
Chilean Journal of Statistics
Vol. 5, No. 2, September 2014, 29–44

Survival Analysis

Research Paper

Generalized time-dependent complement log-log model

Eder Angelo Milani∗, Carlos Alberto Ribeiro Diniz and Vera L. D. Tomazella

Department of Statistics, Universidade Federal de São Carlos, São Carlos-SP, Brazil

(Received: 15 August 2013 · Accepted in final form: 08 September 2014)

Abstract

In this article we introduce a new family of survival models of non-proportional hazards.
As an extension of this family, we present models with gamma and inverse Gaussian
frailty distributions and the unconditional survival function is derived by using Laplace
transform. A simulation study to check the frequentist properties of the proposed models
is presented. The developed methodology is illustrated considering a real data set of lung
cancer. The proposed models are compared with two models presented in the literature.
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1. Introduction

Let T be a random variable representing the lifetime of individuals (or components).
The use of equivalent functions, such as the cumulative distribution, density, survival and
hazard functions, which uniquely determine the distribution of T , is common in survival
analysis. The hazard function is manly used due to its interpretation. It is the instantaneous
probability of failure of an individual changeing over time and is statistically expressed as

h(t) = lim∆t−→0
P (t≤T<t+∆t|t≥t)

∆t . The Cox proportional hazard model, Cox (1972), which is
a standard approach to survival data, presents the assumption that ratio of the failure rates
of any two individuals are proportional. This assumption is not true in several practical
real situations and it is usual to find non-proportional hazard data. From this fact, several
types of non-proportional hazard models have been created. Klabfleish and Prentice (2002)
present the accelerated failure model, Ciampi and Etezadi-Amoli (1985) present the hybrid
hazard model, Louzada-Neto (1997 and 1999) present the extended hybrid hazard model
and Mackenzie (1996) presents the generalized time-dependent logistic model.
Functions relating the distribution parameters to explanatory variables are called link

functions. Functions logit, probit and complementary log-log are usually used in generalized
linear models for location, scale and shape, for more details see McCullagh and Nelder
(1898). Mackenzie (1996) proposed a new class of survival models using hazard function
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as a logit function, that is,

h(t|α,β) = exp(αt+ x′β)

1 + exp(αt+ x′β)
.

This is a non-proportional hazard model called Time-Dependent Logistic (TDL) model.
In this paper, we used hazard function as a complementary log-log function. This function

is a non-proportional risk and may assume increasing, decreasing and constant behavior.
The usual survival models can be extended with the inclusion of a frailty term. This

frailty term can capture the effect of covariates which are important to explain the survival
time of the individuals but for some reason, these covariates were not incorporated in
the model. It is possible to include the frailty term in the model in an additive or a
multiplicative form. These approaches can be found in Tomazella et al. (2006) and in
Milani (2011). In Milani (2011) a model extension of the Time-Dependent Logistic model
is presented including a multiplicative form of the frailty term with the latent process
following a gamma distribution depending on the frailty parameter θ. In this case, the
hazard function unconditional on the individual frailty is given by

h(t|α,β, θ) = exp(αt+ x′β)[
1 + θ

α ln
(
1+exp(αt+x′β)
1+exp(x′β)

)]
(1 + exp(αt+ x′β))

.

This model is called Time-Dependent Logistic Frailty model (TDLF).
In this paper we propose a new family of survival models with the assumption of non-

proportional hazard functions. This family is extended to include a frailty term, following
gamma or inverse guassian distribution, in a multiplicative form in the hazard function.
Using Laplace transformation we obtain the survival function unconditional on the indi-
vidual frailty. A simulation study and an application with real data are shown to illustrate
the methodology development.
The paper is organized as follows. Section 2 presents the generalized time-dependent com-

plementary log-log models and generalized time-dependent complementary log-log frailty
models. Section 3 presents the construction of the likelihood and estimation procedure for
both models. Section 4 presents a simulation study considering the bias, square root of
the mean-square error and coverage probabilities of the maximum likelihood estimates. A
real dataset on lung cancer in Northern Ireland is analyzed using the proposed model and
this fitted model is compared with other non-proportional hazard models in Section 5. The
conclusions are in Section 6.

2. Complementary Log-Log Hazard Model

Let T be a non-negative random variable representing the failure time of an individual.
The complementary log-log hazard function (CLL) is given by

h(t|α,β) = exp(− exp(αt+ x′β)), (1)

where α is a measure of the time effect, β = (β0, β1, . . . , βp)
T is a p+1−dimensional vector

of regression coefficients associated with fixed covariates x = (1, x1, . . . , xp)
T .

From the hazard equation given in (1) the cumulative hazard function is expressed by

H(t|α,β) =
∫ t

0
exp(− exp(αy + x′β))dy, (2)



Chilean Journal of Statistics 31

and from equation (2) the survival function is given by

S(t|α,β) = exp(−H(t|α,β))

= exp

(
−
∫ t

0
exp(− exp(αy + x′β))dy

)
, (3)

with S(0|α,β) = 1 for α ∈ R. For α ≤ 0, limt−→∞ S(t|α,β) = 0 and for α > 0,
limt−→∞ S(t|α,β) > 0, that is, the survival function is proper for α ≤ 0 and improper
for α > 0. Some examples of survival function are shown in Figure 1. The behavior of the
hazard function depends on the value of α. For α = 0 the hazard function is constant; for
α < 0, the hazard function increases and for α > 0 the hazard function decreases. Figure
1 shows some examples of possible shapes of the hazard function.
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Figure 1. Possible shapes of the survival function in (a) and the hazard function in (b) of the CLL model

The ratio of the hazard function of two individuals is expressed by

h(t|α,β,x1)

h(t|α,β,x2)
=

exp(− exp(αt+ x1
′β))

exp(− exp(αt+ x2
′β))

= exp[− exp(αt)(exp(x1
′β)− exp(x2

′β))],

where this ratio is constant and equal to 1 if x1
′β = x2

′β. Therefore, for individuals where
x1

′β ̸= x2
′β, the time effect does not disappear and, consequently, the non-proportionality

is evident.
From equations (1) and (3), the probability density function is given by

f(t|α,β) = exp

(
− exp(αt+ x′β)−

∫ t

0
exp(− exp(αy + x′β))dy

)
,

where α ≤ 0 and β ∈ Rp+1.
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2.1 Complementary Log-Log Hazard Frailty Model

Let Ti (i = 1, · · · , n) be the survival time for ith subject. Denote by Vi the unobserved
frailty (or random effect) for the ith subject. We extend the model (1) to include a frailty
term acting multiplicatively on the individual hazard rate. Given Vi = vi, the conditional
hazard function of Ti takes the form

hi(t|vi) = vi exp(− exp(αti + x′
iβ)), (4)

as vi represents a value of an unobservable random variable Vi, the individual hazard
increases if vi > 1, decreases if vi < 1 and if vi = 1 the frailty model (4) reduces to the
complementary log-log (1).
The key idea of this model is that individuals have different frailties, and that the more

frail ones will die earlier than the ones who are less frail, hence the name frailty. The frailty
term in this model not only explains the heterogeneity among individuals, it also enables
us to assess the covariates effect that for some reason were not considered in the planning.
For instance, if an important covariate was not included in the model, this will increase
the unobservable heterogeneity, affecting the inferences about the parameters related to
the covariates in the model. Thus, if we include the frailty term in the model, it will help
relieve this problem.
Frailties Vi are assumed to be independent and identically distributed random variables.

Due to the way the frailty term acts on the hazard function, natural frailty distribution
candidates are supposed to be continuous and time independent, such as gamma, lognor-
mal, Weibull and inverse Gaussian distributions (Hougaard, 1995). In various articles, the
gamma distribution is often applied, because it presents an easy algebraic treatment. In
this article, Vi follows a gamma or an inverse Gaussian distribution.
Let Z be a random variable following a gamma distribution with parameters τ and η,

G(τ, η), with density function written as

fZ(z) =
ητ

Γ(τ)
z(τ−1) exp (−zη),

and let W be a random variable following an inverse Gaussian distribution with parameter
ν and λ, GI(ν, λ), with the density function written as

fW (w) = λ1/2(2π)−1/2w−3/2 exp

(
− λ

2ν2w
(w − ν)2

)
.

According to Elbers and Ridder (1982) when working with frailty the random effect
distribution must have a finite mean for the model to be identifiable. Taking this into
account, in order to keep the identifiability of the model it is convenient to consider the
distribution with mean 1. Therefore, we assume a gamma distribution with parameters
τ = η = θ−1, where V ar(Z) = θ. In the inverse Gaussian distributions, we assume ν = 1
and λ = 1/σ2, so V ar(W ) = σ2. Note that if θ = 0 or σ2 = 0, all frailty variables are equal
to 1 , i.e, distributions are degenerated at point 1 and, thus we obtain the model without
fragility.
To obtain the likelihood function it is necessary to find the unconditional survival func-

tion. The unconditional survival function is given by

S(t) =

∫ ∞

0
S(t|v)g(v)dv, (5)
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where g(v) is the probability density function of the G(1/θ, 1/θ) or GI(1, 1/σ2) distribution.
To calculate the marginalization, the Laplace transform can be used since both have the
same shape.

2.1.1 CLL model with gamma frailty terms (CLLGF)

The Laplace transform of the gamma distribution G(1/θ, 1/θ), is given by

Q(s) = (1 + θs)−1/θ, (6)

where s is a real argument (for details see Wienke, 2011). Substituting s for H(t|α,β) in
equation (6) we obtain the unconditional survival function, given by,

S(t|α,β, θ) = (1 + θH(t|α,β))−1/θ

=

(
1 + θ

∫ t

0
exp(− exp(αy + x′β))dy

)−1/θ

, (7)

and the correspondent function of the cumulative risk is given by

H(t|α,β, θ) = − ln[(1 + θH(t|α,β))−1/θ]

= − ln

[(
1 + θ

∫ t

0
exp(− exp(αy + x′β))dy

)−1/θ
]
. (8)

Deriving the function of the cumulative risk (8) we obtain the correspondent hazard
function which is given by

h(t|α,β, θ) = exp(− exp(αt+ x′β))

1 + θ
∫ t
0 exp(− exp(αy + x′β))dy

. (9)

The behavior of the hazard function (9) takes several forms, according to the value of
α. For α ≥ 0, the hazard function decreases; for α < 0, the hazard function increases or
is unimodal, depending on the value of x′β. The behaviour of the survival function given
in (7) is determined by the value of α. For α ≤ 0, S(0|λ, α,β) = 1 and S(∞|λ, α,β) =
lim

t−→∞
S(t|λ, α,β) = 0. In other words, the survival function is proper, and for α > 0,

S(0|λ, α,β) = 1 and S(∞|λ, α,β) ̸= 0, the survival function is improper.
In Figure 2, we illustrate the shapes of the hazard and survival functions of the model

CLLGF.

2.1.2 CLL model with inverse gaussian frailty terms (CLLIGF)

The Laplace transform of the inverse gaussian distribution IG (1, 1/σ2) is given by

Q(s) = exp

[
1

σ2

(
1−

√
2σ2s+ 1

)]
, (10)
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Figure 2. Possible shapes of the survival function in (a) and the hazard function in (b) of the CLLGF model

where s is a real argument. Substituting s for H(t|α,β) in equation (10), we obtain the
unconditional survival function, given by,

S(t|α,β, σ2) = exp

[
1

σ2

(
1−

√
2σ2H(t|α,β) + 1

)]

= exp

 1

σ2

1−

√
2σ2

∫ t

0
exp(− exp(αy + x′β))dy + 1

 . (11)

Using (11), the correspondent function of the cumulative risk is given by

H(t|α,β, σ2) = − 1

σ2

1−

√
2σ2

∫ t

0
exp(− exp(αy + x′β))dy + 1

 . (12)

Deriving the function of the cumulative risk (12), we obtain the correspondent hazard
function which can be written as

h(t|α,β, σ2) =
dH(t|α,β, σ2)

dt

=
exp(− exp(αt+ x′β))√

2σ2
∫ t
0 exp(− exp(αy + x′β))dy + 1

. (13)

The behavior of the hazard and survival function are similar to the respective functions
in the CLLGF model.
In Figure 3, we illustrate the shapes of the hazard and survival functions of the model

CLLIGF.
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Figure 3. Possible shapes of the survival function in (a) and the hazard function in (b) of the CLLIGF model

3. Likelihood functions

Let (ti,xi, δi), i = 1, . . . , n be n observed times, xi = (1, x1, . . . , xp) a set of observed
covariates and δi an indicator variable, assuming value 1 for observed failure and 0 for
censoring.
The likelihood function for right-censored data may be written as

L(φ|t,x, δ) =
n∏

i=1

{[h(φ|t,x, δ)]δiS(φ|t,x, δ)}.

The log-likelihood functions, l(φ|t,x, δ) = ln[L(φ|t,x, δ)], for the models in (1), (9) and
(13) are given by

l(α,β|t,x, δ) =
n∑

i=1

(
−
∫ ti

0
exp[− exp(αy + xi

′β)]dy

)

+

n∑
i=1

−δi exp(αti + xi
′β), (14)

l(α,β, θ|t,x, δ) =
n∑

i=1

(−1/θ − δi)ln

[
1 + θ

(∫ ti

0
exp[− exp(αy + xi

′β)]dy

)]

+

n∑
i=1

−δi exp(αti + xi
′β), (15)
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l(α,β, σ2|t,x, δ) =
n∑

i=1

−δi exp(αti + xi
′β)

+

n∑
i=1

(−δi/2) ln

[
2σ2

(∫ ti

0
exp[− exp(αy + xi

′β)]dy

)
+ 1

]

+

n∑
i=1

(1/σ2)

1−√
2σ2

(∫ ti

0
exp[− exp(αy + xi

′β)]dy

)
+ 1

 .

(16)

The maximum likelihood estimators (MLEs) of the parameters of the models in (1), (9)
and (13) are obtained, respectively, by direct maximization of the log-likelihood functions
(14), (15) and (16), using for instance the L-BFGS-B algorithm (Byrd et al., 1995). The
advantage of this procedure is that it runs easily from a statistical package such as R.
The asymptotic confidence intervals are obtained by considering the maximum likelihood
estimators and the inverse of the Fisher observed information matrix.

4. Simulation Study

This simulation study assesses the square root of the mean squared error (SRMSE) and bias
of the MLEs as well as the empirical coverage probabilities of the asymptotic confidence
intervals for the parameters of the CLL, CLLGF and CLLIGF models.
The simulated data sets are generated from the following procedure:

(1) Fix values for the model parameters.
(2) Generate a value, u, from a uniform distribution U [0, 1] and a value, v, from the

frailty distribution (in case of a frailty model).
(3) Generate a value, x, from a Bernoulli distribution with a known success probability.
(4) Find t1 from the equation u = S(t|parameters). For the CLL model, the parameter

set is (α, β) and for CLLGF and CLLIGF models, the parameter set is α, β, θ or
σ2.

(5) Generate a value, t2, from an exponential distribution and consider t = min(t1, t2).
(6) Fix values for δ. δ = 1 if t=t1 and δ = 0 otherwise.
(7) Repeat steps 2 to 6 until the proper size sample has been acquired.

In step 4, the bisection method (Ruggiero and Lopes, 1997) is used in order to find the
root of equation g(t) = S(t|parameters) − u and the Gauss-Legendre integration formula
(Franco, 2010) is used to calculate the value of S(t|parameters). In step 5, the parameter
of the exponential distribution is defined in such a way that the proportion of censoring
times is around 21%.
The frequentist properties of the maximum likelihood estimators of the parameters are

based on 1,000 simulations for each sample size (n = 100, 200, 500 and 1,000). For each
simulation we obtain the MLEs and the Hessian matrix. Using these values we calculate
the bias, SRMSE and the asymptotic 95% confidence intervals. The empirical coverage
probability is calculated as the quotient between the number of intervals containing the
true parameter value and the total number of intervals constructed (1,000 intervals).
The values for CLL, CLLGF and CLLIGF model parameters were fixed at α = −0.5,

β0 = 1.0 and β1 = −0.8. The covariates were generated from a Bernoulli distribution with
a success probability equal to 0.50.
To investigate the effect of the frailty value in the metrics of interest for the CLLGF

model, we use θ = 0.1, 0.5 and 0.9; and σ2 = 0.1, 0.5 and 0.9 for the CLLIGF model.
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Table 1 presents the results for the CLL model. The values of bias and square root of
the mean-square error on these Tables are the means of 1,000 values of bias and SRMSE,
for each simple sample and for each parameter. The results show that the values are near
zero. We also note that the empirical coverage probabilities are close to nominal ones for
all sample sizes and for all parameters.

Table 1. Results for CLL model

n α β0 β1
Bias SRMSE CP Bias SRMSE CP Bias SRMSE CP

100 0.047 0.195 0.950 0.057 0.277 0.964 0.052 0.293 0.959
200 0.019 0.120 0.943 0.017 0.188 0.953 0.016 0.195 0.957
500 0.008 0.075 0.948 0.007 0.115 0.946 0.005 0.125 0.946
1000 0.005 0.050 0.950 0.006 0.080 0.953 0.005 0.090 0.938

Table 2 present the square root of the mean-square error for CLLGF and CLLIGF
models. Note that the values are near zero, regardless of the heterogeneity imposed to the
data.

Table 2. SRMSE for CLLGF and CLLIGF models considering different values for θ and σ2

Model CLLGF Model CLLIGF
θ/σ2 n

100 200 500 1000 100 200 500 1000
0.1

α 0.123 0.053 0.014 0.004 0.156 0.075 0.020 0.005
β0 0.126 0.052 0.015 0.002 0.152 0.080 0.013 0.008
β1 0.105 0.036 0.014 0.003 0.114 0.059 0.010 0.009
σ2 0.053 0.022 0.005 0.001 0.109 0.046 0.013 0.004

0.5
α 0.075 0.028 0.002 0.002 0.101 0.030 0.008 0.008
β0 0.092 0.035 0.009 0.005 0.096 0.033 0.008 0.006
β1 0.072 0.027 0.013 0.005 0.060 0.027 0.001 0.003
σ2 0.015 0.017 0.013 0.006 0.029 0.001 0.007 0.001

0.9
α 0.060 0.017 0.010 0.003 0.109 0.035 0.014 0.004
β0 0.063 0.012 0.011 0.005 0.101 0.029 0.012 0.003
β1 0.050 0.011 0.014 0.006 0.071 0.007 0.003 0.004
σ2 0.033 0.020 0.005 0.002 0.036 0.015 0.005 0.002

Figure 4 shows the behaviour of the square root of the mean-square error for the pa-
rameters of the CLLGF model. Note that for different values of θ, the values of SRMSE
decrease as the sample sizes increase. Similar results are presented in the CLLIGF model.
Table 3 present the empirical coverage probabilities for each sample size for both models,

CLLGF and CLLIGF. Note that the empirical coverages are greater than the nominal ones
in the situation where the data presents little heterogeneity and a small sample size (n =
100 and 200). For sample size n = 500 or 1000, the empirical coverage probabilities are
near the nominal ones. Considering other scenarios of θ and sample size, the empirical
coverage probabilities are all close to the nominal ones.

In order to verify if the CLL model and its extensions present different results, we
conducted a simulation study generating data from a model and obtaining a maximum
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Figure 4. Square root of the mean-square error for the parameters of the CLLGF model

Table 3. Empirical coverage probabilities for CLLGF and CLLIGF models

Model CLLGF Model CLLIGF
θ/σ2 n

100 200 500 1000 100 200 500 1000
0.1

α 0.982 0.971 0.961 0.956 0.984 0.967 0.962 0.952
β0 0.963 0.960 0.957 0.955 0.972 0.959 0.962 0.965
β1 0.969 0.960 0.955 0.948 0.972 0.955 0.964 0.965

θ/σ2 0.993 0.990 0.984 0.958 0.996 0.993 0.986 0.976
0.5

α 0.946 0.950 0.934 0.954 0.967 0.947 0.946 0.939
β0 0.964 0.956 0.938 0.957 0.972 0.955 0.939 0.936
β1 0.966 0.947 0.945 0.932 0.974 0.947 0.963 0.940

θ/σ2 0.945 0.943 0.947 0.948 0.954 0.936 0.934 0.934
0.9

α 0.930 0.925 0.957 0.943 0.946 0.933 0.949 0.948
β0 0.949 0.942 0.961 0.950 0.968 0.948 0.948 0.936
β1 0.955 0.945 0.953 0.941 0.967 0.949 0.952 0.948

θ/σ2 0.938 0.937 0.950 0.954 0.917 0.939 0.936 0.938
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likelihood estimative for the parameters of all other models. The TDL and TDLF models
are also included in this study. The best model is evaluated using AIC and BIC. This
procedure is repeated 1,000 times for each model used in the generation. The number of
times which the criteria chooses the correct model is shown in Table 4. We observe that
the correct number of time increases as we increase the sample size. The choice made by
the criteria is not clear for cases with a moderate sample size, n = 100 or 200.

Table 4. Number of times which the criteria, AIC and BIC, choose the correct model

Estimative
Generated from N TDL TDLF CLL CLLGF CLLIGF

CLL
100 419/421 38/8 494/562 11/0 38/9

α = −0.3, β0 = 1.0, 200 366/373 44/5 553/614 11/4 26/4
β1 = −0.8 500 267/274 49/3 636/721 11/2 37/0

1000 213/221 43/6 674/771 17/1 53/1
2000 130/143 56/1 774/853 11/1 29/2
5000 27/41 44/2 866/954 30/2 33/1

TDL
100 644/658 24/3 314/337 3/0 15/2

α = 0.7, β0 = −1.0, 200 663/672 29/4 302/323 1/0 5/1
β1 = −1.2 500 734/744 25/1 239/255 2/0 0/0

1000 792/813 33/2 174/185 0/0 1/0
2000 854/887 39/0 104/113 2/0 1/0
5000 896/953 62/0 42/47 0/0 0/0

CLLGF
100 28/65 315/277 45/131 296/272 316/255

α = −1.1, β0 = 1.0, 200 5/16 361/353 3/15 372/365 256/251
β1 = −0.8, θ = 0.7 500 0/0 338/338 0/0 476/476 186/186

1000 0/0 270/270 0/0 617/617 113/113
2000 0/0 208/208 0/0 762/762 30/30
5000 0/0 97/97 0/0 902/902 1/1

CLLIGF
100 52/79 249/207 143/302 115/97 441/315

α = −1.1, β0 = 1.0, 200 26/12 191/197 96/26 130/135 557/630
β1 = −0.8, σ2 = 0.7 500 0/0 114/113 0/1 193/193 693/693

1000 0/0 65/65 0/0 184/184 751/751
2000 0/0 17/17 0/0 143/143 840/840
5000 0/0 0/0 0/0 57/57 943/943

TDLF
100 165/280 387/389 40/44 110/77 298/210

α = 0.4, β0 = 1.5, 200 60/186 494/420 6/7 141/123 299/264
β1 = 0.9, θ = 0.9 500 12/20 592/586 0/0 181/180 215/214

1000 0/1 655/654 0/0 228/228 117/117
2000 0/0 735/735 0/0 230/230 35/35
5000 0/0 757/757 0/0 242/242 1/1
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5. Application

5.1 Lung cancer study

To measure the annual incidence of lung cancer in Northern Ireland in one year (Wilkinson,
1995), a study was conducted between 01/10/1991 and 30/09/1992. In this period, 900
cases of lung cancer were identified. From these 900 cases a group of 20 cases were diagnosed
after the patients died and in 25 patients the cause of death could not be determined. The
total number of patients analyzed was 855 (95%). The observed time represents the time
until death or censoring (months), 21% of the data is censored. This data set was used
previously in Mackenzie (1996) and Milani (2011). We consider the metastasis covariate,
which consists of three levels (”No”, ”Yes” and ”Unknown”). Using the method described
in Colosimo and Giolo (2006), the proportional hazard assumption was not observed for
this covariate (Figure 5).
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Figure 5. Proportional hazard assumption for the metastasis covariate

5.2 Models

Since the metastasis covariate has a non-proportional behaviour, we can fit CLL, CLLGF
and CLLIGF models and also TDL and TDL with gamma frailty terms (TDLF). Software
R was used for the optimization of the logarithm of the likelihood function and also to
obtain the variance-covariance matrix. The results are shown in Tables 6 and 7.

Table 5. CLL fitted model

CLL
MLE SE Interval

α 0.015 0.005 (0.024; 0.006)
β0 0.543 0.044 (0.629; 0.457)
β1 0.442 0.052 (0.341; 0.543)
β2 -0.028 0.048 (-0.122; 0.065)

As indicated by the results presented in Tables 6 and 7, the regression coefficient asso-
ciated with metastasis covariate and α, which measures the effect of time, are significant
in all fitted models. The parameter that measures the variance of the frailty term is sig-
nificant in all models with a frailty term. It indicates that there are covariates that were
not used to fit the models, but have some influence in the survival times.
The TDL and CLL models and their extensions with frailty terms can become a survival

model with cure fraction depending on the value of α. Mackenzie (1996) highlighted the
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Table 6. CLLGF and CLLIGF fitted models

CLLGF CLLIGF
MLE SE Interval MLE SE Interval

α -0.027 0.012 (-0.051; -0.003) -0.029 0.014 (-0.056; -0.002)
β0 0.436 0.074 (0.291; 0.580) 0.379 0.089 (0.204; 0.555)
β1 0.740 0.101 (0.542; 0.938) 0.779 0.121 (0.542; 1.017)
β2 -0.069 0.088 (-0.242; 0.104) -0.064 0.093 (-0.246; 0.118)
θ/σ2 0.645 0.138 (0.374; 0.917) 1.130 0.379 (0.386; 1.873)

Table 7. TDL and TDLF models

TDL TDLF
MLE SE Interval MLE SE Interval

α -0.043 0.012 (-0.020; -0.066) 0.080 0.034 (0.014; 0.146)
β0 -1.469 0.098 (-1.661; -1.277) -1.302 0.148 (-1.593; -1.012)
β1 -1.162 0.135 (-1.427; -0.897) -1.841 0.251 (-2.332; -1.349)
β2 0.060 0.104 (-0.144; 0.264) 0.138 0.176 (-0.207; 0.484)
θ ——– ——– ——– 0.771 0.172 (0.433; 1.108)

fact that the survival function is improper in the TDL model when the value of α is
negative. Milani (2011) observed a similar result for the TDLF model. Comparing the
results presented in Tables 6 and 7, the models without a frailty term indicate a cure
fraction while the models with a frailty term do not indicate this.
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Figure 6. Curves for the survival functions for level ”No” in (a), level ”Yes” in (b) and level ”Unknown” in (c)
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The Kaplan-Meier, CLL, CLLGF and CLLIGF survival curves are presented in Figure
6. We can note from the figure that the curves associated with models with frailty are
close together and for time values greater than 15 months at the level ”No”, the curves
begin to depart from the Kaplan-Meier curve.
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Figure 7. Curves for the survival functions for level ”No” in (a), level ”Yes” in (b) and level ”Unknown” in (c)

The Kaplan-Meier, TDL and TDLF survival curves are presented in Figure 7. Note that
TDL and TDLF curves are close to the Kaplan-Meier curve except at level ”’No”’ where
at the end of the observed times the TDL and TDLF curves begin to depart from the
Kaplan-Meier curve.
From the curves presented in Figures 6 and 7, it can be seen that the cure fraction is

not evident in the levels ”Yes” and ”Unknown” but it is clear at level ”No”. The fact that
the used models are or not long-term is imposed by the α value and not by the covariate
values. It prevents the cure fraction estimation for some levels. Also note that the models
with frailty terms are better fitted to the data than the models without frailty terms.
Three model selection criteria, logarithm of the likelihood function, AIC and BIC, were
used to select the model that best describes the data set (Table 8).

Table 8. Comparasion of models

model CLL CLLGF CLLIGF TDL TDLF
log-lik 1997.002 1986.852 1986.926 1994.865 1986.915
AIC 4002.004 3983.704 3983.852 3997.730 3983.830
BIC 4020.490 4006.811 4006.959 4016.216 4006.937

From the results presented in Table 8, we can see that the CLLFG model is the best
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model, according to both criteria, the AIC and the BIC. However, there is a small difference
among the values of the criteria for the models with frailty term. Considering only the
models without frailty term the TDL model is more indicated than the CLL model

6. Concluding Remarks

In this paper, we introduce three new models to analyze survival data, CLL (Comple-
mentary Log-Log), CLLGF (Complementary Log-Log with Gamma frailty) and CLLIGF
(Complementary Log-Log with inverse gaussian frailty) finding its hazard, survival and
density functions. These models can be considered alternatives to modeling data that sup-
port the assumption of non-proportional hazards. The simulation study showns that the
MLEs are unbiased, the bias and SRMSE decrease when the sample size increasesand that
for samples of reasonable size, the coverage probabilities are close to the nominal. In the
dataset of lung cancer, in which the metastasis covariate is non-proportional, we observed
the application of the new models. We note that according to the criteria AIC and BIC,
the model CLLGF can be the candidate among the five fitted models as the most suited
for the data. The fact that θ is significant indicates that there are factors that were not
observed, but have influence on the lifetimes. We then may conclude that using the model
without frailty can lead to wrong interpretations. Parameter α, which measures the effect
of the time in CLL, CLLGF and CLLIGF model, is significant. Extensions of the CLL
frailty model to incorporate more robust frailty distributions can be futher discussed in
future research.
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Franco, N. M. B., 2010. Cálculo Numérico. Prentice Hall (Pearson), São Paulo.
Hougaard, P., 1995. Frailty models for survival data. Lifetime Data Analysis 1, 255–273.
Klabfleish, J. F., Prentice, R. L., 2002. The Statistical Analysis of Failure Time Data. John

Wiley and Sons, New Jersey.
Louzada-Neto, F., 1997. Extended hazard regression model for reliability and survival

analysis. Lifetime Data Analysis 3, 367–381.
Louzada-Neto, F., 1999. Polyhazard models for lifetime data. Biometrics 55, 1281–1285.



44 E.A. Milani et al.

Mackenzie, G., 1996. Regression models for survival data: The generalized time-dependent
logistic family. The Statistician 45, 21–34.

McCullagh, P., Nelder, J. A., 1898. Generalized Linear Models. Chapman & Hall/CRC,
New York.
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