW GMR MW

GE GR MR

WME

E R

Figure 1. Relations between the GMW and other special models

We can obtain as special cases of the GMW distribution: the gamma Weibull (GW),
MW, gamma exponential (GE), gamma modified exponential (GME), gamma modified
Rayleigh (GMR), gamma exponential (GE), gamma Rayleigh (GR), modified Rayleigh
(MR), modified exponential (ME), exponential (E), Rayleigh (R) and Weibull distribu-
tions. Figure 1 presents the relation between these distributions and the GMW model. We
aim to prove that the GMW distribution may be used as a more general tool for modeling
data that have some of the Weibull characteristic shapes.

We are interested on the mathematical properties of the proposed distribution. In sec-
tions 2, we derive a power series expression for the pdf. Asymptotic behaviours, quantile
function (qf) and moments are presented in sections 3, 4 and 5, respectively. In section 6,
we present the maximum likelihood estimation for the new model. Finally, we provide an
application of the GMW model to a real data set in section 7.

2. Density expansion

Useful expanssions for the density and distribution functions can be derived using the con-
cept of exponentiated distribution in Zografos and Balakrishnan (2009), whose properties
have been widely studied in recent years. The generalized binomial coefficient with real
arguments is defined by (

x

y

)
=

Γ(x+ 1)
Γ(y + 1)Γ(x− y + 1)

.
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Figure 2. Plots of the GMW pdf for some parameter values

The quantity [− log{1−G(x)}]a−1 can be expanded as (For details here):

[− log{1−G(x)}]a−1 = (a− 1)
∞∑
k=0

(
k + a− 1

k

) k∑
j=0

(−1)j+kpj,k
a− 1− j

(
k

j

)
G(x)a+k−1, (8)

where the constants pj,k can be determined using the recursive formula:

pj,k =
1
k

k∑
m=1

{k −m(j + 1)} cm pj,k−m, (9)

for j ≥ 0, k = 1, 2, ..., where pj,0 = 1 and ck = (−1)k+1(k + 1)−1 for k ≥ 1.

Next, we can write G(x)a+k−1 as

G(x)a+k−1 = [1− exp{−αxβ exp(βx)}]a+k−1

=
∞∑
m=0

(−1)m
(
a+ k − 1

m

)
exp{−αmxβ exp(λx)}. (10)

http://functions.wolfram.com/ElementaryFunctions/Log/06/01/04/03/
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Figure 3. Plots of the hrf of X for some parameter values

Then, multiplying the last equation by the pdf of X, we have

G(x)a+k−1g(x) =
∞∑
m=0

(−1)m
(
a+ k − 1

m

)
(β + λx)αxβ−1 exp{−αmxβ exp(λx) + λx− αxβ exp(λx)}

=
∞∑
m=0

(−1)m

m+ 1

(
a+ k − 1

m

)
g(x; (m+ 1)α, λ, β).

Further,

f(x) =
1

Γ(a− 1)

∞∑
k=0

(
k + 1− a

k

) k∑
j=0

(−1)j+k
(
k
j

)
pjk

a− 1− j
×
∞∑
m=0

(−1)m

m+ 1

(
a+ k − 1

m

)
g(x; (m+ 1)α, λ, β)

=
1

Γ(a− 1)

∞∑
m=0

∞∑
k=0

k∑
j=0

(
k

j

)(
k + 1− a

k

)(
a+ k − 1

m

)
(−1)j+k+mpjk

(a− 1− j)(m+ 1)
g(x; (m+ 1)α, λ, β).

Finally, we can write

f(x) =
∞∑
m=0

wm g(x; (m+ 1)α, λ, β), (11)

where

wm =
1

Γ(a− 1)

∞∑
k=0

k∑
j=0

(−1)j+k+mpjk
(a− 1− j)(m+ 1)

(
k

j

)(
k + 1− a

k

)(
a+ k − 1

m

)
. (12)

Equation (11) reveals that the pdf of X can be expressed as an infinite weighted linear
combination of MW densities. So, several structural properties of the GMW distribution
can follow from (11) and those MW properties.
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3. Asymptotes and shapes

Here, we present some properties of the GMW distribution such as the asymptotic behavior
of the pdf (5) and hrf (7). We have the following results. For x→ 0,

• The pdf becomes

f(x) ∼ (β + λx)αxβ−1

Γ(a)
[1− exp{−αxβ exp(λx)}]a−1 exp{λx− αxβ exp(λx)};

• The cdf becomes

F (x) ∼ 1
Γ(a+ 1)

{−αxβ exp(λx)}a;

• The hrf becomes

τ(x) ∼ 1
Γ(a)

[1− exp{−αxβ exp(λx)}]a−1;

For x→∞,

• The pdf becomes

f(x) ∼ 1
Γ(a)

αxβ−1(β + λx){−αxβ exp(λx)}a−1 exp{λx− αxβ exp(xλ)};

• The cdf becomes

F (x) ∼ αxβ−1(β + λx) exp(λx);

• The hrf becomes

τ(x) ∼ 1
Γ(a)

{−αxβ exp(λx)}a−1[− exp{−αxβ exp(λx)}].

For large values of x, the hrf and pdf have the same behaviour. For small values of x, the
pdf behaves as its exponentiated version

4. Quantile function

Here, we derive the qf of the GMW distribution. We use the following result for n ≥ 1

( ∞∑
i=0

ai u
i

)n
=
∞∑
i=0

cn,i u
i,

where

cn,i = (ia0)−1
i∑

m=1

{m(n+ 1)− i} am cn,i−m,
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and cn,0 = an0 . The coefficient cn,i can be obtained in terms of cn,0, · · · , cn,i−1 and, therefore,
from the quantities a0, a1, · · · , ai. Simulating the values of X follow by considering V as a
gamma random variable with shape parameter a and scale parameter one. We have

X = G−1{1− exp(V )},

where G(x) denotes the MW cdf. Then, X follows the GMW distribution.
Further, the inverse function of F (x), can be expressed as

F−1(u) = G−1[1− exp{−Q−1(a, 1− u)}],

for 0 < u < 1, where Q−1(a, u) is the inverse function of Q(a, x) = 1 − γ(a, x)/Γ(a) (see,
for more details) and G−1(u) is given by

G−1(u) =
β

λ
W

(
λ
{
−α−1 log(1− u)

} 1
β

β

)
,

where the function W (x) is the log product function (see, for further details). The qf of X
reduces to

Q(u) =
β

λ
W

(
λ
{
α−1Q−1(a, 1− u)

} 1
β

β

)
, 0 < u < 1, (13)

Equation (13) allows us to obtain important quantiles by means of appropriate choices of
u. For example, the median of X is given by

Md(X) =
β

λ
W

(
λ
{
α−1Q−1(a, 1/2)

} 1
β

β

)

Expressions for the skweness and kurtosis may be obtained from (13). The Bowley’s
skewness is based on quartiles, Kenney and Keeping (1962) proposed the quantity

B =
Q(3/4)− 2Q(1/2) +Q(1/4)

Q(3/4)−Q(1/4)
,

whereas the Moors’ kurtosis Moors (1998) is based on octiles given by

M =
Q(7/8)−Q(5/8)−Q(3/8) +Q(1/8)

Q(6/8)−Q(2/8)
.

5. Moments

The kth moment of X can be expressed as

E(Xk) =
∞∑
m=0

wm

∫ ∞
0

xk g(x; (m+ 1)α, λ, β) dx =
∞∑
m=0

wm E(Y k
(m)), (14)

where Y(m) is a MW random variable with pdf g(x; (m + 1)α, λ, β). The importance of
this result is that the moments of the GMW distribution may be obtained as a linear

http://functions.wolfram.com/GammaBetaErf/InverseGammaRegularize
http://reference.wolfram.com/mathematica/ref/ProductLog.html
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combination of MW random variables moments. An infinite representation for the kth
moment of the MW distribution is obtained in Cordeiro et al. (2008) as follows

E(Y k
(m)) =

∞∑
i1,...,ik=1

Bi1,...,ik Γ(sk/β + 1)
{(m+ 1)α }sk/β+1

, (15)

where

Bi1,··· ,ir = bi1 . . . bik and sk = i1 + · · ·+ ik,

and

bi =
(−1)i+1i i−2

(i− 1)!

(
λ

β

)
,

Equations (14) and (15) can be used to determinate the moments of the GMW dis-
tribution without any restrictions on its four parameters; for instance, the first moment
becomes

E(X) =
∞∑
m=0

∞∑
i=1

wm
bi Γ(i/β + 1)

{ (m+ 1)α }i/β+1

6. Maximum likelihood estimation

Here, we examine the estimation of the parameters by maximum likelihood and per-
form inference for the GMW distribution. Let X1, . . . , Xn be a random sample from
X ∼ GMW(a, α, λ, β) with observed values x1, . . . , xn and let θ = (a, α, λ, β)T be the
vector of the parameters. The log-likelihood function for θ reduces to

`(θ) =
n∑
i=1

{αxβ−1
i (β+λx)}+{λx−αxβi exp(λxi)}+(a−1)

n∑
r=1

log
{
αxβi exp(λx)

}
−n log{Γ(a)}.

(16)
The score vector is U(θ) = (∂`/∂a, ∂`/∂α, ∂`/∂k, ∂`/∂b)T . The score components follow
by differentiating (16) as

∂`(θ)
∂a

=
n∑
i=1

log{αxβi exp(λxi)} − nψ(a),

∂`(θ)
∂α

=
n∑
i=1

a− αβxi exp(λxi)
α

,

∂`(θ)
∂β

=
n∑
i=1

log(xi) (β + λx){a− αxβ exp(λx)}+ 1
β + λx

,

∂`(θ)
∂λ

=
n∑
i=1

xi

[
a+ αxβi {−exp(λxi)}+

1
β + λxi

]
,
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where ψ(a) is the digama function. The maximum likelihood estimates (MLEs) of the
parameters can be are obtained numerically by equating simultaneously these equations
to zero. Then, we obtain the solutions by numerical methods due to the fact that these
expressions do not have closed-form. For interval estimation and hypothesis tests on the
model parameters, we require the observed information matrix K(θ) = {−κrs}, where
κrs = ∂2l(θ)/∂θr ∂θs and θr, θs ∈ {a, β, λ, α}, whose elements can be computed numeri-
cally.

7. Application

In this section, we present an application of the GMW to a real data set. We compare the
results of fitting the GMW, the sub-models GW and MW, and the five-parameter beta
modified Weibull (BMW) distribution proposed in Cordeiro et al. (2010b). We consider
an uncensored data set corresponding to failure times for a particular windshield model
including 88 observations that are classified as failed times of windshields. These data were
previously study by Murthy et al. (2004). The data are:

0.040 1.866 2.385 3.443 0.301 1.876 2.481 3.467 0.309 1.899 2.610
3.478 0.557 1.911 2.625 3.578 0.943 1.912 2.632 3.595 1.070 1.914
2.646 3.699 1.124 1.981 2.661 3.779 1.248 2.010 2.688 3.924 1.281
2.038 2.820 3.000 4.035 1.281 2.085 2.890 4.121 1.303 2.089 2.902
4.167 1.432 2.097 2.934 4.240 1.480 2.135 2.962 4.255 1.505 2.154
2.964 4.278 1.506 2.190 3.000 4.305 1.568 2.194 3.103 4.376 1.615
2.223 3.114 4.449 1.619 2.224 3.117 4.485 1.652 2.229 3.166 4.570
1.652 2.300 3.344 4.602 1.757 2.324 3.376 4.663

Table 1 lists the MLEs for the model parameters of the fitted distributions. The model
selection is carried out using the Cramér-von Mises (W ∗) and Anderson-Darling (A∗)
statistics described in details by Chen and Balakirshnan (1995). In general, the smaller
the values of the statistics W ∗ and A∗, the better the fitted model to the data.
All numerical evaluations such as the maximization of the likelihood function and the plots
are carried out using the R software, see R Core Team (2012), particularly the calculation
of the goodness of fit statistics were made using the R package detailed in Diniz and Barros
(2013). Since the values of the W ∗ an A∗ statistics are smaller for the GMW distribution
compared with those values of the other models, we conclude that the new distribution is
a very competitive model to the current data.

Further plots of the estimated pdfs of the GMW, GW and BMW models fitted to these
data are displayed in Figure 4. They indicate that the GMW distribution is superior to
the other distributions in terms of model fitting.

This indicates that the proposed GMW distribution produces better fit to the data than
its sub-models and the BMW distribution.
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Table 1. MLEs (standard erros in parentheses) and the statistics A∗ and W ∗

Estimates Statistic
Distribution α β λ a b A∗ W ∗

GMW 7.2255 0.0768 0.2079 13.5809 - 0.4741 0.0626
(0.0452) (0.0005) (0.00008) (0.1539) -

GW 0.0064 3.8247 - 0.4918 - 0.5659 0.0695
(0.00001) (0.0123) - (0.0002) -

MW 0.0637 1.1553 0.4932 - - 0.7053 0.1067
(0.00004) (0.0064) (0.0023) - -

BMW 1.0940 0.1289 0.6004 4.9769 0.1823 0.4848 0.0683
(0.0072) (0.0032) (0.0005) (1.3616) (0.0003)
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Figure 4. Fitted distributions

8. Concluding remarks

The modified Weibull (MW) distribution, a flexible extension of the Weibull distribution,
is widely used to model lifetime data Sarhan and Zaindin (2009). We propose the gamma
modified Weibull (GMW) distribution with the aim to extend the MW distribution in-
troducing one extra parameter. This extension yields a broader class of hazard rate and
density functions. We provide a mathematical treatment of the new distribution including
expansions for the cumulative and density functions. We obtain the ordinary moments,
quantile function, the asymptotes, shape and generating function. The estimation of the
model parameters is approached by maximum likelihood. An application to a real data set
indicates that the fit of the new model is superior to the fits of its main sub-models and
the beta modified Weibull (BMW) model. We expect that the proposed model may be an
interesting alternative model for a wider range of statistical research.
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