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Abstract

We derive a wide class of geometric representation formulas for multivariate skewed
elliptically contoured distributions and show in a unified geometric way how some of
them are related to stochastic representations known in the literature. Furthermore,
we make use of the geometric measure representation to explore independence between
collections of components of accordingly distributed random vectors, and to investigate
contour plots of skewed normal densities from a geometric viewpoint.
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1. Introduction

Over the last decade, the field of multivariate skewed distributions was a very vibrant
research area. The first well studied types of such distributions are the multivariate skewed
normal distributions that are considered in Azzalini and Dalla Valle (1996) and Gupta et al.
(2004). Later on, many authors tackled different approaches to generalize this distribution.
A very important generalization for the purposes of the present paper is the class of
multivariate skewed elliptical distributions introduced in Branco and Dey (2001). Because
of the vast development of the area of skewed distributions, several authors as those in
Arellano-Valle and Azzalini (2006), Arellano-Valle et al. (2006) and Arellano-Valle and
Genton (2010) put a lot of effort into finding as general and systematic approaches to it
as possible.

Recently, the authors of Günzel et al. (2012) provided an approach to the univariate
skewed normal and univariate skewed elliptical distributions that unifies several known
representations of these distributions from a certain geometric point of view. At the same
time, this viewpoint makes it possible to establish a whole class of new such representations.
The aim of the present paper consists in extending this geometric way of dealing with
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skewed distributions to the multivariate case, and in drawing first consequences from it.
To be more concrete, in the following, we denote by Φk(·; g(k)) a continuous spherical

distribution on the Borel σ-field B(k) in the Euclidean space Rk having the density gener-
ator g(k), and by SEk(ξ,Ω, δ; g(k+1)) a member of the class of continuous skewed elliptical
distributions on B(k) as it was introduced in Branco and Dey (2001). The results in Günzel
et al. (2012) show the following. If Z ∼ SE1(0, 1, δ; g(2)), then its cumulative distribution
function (cdf) allows each of the representations

P (Z < z) = 2Φ2(C(a, b, c, d, e); g(2)), (1)

where the cone

C(a, b, c, d, e) = H1(a, b) ∩H2(c, d, e)

is the intersection of two half spaces of R2,

H1(a, b) = {(x, y)T ∈ R2 : ax+ by < 0}

and

H2(c, d, e) = {(x, y)T ∈ R2 : cx+ dy < e},

and where the parameters a, b, c, d and e fulfill the equations

z =
e√

c2 + d2
(2)

and

δ = − ac+ bd√
a2 + b2

√
c2 + d2

. (3)

In other words, if (X,Y ) ∼ Φ2(·; g(2)) then for all parameters satisfying equations (2)
and (3),

P (Z < z) = 2P (aX + bY < 0, cX + dY < e),

and

P (Z < z) = P (cX + dY < e | aX + bY < 0).

Notice that for every given pair (δ, z), there are uncountably many solutions (a, b, c, d, e)
of equations (2) and (3) corresponding to orthogonally transformed cones C(a, b, c, d, e),
hence each giving rise to its own representation formula of the cdf of a one-dimensional
skewed elliptically distributed random variable. Let

C2(δ, z) = {C(a, b, c, d, e) : a, b, c, d, e satisfy (2) and (3)}

be the class of cones whose two-dimensional spherical measure coincides with (1/2)·P (Z <
z) where Z ∼ SE1(0, 1, δ; g(2)). Then C2(δ1, z1) ∩ C2(δ2, z2) = ∅ if (δ1, z1) 6= (δ2, z2). The
value of the parameter δ in (3) is equal to that of the cosine of the angle between the
vectors (−a,−b)T and (c, d)T . This angle can be considered as the opening angle of the
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cone C(a, b, c, d, e). Furthermore, the absolute value of the parameter z in (2) is equal to
that of the distance from the line ∂H2(c, d, e) to the origin. The origin always belongs
to the boundary of H1(a, b). Note that we can also write H2(c, d, e) = {(x, y)T ∈ R2 :

c√
c2+d2

x+ d√
c2+d2

y < z} and therefore

C(a, b, c, d, e) = {(x, y)T ∈ R2 : aT0 ( xy ) < 0, aT1 ( xy ) < z}, (4)

where aT0 = (a, b) and aT1 = ( c√
c2+d2

, d√
c2+d2

) is a normalized vector.

The proof of the above statement is immediate from the proofs of Theorems 1 and 2 in
Günzel et al. (2012) and the comments given there at the end of Section 4. The results of
Günzel et al. (2012) can now be considered as special cases of the present formulation by
suitably choosing g(2), and δ = ν/

√
1 + ν2.

To give a first impression of how the representation formula (1) can be used, we derive
with its help a specific representation for skewed elliptically distributed random variables
based on the maximum of two jointly elliptically contoured distributed random variables.

It was demonstrated in Günzel et al. (2012) that different representations of skewed
elliptically contoured distributions can be derived in the same unified geometric way and
it will be shown later in the present paper that this unified way of proving stochastic
representations works in higher dimensions, too.

Before we go further, we recall that a continuous k-dimensional random vector Y is called
elliptically contoured distributed with location parameter µ ∈ Rk, symmetric regular form
or scale parameter matrix Σ ∈ Rk×k and density generator g(k) : R+ → R+ if it has the
density

f(y;µ,Σ, g(k)) = |Σ|−1/2g(k)((y − µ)TΣ−1(y − µ)), y ∈ Rk.

We write Y ∼ ECk(µ,Σ; g(k)) for short. For a treatment of elliptically contoured distri-
butions, we refer to Fang et al (1990).

In the following, we show that if (X,Y )T ∼ EC2(02,
(

1 ρ
ρ 1

)
; g(2)) then max{X,Y } ∼

SE1(0, 1, {1/2(1 − ρ)}1/2; g(2)) by making use of the cdf representation (1) of the uni-
variate skewed elliptical distribution. To this end, we define the diagonal matrix D =
diag(1/

√
1 + ρ, 1/

√
1− ρ) and the orthogonal matrix O = (1/

√
2)
(

1 1
1 −1

)
and note that

the transformed vector (U, V )T = DO(X,Y )T satisfies

(U, V )T ∼ Φ2(·; g(2)).

Since, first, P (max{X,Y } < t) can be written as P ((X,Y )T ∈ B(t)) with B(t) =
{(x, y)T ∈ R2 : x < t, y < t}, and next, (X,Y )T ∈ B(t) holds iff (U, V )T ∈ DOB(t), we
obtain

P (max{X,Y } < t) = Φ2(DOB(t); g(2)), t ∈ R. (5)

Note that DOB(t)

=

{(
x
y

)
: (

1 + ρ

2
)1/2x+ (

1− ρ
2

)1/2y < t, (
1 + ρ

2
)1/2x− (

1− ρ
2

)1/2y < t

}
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is a cone in R2 that is symmetric w.r.t. the x-axis. With the notation

B̃(t) =

{
(x, y)T ∈ R2 : y > 0, (

1 + ρ

2
)1/2x+ (

1− ρ
2

)1/2y < t

}
,

we have DOB(t) = B̃(t) ∪
[(

1 0
0 −1

)
B̃(t)

]
and B̃(t) ∩

[(
1 0
0 −1

)
B̃(t)

]
= ∅, where the origin

belongs to the topological boundary of the cone B̃(t) and B̃(t) denotes the closure of B̃(t).
Thus

Φ2(DOB(t); g(2)) = Φ2(B̃(t); g(2)) + Φ2(
(

1 0
0 −1

)
B̃(t); g(2)).

Therefore,

Φ2(DOB(t); g(2)) = 2Φ2(B̃(t); g(2)). (6)

Here, B̃(t) is the cone C(a, b, c, d, e) with parameters a = 0, b = −1, c = (1+ρ
2 )1/2, d =

(1−ρ
2 )1/2 and e = t. Inserting these values into (2) and (3), we obtain z = t and δ =

{1/2(1− ρ)}1/2 and from representation (1) then follows that

2Φ2(B̃(t); g(2)) = P (Z < t), (7)

where Z ∼ SE1(0, 1, {1/2(1−ρ)}1/2, g(2)). Hence, on combining (5), (6) and (7), we observe
that

P (max{X,Y } < t) = P (Z < t), t ∈ R,

i.e. the maximum statistic follows an univariate skewed elliptical distribution with param-
eters (ξ,Ω) = (0, 1) and skewing parameter δ = {1/2(1 − ρ)}1/2 if the two-dimensional
elliptically contoured sample distribution has location parameter µ = 02 and its scale

parameter matrix Σ is actually a correlation matrix, Σ =
(

1 ρ
ρ 1

)
. This explicit result

may be also derived from Proposition 10 in Azzalini and Capitanio (2003) concerning
classes of distributions, and its proof given there. Corresponding results assigning the
one-dimensional skewed normal or skewed spherical distribution to the maximum dis-
tribution of two-dimensional Gaussian or spherical vectors are due to Loperfido et al.
(2007), Arellano-Valle and Genton (2008), and Jamalizadeh and Balakrishnan (2010). For
certain generalizations of such results that are based upon a representation of skewed ln,p-
symmetric distributions in Arellano-Valle and Richter (2012), we refer to Batún-Cutz et
al. (2012) and Müller and Richter (2014).

In the first proof of the main result of the present paper, we follow the approach in Fang
(2003) of defining a skewed elliptically contoured distribution by stating its density. We say
that a k-dimensional random vector Z is distributed according to the skewed elliptically
contoured distribution SEk(ξ,Ω, δ; g(k+1)), where ξ ∈ Rk, δ ∈ Rk, Ω is a symmetric and
positive definite (s.p.d.) k×k matrix, δ and Ω fulfill δTΩ−1δ < 1, and g(k+1) : R+ → R+ is
the density generator of an elliptically contoured distribution in Rk+1, if it has the density

fZ(z) = 2|Ω|−1/2

∫ λT (z−ξ)

−∞
g(k+1)(s2 + (z − ξ)TΩ−1(z − ξ)) ds, (8)
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where

λ = (1− δTΩ−1δ)−1/2Ω−1δ. (9)

We mention here that the distribution SEk(ξ,Ω, δ; g(k+1)) was originally introduced
in Branco and Dey (2001) in another way and refer for details to Proposition 2.3 in
Section 2. Additionally, throughout the rest of the paper, we assume that the matrix Ω is
a correlation matrix. Note that our assumptions imply that

(
1 δT

δ Ω

)
is positive definite and

that δ ∈ (−1, 1)×k. We will prove this in Appendix A.
The main aim of the present paper is to establish a multivariate generalization of the

results in Günzel et al. (2012) as they were stated in the first part of this section. For this
purpose, we generalize the class of cones C2(δ, z) to a proper multivariate version. This
will be done in Section 2. Following this line, we present then in Theorem 2.1 a multi-
variate extension of the representation (1). In Section 3, we investigate relations between
the geometric measure representations proved in the present paper and some stochastic
representations of skewed elliptically contoured distributed random vectors already known
from the literature. Actually, we show that the latter may be derived in a unified geo-
metric way from the new representation in Theorem 2.1. In Section 4, we further exploit
the geometric representation formula in Theorem 2.1. First, we formulate geometrically
stated conditions for the independence of collections of components of a skewed normal
random vector. Next, the application of Theorem 2.1 will be extended to a greater class
of cones through symmetrization. Finally, we give some new interpretations for density
contour plots of two-dimensional skewed normal vectors.

2. Main result

As announced, we now introduce more general classes of cones than the one considered in
Section 1. The cones studied in this section are intersections of k+1 half spaces from Rk+1,
where at least one of them contains the origin in its boundary. Each of the classes of cones
C(z) will be used to represent the cdf of the k-dimensional skewed elliptically contoured
distribution SEk(0,Ω, δ; g(k+1)) by the values 2Φk+1(C(z); g(k+1)), z ∈ Rk. To this end,
we specify the cones that are needed to formulate a suitable multivariate generalization of
formula (1). The half space

H0(a0) = {y ∈ Rk+1 : aT0 y < 0}, a0 ∈ Rk+1,

contains the origin in its boundary while the boundaries of the half spaces

Hi(ai, zi) = {y ∈ Rk+1 : aTi y < zi}, zi ∈ R, ai ∈ Rk+1, i = 1, ..., k,

do not contain the origin, in general. The vectors a0, ...,ak are assumed to be linearly in-
dependent and the vectors a1, ... ,ak are assumed to satisfy the normalization assumption

||ai|| = 1, i = 1, ..., k.

One of the consequences is that in the case k = 1 equation (2) reads as z = e. The cones
of interest are now

C(a0,a1, ...,ak; z) = H0(a0) ∩ (

k⋂
i=1

Hi(ai, zi)), z ∈ Rk.
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We say that a cone C(a0,a1, ...,ak; z) belongs to the class Ck+1(Ω, δ, z), where the
parameters δ = (δ1, ..., δk) and z belong to Rk and Ω = (ωi,j)i,j=1,...,k is a k × k s.p.d.

correlation matrix, and δTΩ−1δ < 1, if the vectors a0, ...,ak satisfy the equations

δi =
−aT0 ai
||a0||

, i = 1, ..., k,

ωi,j = ωj,i = aTi aj , i < j, i, j = 1, ..., k.

(10)

If φ0,i ∈ (0, π) denotes the angle between ∂H0(a0) and ∂Hi(ai, zi), i = 1, ..., k, and
φi,j ∈ (0, π) is the angle between ∂Hi(ai, zi) and ∂Hj(aj , zj), i, j = 1, ..., k then (10)
means

δi = cos(φ0,i) and ωi,j = ωj,i = − cos(φi,j), i < j, i, j = 1, ..., k.

In case of k = 1, Ω = 1 is the only admissible value for Ω. Note that C2(1, δ, z) is equal
to C2(δ, z) from Section 1.

In the following, we generalize representation (1) to the multivariate setting. The in-
equality u < v, where u,v ∈ Rk, is to be read componentwise.

Theorem 2.1 If Z ∼ SEk(0,Ω, δ; g(k+1)) then, for all cones C(a0,a1, ...,ak; z) from the
class Ck+1(Ω, δ, z), the cdf of Z allows the representation

P (Z < z) = 2Φk+1(C(a0,a1, ...,ak; z); g(k+1)), z ∈ Rk. (11)

One may say that the parameters of the cdf of the skewed elliptically contoured dis-
tribution are expressed in this theorem in terms of geometric parameters of the cones
C(a0,a1, ...,ak; z), and vice versa. Similarly to equation (4), we can write

C(a0,a1, ...,ak; z) = {y ∈ Rk+1 : aT0 y < 0, aT1 y < z1, ...,a
T
k y < zk}. (12)

The absolute value of zi is the distance of ∂Hi(ai, zi) from the origin, i = 1, ..., k. Here,
min{‖w‖ : aTw = z} = |z|/‖a‖ is the distance of the hyperplane {w ∈ Rk+1 : aTw = z}
from the origin. Furthermore, we have the above stated relations following from (10),
between the distribution parameters δ and Ω and the angles between the hyperplanes that
are boundaries of the cone.

Classes Ck+1(Ω, δ, z) corresponding to different parameters (Ω, δ, z) are disjoint. For
SEk(0,Ω, δ; g(k+1)) and z being fixed, there are uncountably many cones generated by
orthogonal cone transformations which satisfy the representation (11).

Lemma 2.2 If C(a0,a1, ...,ak; z) and C(a∗0,a
∗
1, ...,a

∗
k; z) are (k + 1)-dimensional cones

which are elements of the same class Ck+1(Ω, δ, z) then there is an orthogonal transforma-
tion O such that

C(a0,a1, ...,ak; z) = OC(a∗0,a
∗
1, ...,a

∗
k; z).

Proof We define ã0 := a0/||a0|| and ã∗0 := a∗0/||a∗0|| and note that the sets {ã0,a1, ...,ak}
and {ã∗0,a∗1, ...,a∗k} are both bases of Rk+1. Therefore, there exists a unique linear map
f : Rk+1 → Rk+1 such that ã0 = f(ã∗0) and ai = f(a∗i ), i = 1, ..., k. By using the
assumptions of Lemma 2.1, it can be shown that the map f is orthogonal, i.e. for any pair of
vectors v,w ∈ Rk+1 holds < f(v), f(w) >=< v,w > where < ·, · > denotes the standard
scalar product in Rk+1. Hence, there is an orthogonal matrix O such that ã0 = Oã∗0 and
ai = Oa∗i , i = 1, ..., k. It follows that C(a0,a1, ...,ak; z) = OC(a∗0,a

∗
1, ...,a

∗
k; z). �
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It is one of the aims of the present note to make as clear as possible the relations
between the well established techniques from the area of skewed distributions and the new
techniques from the geometric approach. In this sense, we present in the following two
alternative proofs of Theorem 2.1 in order to show different aspects of these relations. The
first proof uses essentially the orthogonal invariance property in Lemma 2.2. The second
one shows that one can also start from the stochastic representation of skewed elliptical
random vectors that was basically used in Branco and Dey (2001).

Proof [Proof 1 of Theorem 2.1] It was shown in Azzalini and Capitanio (1999) that if Ω
is a correlation matrix then (9) is equivalent to

δ =
Ωλ

(1 + λTΩλ)1/2
. (13)

Let us consider a random vector(
X0

Y

)
∼ ECk+1(0k+1,

(
1 0Tk
0k Ω

)
; g(k+1)) (14)

where X0 and Y take values in R and Rk, respectively. It follows from (8), (14), and∣∣∣ 1 0T
k

0k Ω

∣∣∣ = |Ω| that

P (Z < z) = 2|Ω|−1/2

∫
y<z

∫ λTy

−∞
g(k+1)(s2 + yTΩ−1y) ds dy

= 2|Ω|−1/2

∫
y<z

∫ λTy

−∞
g(k+1)((s,yT )

(
1 0Tk
0k Ω

)−1(
s
y

)
) ds dy

= 2P (Y < z, X0 < λ
TY ).

Because Ω is regular, there is a regular k × k-matrix C such that

Ω = CCT . (15)

It follows from the properties of elliptically contoured distributions that if Y ∗ := C−1Y
then (

X0

Y ∗

)
=

(
1 0Tk
0k C

−1

)(
X0

Y

)
∼ Φk+1(·; g(k+1)).

Let

A∗0(z) := {(x0,y
T )T ∈ Rk+1 : x0 < λ

Ty, y < z}, z ∈ Rk,

then

2P (Y < z, X0 < λ
TY ) = 2P ((X0,Y

T )T ∈ A∗0(z))

= 2P
(

(X0,Y
∗T )T ∈ A0(z)

)
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where

A0(z) =

(
1 0Tk
0k C

−1

)
A∗0(z) =

{(
x0

y∗

)
∈ Rk+1 : x0 < λ

TCy∗, Cy∗ < z

}
.

Hence,

P (Z < z) = 2Φk+1(A0(z); g(k+1)). (16)

The set A0(z) allows the representation

A0(z) =
{
y ∈ Rk+1 : a∗0

Ty < 0, a∗1
Ty < z1, ..., a

∗
k
Ty < zk

}
where a∗0

T = (1, −λTC), a∗i
T = (0, eTi C), i = 1, ..., k, and ei denotes the ith usual unit

vector of Rk. The vectors a∗0,a
∗
1, ...,a

∗
k are linearly independent because C is a full-rank

matrix. Furthermore, we have the following equations which together with (13), prove that
the vectors a∗i , i = 0, 1, ..., k, satisfy (10):

−a∗0Ta∗i
||a∗0||

=
λTCCTei

(1 + λTCCTλ)1/2
=

λTΩei

(1 + λTΩλ)1/2
= δi, i = 1, ..., k,

a∗i
Ta∗j = eTi CC

Tej = eTi Ωej = ωi,j , i, j = 1, ..., k,

thus

||a∗i ||2 = ωi,i = 1, i = 1, ..., k.

Hence, the cone A0(z) belongs to the class Ck+1(δ,Ω, z). Because of Lemma 1, every cone
C(a0,a1, ...,ak; z) from the same class can be mapped orthogonally onto A0(z). Because
of the orthogonal invariance of the spherical distribution Φk+1(·; g(k+1)),

Φk+1(C(a0,a1, ...,ak; z); g(k+1)) = Φk+1(A0(z); g(k+1)). (17)

The claim of Theorem 2.1 now follows on combining (16) and (17). �

Before we present the announced alternative proof of Theorem 2.1, we recall the stochas-
tic representation of skewed elliptically contoured random vectors that was basically used
in Branco and Dey (2001). Here, L(.|.) denotes the conditional probability law.

Proposition 2.3 If

(
X0

Y

)
∼ Elk+1(

(
0
ξ

)
,

(
1 δT

δ Ω

)
; g(k+1)) then the skewed elliptically

contoured distribution allows the conditional distribution representation

SEk(ξ,Ω, δ; g(k+1)) = L(Y |X0 > 0).

In Branco and Dey (2001), the statement of Proposition 2.3 was actually the definition
for the skewed elliptical distribution, and the density representation (8) was derived from
it. The following second proof of Theorem 2.1 makes use of Proposition 2.3.

Proof [Proof 2 of Theorem 2.1] Let C(a0,a1, ...,ak; z) be a cone from the class
Ck+1(δ,Ω, z). We define the (k + 1) × k-matrix A by A =

(
a1 a2 . . . ak

)
and assume
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that

(
U0

U

)
∼ Φk+1(·; g(k+1)) where U0 and U take values in R and Rk, respectively. Note

that

Φk+1(C(a0,a1, ...,ak; z); g(k+1)) = P (AT
(
U0

U

)
< z,aT0

(
U0

U

)
< 0)

=
1

2
P (AT

(
U0

U

)
< z |aT0

(
U0

U

)
< 0)

=
1

2
P (AT

(
U0

U

)
< z | − aT0

||a0||

(
U0

U

)
> 0).

Hence, with the notation ã0 = − a0

||a0|| ,

2Φk+1(C(a0,a1, ...,ak; z); g(k+1)) = P (AT
(
U0

U

)
< z | ãT0

(
U0

U

)
> 0). (18)

It follows from the equations (10) that δ = AT ã0 and Ω = ATA. The properties of
elliptically contoured distributions ensure that(

ãT0
AT

)(
U0

U

)
∼ Elk+1(0k+1,

(
1 δT

δ Ω

)
; g(k+1)).

Finally, with X0 = ãT0

(
U0

U

)
and Y = AT

(
U0

U

)
, Proposition 2.3 yields

L

(
AT
(
U0

U

)
| ãT0

(
U0

U

)
> 0

)
= SEk(0k,Ω, δ, g

(k+1)). (19)

The claim of Theorem 1 follows on combining (18) and (19). �

3. Stochastic representations

It is known from the second proof of Theorem 2.1 that representation formula (11) can
be derived from the conditional distribution representation in Proposition 2.3. In this
section, we demonstrate how, vice versa, Theorem 2.1 can be used to derive this and other
representations. This way, we reprove in a unified geometric way several representations
of the skewed elliptically contoured distribution, including that of Proposition 2.3.

3.1 Representation based upon selection mechanism

In this subsection, we re-prove Proposition 2.3 by using Theorem 2.1. Thereby, we restrict
us to the special case that ξ = 0k and Ω is a correlation matrix. The case of arbitrary ξ can

be treated similarly by changing Y with Y −ξ. The matrix

(
1 δT

δ Ω

)
is assumed to be s.p.d.,

hence we can write

(
1 δT

δ Ω

)
= BBT with a certain non-singular (k + 1) × (k + 1)-matrix

B. We define

(
X∗0
Y ∗

)
:= B−1

(
X0

Y

)
, where

(
X0

Y

)
satisfies the assumptions of Proposition
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2.3. Because of the properties of elliptical distributions,(
X∗0
Y ∗

)
∼ Φk+1(·; g(k+1)).

Let

A∗2.3(z) := {(x0,y
T )T ∈ Rk+1 : x0 > 0, y < z}, z ∈ Rk.

We have

P (Y < z|X0 > 0) = 2P (Y < z, X0 > 0) = 2P ((X0,Y
T )T ∈ A∗2.3(z))

= 2P
(

(X∗0 ,Y
∗T )T ∈ A2.3(z)

)
,

where

A2.3(z) = B−1A∗2.3(z) =

{
B−1

(
x0

y

)
∈ Rk+1 : −x0 < 0, y < z

}
=

{(
x∗0
y∗

)
∈ Rk+1 :

(
−1 0Tk
0k Ik

)
B

(
x∗0
y∗

)
<

(
0
z

)}
.

We get the following intermediate result:

P (Y < z|X0 > 0) = 2Φk+1(A2.3(z); g(k+1)). (20)

The set A2.3(z) allows the representation

A2.3(z) =
{
y ∈ Rk+1 : aT0 y < 0, aT1 y < z1, ..., a

T
k y < zk

}
where aT0 = −eT1 B, aTi = eTi+1B, i = 1, ..., k, and ei denotes now the ith unit vector of

Rk+1. The vectors a0,a1, ...,ak are linearly independent because the matrix B is of full
rank. Furthermore, the following equations show that the parameter vectors a0,a1, ...,ak
satisfy (10):

−aT0 ai
||a0||

=
eT1 BB

Tei+1

(eT1 BB
Te1)1/2

=

eT1

(
1 δT

δ Ω

)
ei+1(

eT1

(
1 δT

δ Ω

)
e1

)1/2
=
δi
1
, i = 1, ..., k,

aTi aj = eTi+1BB
Tej+1 = eTi+1

(
1 δT

δ Ω

)
ej+1 = ωi,j , i, j = 1, ..., k,

thus

||ai||2 = ωi,i = 1, i = 1, ..., k.

Therefore, A2.3(z) is a cone from the class Ck+1(Ω, δ, z). Proposition 2.3 now follows
from (20) and Theorem 2.1.
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3.2 Representation based upon linear combination

The following stochastic representation of a skewed elliptically contoured random vector
was originally derived in another way in Azzalini and Capitanio (2003) and Fang (2003),
and in slightly different notation. In this subsection, we re-prove this result using Theorem
2.1.

Proposition 3.1 Let

(
X0

Y

)
∼ ECk+1(0k+1,

(
1 0Tk
0k Ψ

)
; g(k+1)), where Ψ is a s.p.d. k × k

correlation matrix. Further, let Zj = δj |X0| + (1 − δ2
j )

1/2Yj , j = 1, ..., k, where δ =

(δ1, ..., δk)
T ∈ (−1, 1)k, and ∆ = diag(δ1, ..., δk), and Z := (Z1, ..., Zk)

T = |X0|δ + (Ik −
∆2)1/2Y . Then

Z ∼ SEk(0k,Ω, δ; g(k+1)),

where

Ω = δδT + (Ik −∆2)1/2Ψ(Ik −∆2)1/2. (21)

To prove Proposition 3.1, we use that the matrix Ψ is s.p.d., so that Ψ = CCT with cer-
tain regular k×k matrix C. Let Y ∗ := C−1Y . It follows from the properties of elliptically
contoured distributions that(

X0

Y ∗

)
=

(
1 0Tk
0k C

−1

)(
X0

Y

)
∼ Φk+1( · ; g(k+1)).

With

A∗3.1(z) := {(x0,y
T )T ∈ Rk+1 : δ|x0|+ (Ik −∆2)1/2y < z}, z ∈ Rk,

we observe that

P (δ|X0|+ (Ik −∆2)1/2Y < z) = P ((X0,Y
T )T ∈ A∗3.1(z))

= P
(

(X0,Y
∗T )T ∈ Ã3.1(z)

)
,

where

Ã3.1(z) =

(
1 0Tk
0k C

−1

)
A∗3.1(z)

=
{

(x0,y
T )T ∈ Rk+1 : δ|x0|+ (Ik −∆2)1/2Cy < z

}
=
{

(x0,y
T )T ∈ Rk+1 : x0 ≥ 0, δx0 + (Ik −∆2)1/2Cy < z

}
∪ {(x0,y

T )T ∈ Rk+1 : x0 < 0, −δx0 + (Ik −∆2)1/2Cy < z}.

(22)

If

A3.1(z) =
{

(x0,y
T )T ∈ Rk+1 : x0 > 0, δx0 + (Ik −∆2)1/2Cy < z

}
,
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we have Ã3.1(z) = A3.1(z)∪
[(−1 0

0 Ik

)
A3.1(z)

]
and A3.1(z)∩

[(−1 0
0 Ik

)
A3.1(z)

]
= ∅. There-

fore,

P
(

(X0,Y
∗T )T ∈ Ã3.1(z)

)
= Φk+1(Ã3.1(z))

= Φk+1(A3.1(z)) + Φk+1(
(−1 0

0 Ik

)
A3.1(z))

= 2Φk+1(A3.1(z)).

Hence,

P (δ|X0|+ (Ik −∆2)1/2Y < z) = 2Φk+1(A3.1(z); g(k+1)). (23)

We can represent A3.1(z) as

A3.1(z) =
{
y ∈ Rk+1 : aT0 y < 0, aT1 y < z1, ..., a

T
k y < zk

}
where aT0 = (−1,0Tk ), aTi = (δi, (1− δ2

i )
1/2eTi C), i = 1, ..., k, and ei denotes here the ith

unit vector of Rk. The vectors a0,a1, ...,ak are linearly independent because the matrix
C is a full-rank matrix. Furthermore, we have the following equations which together with
(21) show that the parameter vectors a0,a1, ...,ak satisfy (10):

−aT0 ai
||a0||

=
δi
1

= δi, i = 1, ..., k,

aTi aj = δiδj + (1− δ2
i )

1/2eTi CC
Tej(1− δ2

j )
1/2

= δiδj + (1− δ2
i )

1/2eTi Ψej(1− δ2
j )

1/2

= δiδj + (1− δ2
i )

1/2ψi,j(1− δ2
j )

1/2, i, j = 1, ..., k,

and

||ai||2 = δ2
i + (1− δ2

i )ψi,i = δ2
i + (1− δ2

i ) = 1, i = 1, ..., k.

Hence, A3.1(z) is a cone from the class Ck+1(Ω, δ, z), where Ω is given by (21). Propo-
sition 3.1 now follows from (23) and Theorem 2.1.

3.3 Discussion

It was shown so far in this section that some of the known representations of skewed
elliptically contoured distributions can be derived in a unified geometric way from Theorem
2.1. We want to add a few more words on the opposite direction, that is how Theorem 2.1
can be derived from any of these known representations, too. The first proof of Theorem 2.1
essentially makes use of representation (16) for the cdf of the skewed elliptically contoured
distribution. As a matter of fact, one can also use Proposition 2.3 together with (20) in
order to get

P (Z < z) = 2Φk+1(A2.3(z); g(k+1)),
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and can use this last equation instead of (16) in the first proof of Theorem 2.1. Then, for
proving the claim of Theorem 2.1 in the same way as in the first proof of Theorem 2.1,
one can use of the fact that A2.3(z) is a special cone from the class Ck+1(Ω, δ, z). After
that, Lemma 2.2 and the orthogonal invariance property of Φk+1(·; g(k+1)) apply.

Similarly, one can prove Theorem 2.1 starting from Proposition 3.1. This proposition
together with (23) applies to show P (Z < z) = 2Φk+1(A3.1(z); g(k+1)). One can use now
this equation instead of (16) in the first proof of Theorem 2.1, and can perform then the
same reasoning as above by exploiting the fact that A2(z) is a special cone from the class
Ck+1(Ω, δ, z).

Actually, one can use any (possibly yet even unknown) representation of the skewed
elliptical distribution that implies

P (Z < z) = 2Φk+1(C(a0,a1, ...,ak; z); g(k+1))

for just one special cone C(a0,a1, ...,ak; z) from the class Ck+1(Ω, δ, z). Then, the exten-
sion of the claim of Theorem 2.1 to any cone from the class Ck+1(Ω, δ, z) follows from
Lemma 2.2.

4. Applications and examples

4.1 Describing independence

General conditions ensuring that sub-vectors of multivariate skewed normal vectors are
mutually independent, follow from Proposition 6 in Azzalini and Capitanio (1999). Here,
we show that formula (11) applies to derive geometrically stated conditions under which
such independence relations hold.

Remark 4.1 Let the cdf of the k-dimensional random vector Z satisfy repre-
sentation (11) with g(k+1) being the density generator of the normal distribu-
tion, and let Z be partitioned as Z = (Y T

1 , ...,Y
T
h )T where the sub-vectors

have dimensions m1, ...,mh, respectively, m1 + ... + mh = k. If the linear
spaces L(a0,a1, . . .am1

), L(am1+1,am1+2, . . . ,am1+m2
), L(am1+m2+1, . . . ,am1+m2+m3

),
. . . , L(am1+...+mh−1+1,am1+...+mh−1+2, . . . ,am1+...+mh

) spanned up by the vectors in paren-
theses are orthogonal to each other then Y 1, ...,Y h are independent. Furthermore, in this
case, Y 1 will be skewed normally distributed, whereas Y 2, ...,Y h are normal random vec-
tors.

Proof For simplicity, and without loss of generality, we consider the case h = 3. We sup-
pose that z ∈ Rk+1 is partitioned as z = (yT1 ,y

T
2 ,y

T
3 )T where y1, y2, y3 have dimensions

m1,m2,m3, respectively. We define A1 =
(
a0 a1 ... am1

)
, A2 =

(
am1+1 ... am1+m2

)
, and

A3 =
(
am1+m2+1 ... ak

)
, and moreover X ∼ Nk+1(0k+1, Ik+1). Then

P (Z < z) = 2Φk+1(C(a0,a1, ...,ak; z); g(k+1))

= 2P (aT0X < 0, aT1X < z1, ...,a
T
kX < zk)

= 2P (AT1X < (0,yT1 )T , AT2X < y2, A
T
3X < y3)

= 2P (AT1X < (0,yT1 )T ) · P (AT2X < y2) · P (AT3X < y3).

In the last equation, the independence of AT1X, AT2X, and AT3X was used. This property

follows by considering the distribution of
(
A1 A2 A3

)T
X and exploiting the orthogonality
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condition assumed in the Remark 1. Furthermore,

P (Y 1 < y1) = lim
zm1+1→∞

... lim
zk→∞

P (Z < z) = 2P (AT1X < (0,y1
T )T ),

analogously P (Y 2 < y2) = P (AT2X < y2) and P (Y 3 < y3) = P (AT3X < y3). Indeed,
Y 2 and Y 3 are normally distributed. To prove that Y 1 is skewed normal, one can find an

orthogonal (k+ 1)× (k+ 1)-matrix such that OA1 =

(
ã0 ã1 ... ãm1

0k−(m1+1) 0k−(m1+1) ... 0k−(m1+1)

)
where ãi ∈ Rm1+1, i = 0, 1, ...,m1. Hence, because of OTX

d
= X,

P (Y 1 < y1) = 2P (AT1X < (0,y1
T )T ) = 2P (AT1 O

TX < (0,y1
T )T )

= 2P ((OA1)TX < (0,y1
T )T )

= 2Φm1+1(C(ã0, ã1, ..., ãm1
;y1); g(k+1))

and thus, Y 1 is a m1-dimensional skewed normal random vector, becauce of Theorem 2.1.
�

Notice that the conditions for independence, which follow from Proposition 6 in Azzalini
and Capitanio (1999), are met if the orthogonality condition from Remark 4.1 is satisfied.
This follows by considering the equations (10).

4.2 Deriving representations through symmetrization

The present subsection illustrates that one has not necessarily to restrict considerations of
the geometric measure representations for skewed distributions to cones which include the
origin in at least one bounding hyperplane. To be specific, we derive here a representation
of P (Z < z) in terms of Φk+1-values of sets derived from sets of the type C(a0,a1, ...,ak; z)
through symmetrization.

Remark 4.2 If Z ∼ SEk(0,Ω, δ, g(k+1)) then, for every cone C(a0,a1, ...,ak; z) from the
class Ck+1(Ω, δ, z), the cdf of Z allows the representation

P (Z < z) = Φk+1(C(a0,a1, ...,ak; z) ∪ (Ik+1 −
2

aT0 a0
a0a

T
0 )C(a0,a1, ...,ak; z); g(k+1)).

Proof The Householder matrix (Ik+1 − 2
aT

0 a0
a0a

T
0 ) mirrors C(a0,a1, ...,ak; z) on the

bounding hyperplane {y ∈ Rk+1 : aT0 y = 0} which contains the origin. Therefore,
C(a0,a1, ...,ak; z) and (Ik+1 − 2

aT
0 a0
a0a

T
0 )C(a0,a1, ...,ak; z) are disjoint. Furthermore,

(Ik+1 − 2
aT

0 a0
a0a

T
0 ) is orthogonal. Hence,

Φk+1((Ik+1 −
2

aT0 a0
a0a

T
0 )C(a0,a1, ...,ak; z)) = Φk+1(C(a0,a1, ...,ak; z))

and thus

Φk+1(C(a0,a1, ...,ak; z) ∪ (Ik+1 −
2

aT0 a0
a0a

T
0 )C(a0,a1, ...,ak; z); g(k+1))

= 2Φk+1(C(a0,a1, ...,ak; z)) = P (Z < z),
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where the last equation follows from Theorem 2.1. �

Example 4.1 Let us recall that the set B̃(t) from Section 1 allows the representation
B̃(t) = C(a0,a1; z) with a0 = (0,−1)T , a1 = ((1+ρ

2 )1/2, (1−ρ
2 )1/2)T , and z = t. The

corresponding Householder matrix is therefore (I2 − 2
aT

0 a0
a0a

T
0 ) =

(
1 0
0 −1

)
. Hence, the

set DOB(t) from Section 1 allows the representation DOB(t) = C(a0,a1; z) ∪ (I2 −
2

aT
0 a0
a0a

T
0 )C(a0,a1; z).

Example 4.2 The set A3.1(z) in the proof of Proposition 3.1 allows the representation
A3.1(z) = C(a0,a1, ...,ak; z) with a0 = (−1,0Tk )T . The corresponding Householder matrix

is thus (Ik+1− 2
aT

0 a0
a0a

T
0 ) =

(
−1 0T

0 Ik

)
. After symmetrization of the cone C(a0,a1, ...,ak; z),

we get the set

C(a0,a1, ...,ak; z) ∪ (Ik+1 −
2

aT0 a0
a0a

T
0 )C(a0,a1, ...,ak; z)

= A3.1(z) ∪
(−1 0

0 Ik

)
A3.1(z)

=
{

(x0,y
T )T ∈ Rk+1 : x0 ≥ 0, δx0 + (Ik −∆2)1/2Cy < z

}
∪ {(x0,y

T )T ∈ Rk+1 : x0 < 0, −δx0 + (Ik −∆2)1/2Cy < z}

=
{

(x0,y
T )T ∈ Rk+1 : δ|x0|+ (Ik −∆2)1/2Cy < z

}
,

which coincides with (22).

4.3 Contour plots

The consideration in this subsection is restricted to the case k = 2. We observe by sys-
tematically changing certain parameters how the shape of the density level sets of a two-
dimensional skewed normal vector (Z1, Z2) depends on the linearly independent vectors
a0,a1 and a2. These vectors are normal to the boundary-planes of that cone in R3 which is
used to express the cdf of (Z1, Z2) according to (11). In comparison with (12), we slightly
modify the notation for this cone and put

C3(a0,a1,a2, z1, z2) :=

{
x ∈ R3 : aT0 x < 0,

aT1
||a1||

x < z1,
aT2
||a2||

x < z2

}
.

This set depends only on the directions of the vectors a0,a1,a2 but not on their norms
what is essentially the same in all previous sections where we restrict vectors a1, ...,ak to be
normalized. Furthermore, in this subsection, we use Φ3(·) to denote the three-dimensional
standard Gaussian measure.

Figure 1 shows density contour plots of two-dimensional skewed normal distributions
having different parameter vectors a0, a1 and a2. For more figures reflecting the effects
of different changes in the vectors a0, a1 and a2, we refer to Appendix B. Similar contour
plots reflecting effects of varying a correlation coefficient or Madia’s skewness measure are
to be found in Gupta et al. (2004) and Sahu et al. (2003), respectively.

In the final remarks we describe some observations which can be made when considering
these figures.

Remark 4.3 If a1⊥a2, as it is the case in Figures 1 and B1, then the density contour plot
of (Z1, Z2) is always symmetric w.r.t., and the density looks “skewed into the direction” of
the vector (δ1, δ2) = −(cos(∠(a0,a1)), cos(∠(a0,a2))). From Figure B1 , one may get the
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Figure 1. Contour plot of the density of (Z1, Z2) where P ((Z1, Z2) < (z1, z2)) = 2Φ3(C3(a0,a1,a2, z1, z2)) with
a0 = (1, λ, γ)T , a1 = (0, 1, 0)T , a2 = (0, 0, 1)T . Here, a1⊥a2 and changes are only made in λ.

impression that “skewing to the left” increases as the angle between a0 and a1 becomes
sharper, i.e. as λ increases. Moreover, one may argue that “skewing downwards” increases
as the angle between a0 and a2 becomes sharper, i.e. as γ increases. We let it here an open
problem to give these statements a precise mathematical sense in a future work.

Remark 4.4 If there are no restrictions upon the vectors ai, i = 1, 2 then it is not as easy
to uniquely detect general rules on their skewing effects. Still, the angle between a0 and a1

seems to be related to skewing to the left or right, and the angle between a0 and a2 seems
to be related to skewing downwards or upwards. Besides, we also obtain an effect of higher
or lower concentration of contour lines which seems to be essentially influenced by the
angle between a1 and a2. Having a closer look onto the contour plots, however, one gets a
visual impression of how all the three effects superimpose. Figures B2 to B6 indicate the
great variety of skewing two-dimensional normal densities. Moreover, if we would change
both the signs of λ and γ in Figure B2 and Figure B3, then the contour plots would mirror
along the x-axis. If we would choose a2 = (0, 0,−1)T instead of a2 = (0, 0, 1)T , then the
contour plots would mirror along the y-axis. In Figure B5, one can observe “extreme” plots
where in the left figure, the angle ∠(a0,a1) is very sharp, in the central figure, ∠(a0,a2)
is very sharp, and in the right figure, ∠(a1,a2) is very sharp. In Figure B6 , the value of
all three angles decrease when turning from the left to the right.
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Appendix A.

In the following, we prove that if Ω is a symmetric and positive definite k × k matrix and
δ ∈ Rk fulfills δTΩ−1δ < 1, then

(
1 δT

δ Ω

)
is positive definite. To this end, we denote with

Ω1/2 the positive definite square root of Ω and, furthermore, note that 1 − δTΩ−1δ > 0
holds. Therefore,

B =

(
(1− δTΩ−1δ)1/2 δTΩ−1/2

0k Ω1/2

)
is a regular (k + 1)× (k + 1) matrix and

BBT =

(
1 δT

δ Ω

)
,

which implies that
(

1 δT

δ Ω

)
is positive definite.

Furthermore, if Ω is a correlation matrix, then all diagonal elements of Ω are equal to 1
and the positive definiteness of

(
1 δT

δ Ω

)
implies that δ ∈ (−1, 1)×k
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Appendix B. Figures

Figure B1. Contour plot of the density of (Z1, Z2) where P ((Z1, Z2) < (z1, z2)) = 2Φ3(C3(a0,a1,a2, z1, z2)) with
a0 = (1, λ, γ)T , a1 = (0, 1, 0)T , a2 = (0, 0, 1)T . Here, a1⊥a2 and changes are only made in a0. In the first row, we
have additionally a0⊥a1.
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Figure B2. Contour plot of the density of (Z1, Z2) where P ((Z1, Z2) < (z1, z2)) = 2Φ3(C3(a0,a1,a2, z1, z2)) with
a0 = (1, 1, 1)T , a1 = (0, λ, γ)T , a2 = (0, 0, 1)T . Changes are only in a1 and λ > 0, γ > 0.

Figure B3. Contour plot of the density of (Z1, Z2) where P ((Z1, Z2) < (z1, z2)) = 2Φ3(C3(a0,a1,a2, z1, z2)) with
a0 = (1, 1, 1)T , a1 = (0, λ, γ)T , a2 = (0, 0, 1)T . Changes are only in a1 and λ > 0, γ < 0.
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Figure B4. Contour plot of the density of (Z1, Z2) where P ((Z1, Z2) < (z1, z2)) = 2Φ3(C3(a0,a1,a2, z1, z2)) with
a0 = (1, 1, γ)T , a1 = (0, λ, γ)T , a2 = (0, 0,−1)T . Changes are made in a0 and a1.

Figure B5. Contour plot of the density of (Z1, Z2) where P ((Z1, Z2) < (z1, z2)) = 2Φ3(C3(a0,a1,a2, z1, z2)). One
of the three angles is chosen particularly sharp. It is ∠(a0,a1) in the left figure, ∠(a0,a2) in the center figure, and
∠(a1,a2) in the right figure.

Figure B6. Contour plot of the density of (Z1, Z2) where P ((Z1, Z2) < (z1, z2)) = 2Φ3(C3(a0,a1,a2, z1, z2)). All
three angles between a0,a1,a2 decrease from the left to the right.


