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Abstract

Distributions obtained by perturbation of symmetric densities provide flexible models
suitable to fit the distribution of data affected by departures from normality, in particu-
lar when such deviations are due to skewness and/or heavy tails. However, the adoption
of these models may lead to inefficient estimators when the data are generated by a
simpler distribution. Consequently a testing strategy aimed at finding the most parsi-
monious model among non nested ones is proposed. The corresponding test statistics
are slight modifications of well-known ones, and their asymptotic distributions do not
depend on nuisance parameters. The normality test is the final step of the procedure.
Analytical results provide the statistical properties of the proposed tests whereas their
performance in finite samples is investigated through numerical experiments.
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1. Introduction

Suppose that a random sample X1, . . . , Xn is drawn from an unknown distribution which
could be normal as well as skewed and/or leptokurtic. In these circumstances a flexible
model, that is a family of distributions suitable to deal with both skewness and heavy
tails, can be assumed for the random variable X which represents the population. When
deviations from normality occur, flexible models have two main advantages over robust
procedures: inference can be carried out through the likelihood function in the standard
way and the estimated parameters have a clear meaning with reference to a model (DiCiccio
and Monti, 2004). Therefore, when nonnormal features are likely to arise in the distribution
of the data, a strategy for model fitting could be the following: initially the most flexible
model is assumed, then test procedures are carried out to check whether a sub-model, or
even the normal one, is suitable for the data at hand.
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Distributions generated by perturbation of symmetric densities (Azzalini and Capitanio,
2003), also known as skew-symmetric distributions (Wang et al., 2004), provide a wide class
of flexible models. Let g(·) be a symmetric density function, and let π(·) be a function
satisfying 0 ≤ π(−x) = 1 − π(x) ≤ 1, so that π(0) = 1/2. A flexible model generated by
perturbation of symmetry has the density function

f(x; ξ, ω, π) =
2

ω
g

(
x− ξ

ω

)
π

(
x− ξ

ω

)
. (1)

where ξ and ω are the location and scale parameter, respectively. Since (1) can exhibit
both skewness and kurtosis, ξ and ω generally do not coincide with the mean and the
standard deviations of (1), this is why a notation different from the usual µ and σ is
used. Additional parameters may appear in both g(·) and π(·), and in particular g(·) often
depends on a parameter τ regulating the tickness of the tails.
The function g(·) is also referred to in the literature as the base or kernel density or

the central model. The function π(·) is instead called perturbing function. When π(·) is a
constant function identically equal to 1/2, f(x; ξ, ω, π) reduces to the symmetric density
function g(·). Azzalini and Capitanio (2003) consider flexible distributions with the pa-
rameterization π(x) = H {w(z)} where z = (x− ξ) /ω, H(·) is the distribution function of
a continuous random variable symmetric around zero and w(·) is an odd function, that is
w(−z) = −w(z). Often, but not necessarily, π(x) = H(λx), in this case λ = 0 reduces (1)
to a symmetric density, hence λ becomes the parameter regulating skewness.
Remarkable examples of flexible models are the skew-normal (Roberts, 1966; Azzalini,

1985, 1986), the skew-t (Branco and Dey, 2001; Azzalini and Capitanio, 2003), and the skew
Exponential Power distribution (Azzalini, 1986; DiCiccio and Monti, 2004). See Genton
(2004) and Azzalini (2005) for overviews on flexible distributions obtained by perturbation
of symmetry.
The selection of the base density g (·) has received special attention in the literature and a

very popular choice assumes that the central model is N
(
ξ, ω2

)
. Other interesting models,

within the class of distributions defined by (1), are those where there is a specific or limiting
(possibly infinite) value τ0 of the parameter τ such that g(·) is the N(ξ, ω2) density. This
is the case for instance of the skew-t or the skew Exponential Power distribution. In this
case, when τ = τ0, the density function f(x; ξ, ω, π) becomes a generalized skew-normal
(GSN) density (Loperfido, 2004; Ma et al., 2005). It is given by

fGSN (x; ξ, ω, λ, π) =
2

ω
ϕ

(
x− ξ

ω

)
π

(
x− ξ

ω

)
(2)

where ϕ(·) is the standard normal density function. If π(x) = Φ(λx), where Φ(·) denotes
the standard normal distribution function, (2) corresponds to the skew normal distribution.
Other examples of GSN densities are discussed in Nadarajah and Kotz (2003), whereas
inferential issues are investigated by Pewsey (2004) and Ley and Paindaveine (2010a,
2010b).
The class of distributions (2) can arise when the population is normal but a random

sample is not available, so that the probability density of the observed sample is distorted
by a multiplicative nonnegative weight function. Actually (1) can be applied when the
observed data are obtained only from a selected portion of the population of interest and
a censoring mechanism regulated by π(·) is applied to the samples generated by g(·),
hence (1) is called a selection model; see Ma et al. (2005), Arellano-Valle et al. (2006) and
references therein. When the central model is N

(
ξ, ω2

)
, the selective sampling procedure

yields a GSN distribution with density (2).
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The occurrence of a GSN distribution can be motivated by a robustness argument
too. If the central model, which describes the majority of the data, is normal but it is
contaminated through the function π(·) which can generate also asymmetric outliers, the
density of the observed data is given by (2) (Ma et al., 2005).
Either when a selective sampling procedure is implemented or in the robustness context,

it is of interest to detect whether the distribution has the density (2), since it involves
identification of the central model. Under this perspective, subsequent inference may focus
only on the parameters of the base normal density while π(·) is regarded as a nuisance
component, whose form has no relevance.
Briefly, when π(x) = 1/2 (1) yields a symmetric density, when the base density is ϕ(·) it

becomes a GSN density, and when both π(x) = 1/2 and g(x) = ϕ(x) hold (1) reduces to
a normal density function. If any of these circumstances occurs, (1) is over-parameterized,
and its adoption can produce remarkable losses of efficiency in the estimation of the pa-
rameters. To avoid this inconvenience, reliable sub-model testing procedures are required.
In particular, there is the need to test the hypotheses Hπ

0 : π(x) = 1/2 for symmetry and
HGSN

0 : g(x) = ϕ(x) for generalized skew-normality. The normality test is the implicit
joint outcome of the two tests.
Suppose that T π

n and TGSN
n are the statistics used for testingHπ

0 andHGSN
0 , respectively.

When testing HGSN
0 the function π(·) has a disturbing role (as an infinite-dimensional nui-

sance parameter) and, analogously, when testing Hπ
0 the form of g(·) has a disturbing role.

Widely applicable identification procedures should satisfy the following two conditions:

(i) The (asymptotic) distribution of T π
n under Hπ

0 does not depend on g(·);
(ii) The (asymptotic) distribution of TGSN

n under HGSN
0 does not depend on π(·).

Let Rπ and RGSN be the rejection regions for Hπ
0 and HGSN

0 , respectively. The signifi-
cance level of the normality test, with null hypothesis HN

0 : π(x) = 1/2 and g(x) = ϕ(x),
is

1− pr
(
TGSN
n /∈ RGSN ;T π

n /∈ Rπ
)

(3)

evaluated under the normal distribution. The probability (3) typically cannot be computed
unless the joint distribution of T π

n and TGSN
n is known or the two statistics are independent

under the normal model. In the latter case the significance level of the normality test is

1− pr (T π
n /∈ Rπ) pr

(
TGSN
n /∈ RGSN

)
.

Hence a further condition, which is required in order to keep under control the significance
level of the joint normality test, is

(iii) T π
n and TGSN

n are (asymptotically) independent under the normal model.

Condition (iii) avoids the well-known problems arising in the evaluation of the significance
levels of the tests on non-nested hypotheses.
When testing normality the standardized sample skewness and kurtosis are default

choices for T π and TGSN , with the advantage of being asymptotically independent under
the null hypothesis. However, when either skewness or leptokurtosis occurs, the asymptotic
distribution of these statistics depends on the underlying distribution and conditions (i) -
(iii) may fail to hold. Therefore an alternative statistic for testing Hπ

0 and a modification
of the kurtosis test for HGSN

0 will be considered.
The present paper focuses on model identification and proposes some testing proce-

dures based on statistics T π and TGSN which satisfy conditions (i)-(iii). It is structured
as follows. The next section outlines the testing strategy. Sections 3 and 4 propose the
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test procedures for the hypothesis of symmetry and that of generalized skew-normality,
respectively. Numerical results are illustrated in section 5, while proofs are confined in the
Appendix.

2. Testing Strategy

We shall first consider a symmetry test satisfying condition (i). Attention will be kept on
distributions with density of type (1) with a monotone perturbing function. This restriction
is indeed very mild since it will be suitable for most of the unimodal distributions obtained
through (1). We have the following proposition.

Proposition 2.1 Let X be a random variable with density (1). If π(x) is a monotone
function, then ξ is the median of X if and only if π(x) = 1/2.

Consequently, if ξ were known, the hypothesis Hπ
0 of symmetry, which assume that X

has the density g(·), could be verified through the sign test. It is based on the frequency
of observations greater than ξ,

f =
1

n

n∑
i=1

I (Xi > ξ)

where I(δ) is an indicator function which takes value 1 when δ holds. The test statistic,
given by 2n1/2 (f − 1/2), has an asymptotic N(0, 1) distribution. The sign test has an
intuitive appeal, it is very robust within the class of symmetric distributions and pos-
sesses optimal properties (Rohatgi, 1976, pag. 544-546). The next section will show how
to implement this test when, as it usually occurs in practice, ξ needs to be estimated.
We shall now consider a test for generalized skew-normality satisfying condition (ii). It

can be derived by exploiting the property of distributional invariance held by the distri-
butions of type (1), which is stated in the following proposition proved by Azzalini and
Capitanio (2003, Proposition 2) and Wang et al. (2004, Proposition 6).

Proposition 2.2 Let X and Y be two random variables having density function (1) and
g (y), respectively. If T (·) is an even function, that is T (−x) = T (x) for all x ∈ R, then

T (X) is identically distributed to T (Y ): T (X)
d
= T (Y ).

On the bases of Proposition 2.2, ifX has density (1), the random variable Z = (X − ξ) /ω
is such that |Z| is identically distributed to |Y |, where Y ∼ g(y), regardless of the form
of the perturbing function π(·). Hence the problem of testing whether the distribution is
GSN is equivalent to testing whether |Z| as the same distribution of the absolute value
of a N(0, 1) random variable, i.e. a χ1 random variable. In this context, the alternative
hypothesis assumes departures of g(·) from normality due to the tickness of the tails,
therefore a test which focuses on the kurtosis of the distribution seems the most natural
choice (see Thode, 2002, pp. 50-54, for the properties of the kurtosis test in the Gaussian
context against symmetric alternatives). Consequently a test based on a statistic TGSN

n

which is a function of the fourth moment of Z will be proposed in Section 4.
A normality test based on the above test statistics satisfies requirement (iii). If X is

symmetric around ξ, |Z| and sign(Z) are independently distributed (Arellano Valle and
Del Pino, 2004). The statistic T π

n , based on I (Xi > ξ) for i = 1 . . . n, and the statistic
TGSN
n , based on |Z1|, . . . , |Zn| , are independent for any underlying symmetric distribution

and therefore at the normal model.
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In the general case, both ξ and ω are unknown and need to be estimated. Different
estimators will be considered for the two tests, such that they are consistent under the
corresponding null hypothesis. Consequently consistency is preserved at the normal model,
and conditions (i)-(iii) can be expected, at least approximately, to hold for sufficiently large
samples.

3. Symmetry test

Suppose X has the symmetric density ω−1g {(x− ξ) /ω}. Under this assumption, the lo-
cation parameter ξ is the center of symmetry and coincides with both the median and the
mean, therefore the modified sign test proposed by Gastwirth (1971) can be used to verify
the hypothesis of symmetry Hπ

0 . It is based on the following theorem (Gastwirth, 1971,
Theorem 1)

Theorem 3.1 Let X1, . . . , Xn be i.i.d. observations from an absolutely continuous distri-
bution G (·),with mean ξ, variance σ2 and density g (·) continuous at ξ. Let

f̂ =
1

n

n∑
i=1

I
(
Xi > X̄

)

where X̄ is the sample mean. The statistic n1/2
(
f̂ − 1/2

)
is asymptotically normally

distributed with mean zero and variance

σ2f =
1

4
+ g (ξ)2 σ2 − 2g (ξ) γ

where

γ = cov
{
n1/2

(
X̄ − ξ

)
, n1/2 (f − 1/2)

}
=

∫ ∞

ξ
(x− ξ) g(x)dx.

Theorem 3.1 shows that, although n1/2(f̂ − 1/2) is asymptotically normal with mean
zero, as n1/2 (f − 1/2), its asymptotic variance is different from 1/4, and there is indeed
evidence that it is typically quite smaller (see also Theorem 2 by Gastwith, 1971).
In order to implement the test a consistent estimator of σ2f is required. A sample version

of γ is given by

γ̂ =
1

n

n∑
i=1

I
(
Xi > X̄

) (
Xi − X̄

)
,

so that the estimator of the variance can be obtained as follow

σ̂2f =
1

4
+ ĝ

(
X̄
)2
σ̂2 − 2ĝ

(
X̄
)
γ̂

where ĝ(·) is a consistent nonparametric estimator of the density function and σ̂2 is the

sample variance. The test statistic for Hπ
0 is given by T π

n = n1/2
(
f̂ − 1/2

)
/σ̂f .
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4. Generalized skew-normality test

This section concerns a procedure for testing HGSN
0 , which implies that X is GSN with

density (2). Since, under the null hypothesis, Z is identically distributed to the absolute
value of a N(0, 1) random variable, κ = E

(
Z4
)
takes value 3. Consequently if ξ were

known, the test could be based on the following result.

Proposition 4.1 Let the statistics ω̂ and κ̂ξ be defined as follows

ω̂2
ξ =

1

n

n∑
i=1

(Xi − ξ)2, κ̂ξ =
1

n

n∑
i=1

(Xi − ξ)4

ω̂4
ξ

where X1, . . . , Xn is a random sample drawn from a population with density (2) and
location parameter ξ. Then the asymptotic distribution of n1/2(κ̂ξ − 3)/24 is standard
normal.

In practical applications unfortunately the value of ξ is not available. However the fol-
lowing proposition provides a statistic useful to test HGSN

0 .

Proposition 4.2 Let ξ̂ be an estimator for ξ such that, when X1, . . . Xn have density

(2), ξ̂−ξ = Op

(
n−1/2

)
, E
(
ξ̂
)
= ξ+O

(
n−1

)
, and n1/2

(
ξ̂ − ξ

)
is asymptotically normally

distributed with variance σ2ξ . Consider the statistics

ω̂2 =
1

n

n∑
i=1

(
Xi − ξ̂

)2
, κ̂ =

1

n

n∑
i=1

(
Xi − ξ̂

)4
ω̂4

,

then n1/2 (κ̂− 3) is asymptotically normally distributed with variance

σ2κ = 24 +
16η2

ω2
σ2ξ +

8η

ω5
γξ,m4

− 48η

ω3
γξ,m2

(4)

where η =
(
3µ1/ω − µ3/ω

3
)
, µr = E (mr), mr = (1/n)

∑n
i=1 (Xi − ξ)r, and

γξ,mr
= cov

{
n1/2

(
ξ̂ − ξ

)
, n1/2 (mr − µr)

}
.

Proposition 4.2 suggests that the asymptotically normal statistic TGSN
n =

n1/2 (κ̂− 3) /σκ can be used to test the generalized skew-normal hypothesis HGSN . To

implement the test, an estimator ξ̂ of ξ (which in this context is the mean of the central
N
(
ξ, ω2

)
model) is required. In order to satisfy condition (ii) of Section 1, such estimator

should be semiparametric, in the sense that it should not depend on the form of π(·).
It needs to be derived by focusing on the base normal density, whereas π(·) is treated
nonparametrically. Estimators which satisfy this requirement have been proposed by Ma
et al. (2005) and Azzalini et al. (2010). In particular, Ma et al. (2005) have proposed a
locally efficient semiparametric estimator of the parameters of the base density based on
the theory of regular asymptotically linear (RAL) estimators, which are consistent and
asymptotically normal regardless of the possible misspecification of the perturbing func-
tion π(·) (see also Ma and Hart, 2007). The estimator proposed by Azzalini et al. (2010)
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relies on a conceptually simpler motivation based on the invariance property of Proposition
2.2, leading to the invariance-based estimating equations (IBEE). The IBEE approach can
be considered as a special case of the RAL formulation, and therefore it inherits the same
properties. Further details on the IBEE will be discussed in Section 5.
To apply the test, suggested by Proposition 4.2, an estimate of σ2κ is required. For the

variance of the estimator σ2ξ , either an analytical formula (if available) or a bootstrap

estimator of the variability of ξ̂ can be employed. The covariances γξ,mr
instead can be

estimated by bootstrap. Let X∗
1 , . . . X

∗
n be a sample drawn, with replacement, from the

original sample X1, . . . , Xn, which yields the bootstrap replication ξ̂∗ of ξ̂. In the bootstrap
context the role of the true parameter is played by ξ̂ while the sample is given byX∗

1 , . . . X
∗
n.

It follows that the statistics m∗
r = (1/n)

∑n
i=1

(
X∗

i − ξ̂
)r

are the boostrap versions of

the mr’s, for r = 2, 4. Consequently estimates of γξ,mr
are obtained from the bootstrap

covariances between the m∗
r ’s and ξ̂

∗ − ξ̂.

Alternatively to obtain the covariances which appear in (4) we can approximate ξ̂ − ξ
by means of the influence function. Under regularity conditions we have the Von Mises
expansions (Serfling, 1980, pag. 212)

n1/2
(
ξ̂ − ξ

)
=

1

n1/2

n∑
i=1

IF (Xi, ξ) +Op

(
n−1/2

)
where IF (X, ξ) is the influence function (see Maronna et al., 2006, pag. 55-57; Hampel et

al., 1986, pag. 84). The asymptotic variance of n1/2
(
ξ̂ − ξ

)
is given by σ2ξ = E

{
IF (X, ξ)2

}
(see 3.17 of Maronna et al., 2006). The covariances γξ,mr

for r = 2, 4 are given by

γξ,mr
= E

{
n1/2

(
ξ̂ − ξ

) 1

n1/2

n∑
i=1

(Xi − ξ)r

}
= E {IF (X, ξ) (X − ξ)r} .

Sample versions of σ2ξ and γξ,mr
are obtained as follows

σ̂2ξ =
1

n

n∑
i=1

ˆIF (Xi, ξ)
2 (5)

γ̂ξ,mr
=

1

n

n∑
i=1

ˆIF (Xi, ξ)
(
Xi − ξ̂

)r
for r = 2, 4 (6)

where ˆIF (Xi, ξ) is an empirical version of the influence function.
Finally µ1 and µ3 can be estimated by their sample versions.
Of course one may also consider estimating σ2κ directly by bootstrap. However the results

are likely to be unsatisfactory. The accuracy of the bootstrap estimators of the standard
errors depends on various factors (Efron & Tibshirani, 1993, pp. 50-53, 272-273, 280-
281): the variability of the standard error obtained from infinite bootstrap replications
se∞, the sample size n and the actual number of bootstrap replications B. Estimating
σ2κ is equivalent to estimating the variance of a fourth standardized cumulants, that is a
moment of 8th order, which typically has a very high variability, i.e. se∞ is remarkably big.
It follows that unless n is extremely high, whatever B is, the estimator may be considerably



10 A.C. Monti and R. Fucci

inaccurate. On the contrary, the strategy of estimating the terms, σ2ξ and γξ,mr
for r = 2, 4,

separately allow to reduce the order of the moments to be estimated, which turns out to
be at most 5. Furthermore, this strategy takes advantage of the knowledge of the constants
appearing in (4) which would, otherwise, be uselessly estimated.

5. Numerical results

This section contains results of simulations carried out to evaluate the performance of the
proposed test procedures.
For the test of symmetry, theN(0, 1) distribution, the Student t distribution with degrees

of freedom ν = 3, 5, 7, 10, 15, the uniform and the logistic distribution were considered. For
each of them, and for sample sizes n varying between 50 and 50.000, 10.000 samples were
generated, and the test was implemented according to the procedure described in Section
3. Table 1 shows the actual level of the symmetry test when the nominal size is either 5%
or 10%. The simulated level of the test is indeed pretty close to the nominal one.

Table 1. Frequency of rejections of Hπ
0 - 10.000 simulations

Nominal significance level 0.05
Density

n t3 t5 t7 t10 t15 Logistic Uniform Normal
50 0.060 0.045 0.045 0.041 0.037 0.042 0.032 0.032
100 0.060 0.054 0.049 0.048 0.047 0.045 0.049 0.049
200 0.060 0.055 0.050 0.054 0.053 0.050 0.050 0.046
1.000 0.055 0.053 0.057 0.048 0.052 0.052 0.050 0.049
2.000 0.057 0.052 0.056 0.052 0.049 0.053 0.050 0.050
5.000 0.057 0.054 0.052 0.050 0.049 0.051 0.049 0.053
10.000 0.054 0.050 0.054 0.050 0.049 0.053 0.047 0.049
50.000 0.050 0.050 0.052 0.049 0.056 0.050 0.052 0.049

Nominal significance level 0.10
Density

n t3 t5 t7 t10 t15 Logistic Uniform Normal
50 0.121 0.105 0.105 0.101 0.099 0.105 0.085 0.092
100 0.115 0.102 0.987 0.095 0.092 0.089 0.105 0.099
200 0.124 0.110 0.996 0.101 0.097 0.098 0.106 0.097
1.000 0.108 0.105 0.112 0.100 0.101 0.104 0.102 0.104
2.000 0.114 0.103 0.106 0.101 0.100 0.102 0.096 0.100
5.000 0.110 0.104 0.106 0.099 0.101 0.100 0.098 0.100
10.000 0.103 0.105 0.103 0.099 0.099 0.102 0.097 0.099
50.000 0.102 0.098 0.102 0.098 0.103 0.104 0.104 0.099

To investigate the performance of the GSN test, samples were drawn from the skew
normal distribution (Azzalini, 1985, 1986), with density function

fSN (x; ξ, ω, λ) =
2

ω
ϕ

(
x− ξ

ω

)
Φ

(
λ
x− ξ

ω

)
. (7)

It returns the N
(
ξ, ω2

)
distribution when λ = 0, it has positive skewness for λ > 0 and it

is negatively skewed otherwise. The values of the shape parameter, which were taken into
account, are λ = 1.5, 3, 5, 10; only positive values were considered for λ since the shape of
the distribution is specular for negative values. Finally 10.000 samples were drawn from
(7) for various sample sizes n between 100 and 5.000.
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The parameters ξ and ω of the normal central model were estimated through the IBEE
approach of Azzalini et al. (2010). Because of the invariance property of Proposition 2.2,
under (2) Z = |X − ξ| /ω has the same moments of a χ1 random variable, and in particular

E |Z| = (2/π)1/2 and E |Z|2 = 1. The estimating equations are obtained by setting the

sample averages of |Z| and Z2 equal to their expected values. The estimator ξ̂ of ξ is given
by the solution t of

1

n

n∑
i=1

|Xi − t| −
(
2

π

)1/2
{
1

n

n∑
i=1

(Xi − t)2

}1/2

= 0

whereas the estimator of ω2 is given by ω̂2 of Proposition 4.2 (see Azzalini et al. (2010)
for computational issues related to this method). The corresponding estimating equations
are ψ (x; ξ, ω) =

{
|z| − (2/π)1/2, z2 − 1

}
where z = (x− ξ) /ω.

Four methods were considered for estimating σ2κ. The first method (M1) estimates the
covariances γξ,mr

for r = 2, 4 by 100 bootstrap replications while σ2ξ is estimated by

(5) which coincides with formula (16) of Azzalini et al. (2010). The empirical version

of the influence function is obtained by replacing the parameters by ξ̂ and ω̂2 in (3.10)
of Maronna et al. (2006). In the second method (M2), both σ2ξ and γξ,mr

for r = 2, 4

are approximated through 100 bootstrap replications. The third method (M3) uses (5)
and (6) for estimating σ2ξ and γξ,mr

, respectively. Finally, in the last method (M4), σ2κ
is estimated directly through 100 bootstrap replications. Tables from 2 to 5 show the
simulated significance level of the GSN test with the four method used to estimate σ2κ.
All the tables consider the nominal levels 0.10 and 0.5.

Table 2. Frequency of rejections of HGSN
0 . Test M1 performed by estimating σ2

ξ by (5) and γξ,mr for r = 2, 4 by

100 bootstrap replications - 10.000 simulations.

Nominal Level 0.10 0.05
α α

n 1.5 3 5 10 1.5 3 5 10
100 0.036 0.055 0.054 0.058 0.025 0.039 0.037 0.040
200 0.052 0.069 0.071 0.074 0.037 0.048 0.051 0.053
500 0.085 0.093 0.089 0.083 0.061 0.065 0.064 0.059
1000 0.115 0.105 0.099 0.100 0.082 0.074 0.071 0.066
2000 0.133 0.110 0.116 0.107 0.094 0.075 0.077 0.069
5000 0.133 0123 0.115 0.114 0.091 0.080 0.070 0.065

Table 3. Frequency of rejections of HGSN
0 . Test M2 performed by estimating σ2

ξ and γξ,mr for r = 2, 4 by 100

bootstrap replications - 10.000 simulations.

Nominal Level 0.10 0.05
α α

n 1.5 3 5 10 1.5 3 5 10
100 0.032 0.046 0.045 0.048 0.023 0.033 0.032 0.036
200 0.047 0.054 0.063 0.068 0.033 0.039 0.048 0.049
500 0.063 0.081 0.086 0.080 0.045 0.060 0.061 0.058
1000 0.079 0.095 0.098 0.098 0.059 0.067 0.070 0.065
2000 0.092 0.102 0.112 0.104 0.066 0.069 0.072 0.067
5000 0.101 0.114 0.107 0.110 0.065 0.070 0.063 0.062
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Table 4. Frequency of rejections of HGSN
0 . Test M3 performed by estimating σ2

ξ by (5) and γξ,mr for r = 2, 4 by

(6) - 10.000 simulations.

Nominal Level 0.10 0.05
α α

n 1.5 3 5 10 1.5 3 5 10
100 0.026 0.039 0.039 0.039 0.016 0.027 0.026 0.025
200 0.040 0.046 0.052 0.054 0.026 0.031 0.035 0.039
500 0.057 0.066 0.070 0.069 0.039 0.045 0.045 0.044
1000 0.079 0.080 0.098 0.088 0.053 0.053 0.070 0.054
2000 0.096 0.091 0.103 0.094 0.064 0.058 0.064 0.059
5000 0.103 0.107 0.100 0.106 0.066 0.066 0.058 0.058

Table 5. Frequency of rejections of HGSN
0 . Test M4 performed by estimating σ2

κ through 100 bootstrap replications
- 10.000 simulations.

Nominal Level 0.10 0.05
α α

n 1.5 3 5 10 1.5 3 5 10
100 0.203 0.184 0.206 0.230 0.140 0.123 0.146 0.161
200 0.161 0.181 0.200 0.208 0.107 0.121 0.139 0.147
500 0.132 0.168 0.165 0.176 0.081 0.108 0.111 0.119
1000 0.115 0.148 0.144 0.154 0.069 0.098 0.095 0.098
2000 0.119 0.134 0.138 0.132 0.070 0.079 0.083 0.078
5000 0.103 0.117 0.115 0.122 0.054 0.065 0.066 0.071

For n ≤ 200 and σ2κ estimated byM1,M2, andM3, the test appears to be conservative,
however the significance level gets satisfactorily close to the nominal one for larger sample
sizes. This outcome is due to the slow convergence of the distribution of the test statistic
to the normal distribution. A large sample is required for the normal approximation to
the distribution of TGSN

n to be entirely satisfactory. In this regard, it is to be considered
that even the kurtosis test in the Gaussian context tends to be pretty conservative in
small samples. Indeed it needs sample sizes even larger than 5.000 to be accurate (Thode,
2002, pag. 51) for at least a couple of reasons: the mean and variance of the test statistic
converge very slowly to their asymptotic values and the convergence of the distribution of
the test statistic to the N(0, 1) distribution is very slow. Analogous events occur in this
context too, with the additional inconvenience that also the distribution of the estimator of
ξ converges very slowly to normality. Such inconveniences are exacerbated when λ is close
to zero, that is in a neighborhood of the normal model, where inference in the skew normal
model is known to be quite problematic (see Azzalini, 1985; Azzalini and Capitanio, 2003;
Pewsey, 2004).
The results of tables 2, 3, and 4, on the whole, appear quite satisfactory. When γξ,mr

is estimated by bootstrap, unless the sample is very large, it appears more convenient
to estimate σ2ξ by (5) rather than by bootstrap, i.e. M1 is slightly preferable to M2.
Nevertheless when the sample sizes n increases the test performed through M1 becomes
a little too liberal especially for small values of λ. On the contrary the test performed by
applying M2 shows a more stable asymptotic behaviour. A very satisfactory asymptotic
behaviour is also achieved by M3.
As anticipated in Section 4, estimating σ2κ directly by bootstrap, i.e. applying M4, can

lead to a very poor performance of the test, which appear extremely liberal unless the
sample size is remarkably large. In any case, for large values of n, M3 is definitely to be
preferred to M4 either in terms of accuracy and for the smaller computing time required.
Table 6 shows the simulated significance level of the joint test on symmetry and gener-

alized skew-normality, that is the normality test. Again the four methods for estimating
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σ2κ are compared with each other. The overall nominal level is either α = 0.10 or α = 0.05.
This implies that the nominal level of the symmetry test and that of the generalized skew-
normality test is approximately 0.05132 when α = 0.10 and 0.02532 when α = 0.05. For
small sample sizes the test seems to be conservative, with the exception of the case when
M4 is applied and the test becomes way too liberal, as already noticed for the GSN test
too. However when the sample size n increases, the simulated level does get close to the
nominal one.

Table 6. Frequency of rejections of the hypothesis of normality HN
0 : X ∼ N

(
ξ, ω2

)
- 10.000 simulations.

Nominal significance level 0.05
n

Estimation of σ2
κ 100 200 500 1.000 2.000 5.000 10.000

M1 0.030 0.030 0.035 0.037 0.040 0.042 0.044
M2 0.030 0.029 0.033 0.035 0.038 0.036 0.037
M3 0.029 0.029 0.033 0.038 0.041 0.040 0.041
M4 0.211 0.181 0.148 0.130 0.115 0.096 0.083

Nominal significance level 0.10
n

Estimation of σ2
κ 100 200 500 1.000 2.000 5.000 10.000

M1 0.056 0.057 0.066 0.070 0.073 0.077 0.080
M2 0.056 0.056 0.065 0.074 0.076 0.079 0.082
M3 0.055 0.056 0.066 0.071 0.077 0.080 0.081
M4 0.283 0.255 0.217 0.196 0.180 0.157 0.147

Figure 1 shows the scatter plot of the two test statistics T π and TGSN when the dis-
tribution is normal and n = 1.000. No considerable dependence appears to occur between
T π and TGSN . This outcome supports the proposal of the joint test, which relies on the,
at least approximate, independence between the two statistics when X ∼ N

(
ξ, ω2

)
.
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Figure 1. Scatter plot of Tπ and TGSN for sample size n = 1.000 under normality
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6. Appendix

Proof of Proposition 2.1

Consider the integral

ξ∫
−∞

f (x; ξ, ω, π) dx =
2

ω

ξ∫
−∞

g

(
x− ξ

ω

)
π

(
x− ξ

ω

)
dx ; (8)

by integrating (8) by parts we have

ξ∫
−∞

f (x; ξ, ω, π) dx = 2G (0)π (0)− 2

ω

ξ∫
−∞

g

(
x− ξ

ω

)
π′
(
x− ξ

ω

)
dx

where G (·) is the distribution function corresponding to g (·) and π′{(x − ξ)/ω} is the
derivative of π{(x− ξ)/ω} with respect to x. Since G (0) = 1/2 and π (0) = 1/2, it yields

ξ∫
−∞

f (x; ξ, ω, π) dx =
1

2
− 2

ω

ξ∫
−∞

g

(
x− ξ

ω

)
π′
(
x− ξ

ω

)
dx.

Hence ξ is the median of X if and only if π′{(x− ξ)/ω} = 0, which implies π{(x− ξ)/ω} =
1/2.

Proof of Proposition 4.1

Without loss of generality we shall assume ω = 1. Let m4 = n−1
∑n

i=1 (Xi − ξ)4 so that

κ̂ξ = m4

/
ω̂4
ξ . A Taylor expansion of 1/ω̂4

ξ around ω̂2 = 1 gives 1
/
ω̂4
ξ = 1− 2

(
ω̂2
ξ − 1

)
+

Op

(
n−1

)
. Consequently

κ̂ξ = m4 − 2
(
ω̂2
ξ − 1

)
m4 +Op

(
n−1

)
(9)

where the remaining terms will contribute terms of order n−1 in E (κ̂ξ) and terms of order
lower than n−1 in var (κ̂ξ). In order to compute the mean and the variance, we consider
the expansion of the second term of (9)

κ̂ξ = m4 − 2
{
E
(
ω̂2
ξ

)
− 1
}
E (m4)− 2

(
ω̂2
ξ − 1

)
E (m4)

−2
{
E
(
ω̂2
ξ

)
− 1
}
{m4 − E (m4)}+Op

(
n−1

)
= m4 − 2

(
ω̂2
ξ − 1

)
E (m4) +Op

(
n−1

)
since, under (2), E

(
ω̂2
ξ

)
= 1. Thus E (κ̂ξ) = E (m4) +O

(
n−1

)
and

var (κ̂ξ) = var (m4) + 4E {(m4)}2 var
(
ω̂2
ξ

)
− 4E (m4) cov

(
ω̂2
ξ ,m4

)
+ o

(
n−1

)
.



Chilean Journal of Statistics 15

Under (2), ω̂2
ξ and m4 are the second and fourth sample central moment, respectively, of

a random sample drawn from a N(0, 1) distribution, hence E (m4) = 3, var
(
ω̂2
ξ

)
= 2/n,

var (m4) = 96/n and cov
(
ω̂2
ξ ,m4

)
= 12/n (Serfling, 1980, pag. 68). It yields E (κ̂ξ) =

3 + O
(
n−1

)
and var (κ̂ξ) = 24/n+ O

(
n−2

)
. Since ω̂2

ξ converges in probability to ω2 = 1,

κ̂ξ has the same asymptotic distribution of n−1
∑n

i=1 {(Xi − ξ)/ω}4. Consequently, by the

central limit theorem, the asymptotic distribution of n1/2(κ̂ξ − 3)
/
241/2 is N(0, 1).

Proof of Proposition 4.2

A Taylor expansion of ŵ2 with respect to ξ̂ around ξ yields

ω̂2 = ω̂2
ξ − 2

(
ξ̂ − ξ

)
m1 +Op

(
n−1

)
. (10)

Furthermore we have

1

ω̂4
=

1

ω̂4
ξ

− 2
1

ω̂6
ξ

(
ω̂2 − ω̂2

ξ

)
+Op

(
n−1

)
, (11)

and by replacing (10) in (11) it yields

1

ω̂4
=

1

ω̂4
ξ

+ 4
1

ω̂6
ξ

(
ξ̂ − ξ

)
m1 +Op

(
n−1

)
. (12)

Moreover, since ω̂2
ξ − ω2 = Op

(
n−1/2

)
, we have

1

ω̂4
ξ

=
1

ω4
− 2

ω6

(
ω̂2
ξ − ω2

)
+Op

(
n−1

)
,

1

ω̂6
ξ

=
1

ω6
+Op

(
n−1/2

)
. (13)

By replacing (13) in (12) it yields

1

ω̂4
=

1

ω4
− 2

ω6

(
ω̂2
ξ − ω2

)
+

4

ω6

(
ξ̂ − ξ

)
m1 +Op

(
n−1

)
.

Let m̂r = (1/n)
n∑

i=1

(
Xi − ξ̂

)r
, we get

m̂4 = m4 − 4
(
ξ̂ − ξ

)
m3 +Op

(
n−1

)
,

consequently

κ̂ =
m̂4

ŵ4
=
m4

ω4
− 2m4

ω6

(
ω̂2
ξ − ω2

)
+

4

ω

(m4m1

ω5
− m3

ω3

)(
ξ̂ − ξ

)
+Op

(
n−1

)
.

Let µr = E (mr); since the quantities mr, for r = 1, . . . , 4 are sample means, we have
mr − µr = Op

(
n−1/2

)
. A Taylor expansion of κ̂ with respect to the mr’s around their

means yields
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κ̂ =
µ4
ω4

+
1

ω4
(m4 − µ4)− 2

µ4
ω6

(
ω̂2
ξ − ω2

)
+

4

ω

(µ4µ1
ω5

− µ3
ω3

)(
ξ̂ − ξ

)
+Op

(
n−1

)
.

If the distribution has the density (2), µ4/ω
4 = 3. Hence

κ̂ = 3 +
1

ω4
(m4 − µ4)−

6

ω2

(
ω̂2
ξ − ω2

)
+ 4η

1

ω

(
ξ̂ − ξ

)
+Op

(
n−1

)
.

Since E
(
ξ̂
)
= ξ+O

(
n−1

)
and ω̂2

ξ andm4 are unbiased, E (κ̂) = 3+O
(
n−1

)
. The variance

of κ̂ is

var (κ̂) = var
(m4

ω4

)
+ 36var

(
ω̂2
ξ

ω2

)
− 12cov

(
m4

ω4
,
ω̂2
ξ

ω2

)
+

16η2

ω2
var
(
ξ̂
)

+
8η

ω5
cov

(
ξ̂,m4

)
− 48η

ω3
cov

(
ξ̂, ω̂2

ξ

)
+ o

(
n−1

)
.

Under (2), because of the invariance property of Proposition 2.2, ω̂2
ξ/ω

2 and m4/ω
4 have

the same distribution of the sample means of (Y − ξ)2 and (Y − ξ)4 where Y ∼ N (ξ, 1).

Therefore we have var
(
ω̂2
ξ/ω

2
)
= 2n−1, var

(
m4/ω

4
)
= 96n−1 and cov

(
ω̂2
ξ/ω

2,m4/ω
4
)
=

12n−1, which yields (4).
Finally, since n1/2 (κ̂− 3) is a function of asymptotically normal statistics, it is itself

asymptotically normally distributed.
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