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Abstract

Since the performance of Pearson’s χ2 and deviance tests typically used to evaluate
goodness of fit of multinomial models depends on sample size and number of categories,
the resulting p-values may become distorted. Having that fact as a basis, this article
explored a modification in the construction of the above cited tests by replacing the
estimates of maximum likelihood with the introduction of a posterior mean. The perfor-
mance of the modified tests was evaluated in comparison with the results of conventional
tests obtained by Monte Carlo simulation using original specifications. Due to the con-
servative results, we concluded that the modification made by the inclusion of prior
information Beta(5, 5) in building the deviance test resulted in a promising test with
satisfactory power values. The results of the modified Pearson’s χ2 test showed that,
for some evaluated cases, the type I error values were not consistent with the specified
nominal level, suggesting that the conventional form of this test is more appropriate to
assess multinomial logit models goodness-of-fit.

Keywords: Correlated binomial · Deviance · False discovery rate · Monte Carlo
simulation · Overdispersion · q-value.
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1. Introduction

The estimation of parameters in a multinomial logit model considers structures called
contingency tables for their formalization (Jhun and Jeong, 2000). For the two-dimensional
case, J categories (or classes) are represented in the vertical direction, while the response
frequencies “success” and “failure” encoded by i = 1, 2, are described in the horizontal
direction. Under this formalization, each cell is interpreted as a value given by yij , for
i = 1, 2 and j = 1, . . . , J . It is appropriate to evaluate multinomial logit model goodness-
of-fit irrespective of the application and, for this purpose, the deviance and Pearson’s χ2

tests are used.
According to Dobson (2001), these tests are constructed considering the predicted prob-

ability distance of the proposed model in relation to the observed probability. However,
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these tests are sensitive to an overdispersion effect, which occurs when the sample variance
exceeds the nominal variance assumed by the model. Bogutchi et al. (2006) explained that
this effect results in incorrect standard deviations that become underestimated. Taking
into account these evidences, Hinde and Demétrio (1998) claim that the predictions are
inaccurate.
Several authors suggested alternative methods toreduce this effect. For example, we can

mention Efron’s (1986) point of view that considers a double family exponential, Smith
(1989) who treats the generalized linear models as dispersion covariates, and Smith and
Verbyla (1999) who consider an additional regression model to the dispersion parameter
and also incorporate this parameter. Moreover, the authors show that the dispersion sub
model is a gamma generalized linear model.
In the case of genuinely Bayesian tests involving multinomial distributions, Petri (2007)

studied the relationship between the frequentist and Bayesian levels of significance evalu-
ated by measures of evidence defined, respectively, by p-value and e-value, which is orig-
inated from the Full Bayesian Significance Test (FBST), presented by Pereira and Stern
(1999). The authors concluded through simulation studies that the association between
these measures is almost one to one. However, given this equivalence, the advantage of
using the Bayesian alternative to significance (e-value) without major philosophical exam-
ination is considered only related to knowledge of the posterior distribution without the
need to know the total sample space.
The motivation for this paper was inspired by the studies of Agresti and Min (2005),

which deal with information from various articles (Good, 1956; Altham, 1969) discussing
Bayesian inference for contingency tables. It is important to note that most of the articles
cited deal with point estimation or significance testing and connections between Bayesian
and frequentist results. We emphasize that the modification of the statistics of the deviance
and chi-squared tests in this research was motivated by the fact that conventional tests
Deviance e Pearson’s χ2 are founded on frequentist arguments. Thus, the incorporation
of aprior information of the researcher in the evaluation of goodness-of-fit of multinomial
models is made in order to reduce the uncertainty in the selection of models, since different
models supposedly could be compared and adjusted. Thus, more information in the model
selection can be added in the construction of these tests.
In summary, we propose an enhancement of deviance and Pearson’s χ2 tests using a

Bayesian argument so that estimates of the proportions a replaced by estimates from the
posterior distribution. Thus, by imposing a prior distribution the researcher has flexibility
in adding information, e.g. the effects of asymmetry on the evaluation of goodness of fit for
multinomial models. Thus, the interest in carrying out this study, by empirical simulation
using the Monte Carlo method, is to verify if the inclusion of a Bayesian argument in
the construction of each test can improve the control of type I errors and resulting power
values.
This paper is organized as follows. In Section 2 we describe the statistical modeling and

inference including a simulation study for the multinomial model, proposed test procedures,
and the application of FDR criteria for determining an overall nominal level. In Section
3 we discuss the results of this study. Finally, in Section 4, some concluding remarks are
given.

2. Statistical Modeling and Inference

This section is organized as follows. In Section 2.1 the multinomial model and the distri-
butions used in the simulation are presented. In Section 2.2 a modification in the deviance
and Pearson’s χ2 tests which consider the posterior mean of the binomial model is pre-
sented. In Section 2.3 the authors present an application of FDR (False Discovery Rate)
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for the purpose of detecting the occurrence of false positives, interpreted as the proportion
of errors due to erroneous rejection of H0 true, the deviance and Pearson’s χ2.

2.1 Multinomial model simulation

The multinomial model simulation used for this work considered J categories and the
random variables vector Y = (Y1, . . . , YJ), where each component represented the num-
ber of occurrences in the jth category, for j = 1, . . . , J , associated with the vector
π = (π1, . . . , πJ). Thus, Yj follows a binomial correlated distribution with parameters
nj , πj and ρ, denoted by CB(nj , πj , ρ). It should be noted that each observation yj from
jth category, for j = 1, . . . , J , was generated by a correlated binomial model developed
by Luceño (1995). The probability distribution of CB(nj , πj , ρ) is a mixture of two dis-
crete distributions, the random variable Yj stands for this mixture, which has a binomial
distribution B(nj , πj), with probability (1 − ρ), and a modified Bernoulli represented by
BernM(πj) variable, assuming 0 or nj values, with probability ρ (Fu and Sproule, 1995).
The probability distribution of Yj , given nj , πj and ρ, is:

P (Yj |nj , πj , ρ) =

(
nj

yj

)
π
yj

j (1− πj)
nj−yj (1− ρ)IA1

(yj)

(1)

+π
yj/nj

j (1− πj)
(nj−yj)/njρIA2

(yj),

where A1 = 0, 1, . . . , nj , A2 = 0, nj , yj = 0, . . . , nj and 0 ≤ ρ ≤ 1.
This can be verified using the probability generation function developed by Tallis (1962).

The expectation and variance of Yi are, respectively, E(Yj) = njπj and V ar(Yj) = πj(1−
πj){nj + ρnj(nj − 1)}, which means that for ρ ̸= 0, the model includes extra-binomial
variations. If ρ tends to 1, it creates an excess of nj or zeros on the observed data. More
details can be found in Tallis (1962). It should be noted that the CB(nj , πj , ρ) model is
equivalent to ordinary binomial model when ρ = 0.
In both situations the value of type I error and the power of the tests, which will be

described in more detail in the next subsection, were computed. These values were de-
rived from the proportion of times that these tests showed significance, given a 0.05 fixed
nominal value, in a total of 10, 000 experiments simulated by the Monte Carlo method.
The parametric values used are presented in Table 1. The Monte Carlo simulation algo-
rithms was developed using software R, which is available at www.R-project.org; see R
Development Core Team (2009).

Table 1. Parameters of the binomial distribution used in the Monte Carlo simulations.

J πj(j = 1, . . . , J) nj N
(20; 20; 20) 60

3 (0.33, 0.33, 0.34)
(80; 80; 80) 240
(20; . . . ; 20) 100

5 (0.20; 0.20; 0.20; 0.20; 0.20)
(80; . . . ; 80) 400
(20; . . . ; 20) 140

7 (0.15; 0.15; 0.15; 0.15; 0.15; 0.15; 0.10)
(80; . . . ; 80) 560
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2.2 Proposed tests procedures

The null hypothesis evaluated by deviance and Pearson’s χ2 tests was described by

H0 : π = π∗, (2)

where π∗ = (π1, . . . , πJ) is the vector of probabilities estimated by (5). Possibly the most
commonly used deviance and Pearson’s χ2 statistics were computed, respectively, according
to

D = 2

J∑
j=1

{
yj log

(
π̃j
π̂j

)
+ (nj − yj) log

(
1− π̃j
1− π̂j

)}
, (3)

Q =

J∑
j=1

nj
(π̃j − π̂j)

2

π̂j(1− π̂j)
, (4)

where π̃j = yj

nj
is the ML estimator of each component of πj , for j = 1, . . . , J , and π̂j

indicated the adjusted probability resulting from the logit model:

π̂j =
eβ̂0+β̂j

1 + eβ̂0+β̂j

, j = 1, . . . , J. (5)

The linear term β̂0 + β̂j was obtained through the logit transformation Dobson (2001)
given by

logit πj = log

(
πj

1− πj

)
= β0 + βj , j = 1, . . . , J, (6)

where β0 is the logit of the reference group, and βj measures the difference in logits between
level j of the category and the reference level.
The proposed modification in (3) and (4) statistics was made using Bayesian estimations

instead of π̃j .The inclusion of a Bayesian argument with different informative priors aims
to study the approximation of p-values obtained and modified in relation to the usual
tests. Thus, by using posterior expectation instead of the maximum likelihood estimator
(MLE) it will be possible to assess whether the tests mentioned in (3) and (4) showed some
improvement in verification of multinomial models goodness-of-fit. To do this, we set the
likelihood (7) as the function πj , considering ρ = 0 for the equation (1),

p(yj |πj) ∝ πα
j (1− πj)

β. (7)

Thus, if the prior density (8) is of the same form, with its own values α and β,

p(πj) ∝ πα−1
j (1− πj)

β−1, (8)
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which is a beta distribution with parameters α and β: πj ∼ Beta(α, β). This prioris chosen
because it is conjugate, thus the model becomes more flexible according to the researcher’s
interaction with the data, as inclusion of an non-informative prior can be obtained from
a conjugate prior (Gammerman and Migon, 1993) by specifying the hyperparameter scale
tending to zero and keeping the others constant. However, it should be emphasized that the
main interest lies in posterior distribution, and since it is generally proper even when the
prior distribution is improper, possible impropriety of prior distributions is not important.
The posterior density for πj is (Gelman et al., 2004)

p(πj |yj) ∝π
yj

j (1− πj)
nj−yjπα−1

j (1− πj)
β−1 =

= π
yj+α−1
j (1− πj)

nj−yj+β−1 =

= Beta(πj |α+ yj ;β + nj − yj).

Thus, the posterior mean represented the Bayesian estimator for πj , for j = 1, . . . , J ,
according to the expression (9), defining α∗ = α+ yj and β∗ = β + nj − yj , is

E (πj |yj) =
α∗

α∗ + β∗ =
yj + α

nj + (α+ β)
. (9)

The posterior variance is

V ar (πj |yj) =
(α∗ + yj)(β

∗ + nj − yj)

(α∗ + β∗ + nj)2(α∗ + β∗ + nj + 1)
=

E (πj |yj) [1− E (πj |yj)]
α∗ + β∗ + n− 1

. (10)

The relation between the sample proportion yj/nj (MLE estimator) and E(πj |yj) is
verified if yj and nj − yj become large with fixed α and β. Under these conditions:

E(πj |yj) ≈
yj
nj

, (11)

V ar (πj |yj) =
1

nj

yj
nj

(
1− yj

nj

)
, (12)

which approaches zero at rate 1/nj . According to Gelman et al. (2004), clearly, in the limit,
the parameters of the prior distribution have no influence on the posterior distribution. By
the above, if we assume the α = 0 and β = 0 the approximation described in (11) resulted
in the MLE estimator.
Thus, the values of the parameters that describe the posterior distribution assumed for

the pair (α, β) were (2, 8), (5, 5), and (8, 2) and were defined only for characterizing prior
distributions with different degrees of symmetry. We assumed α = 0 and β = 0, yj/nj is
the maximum likelihood (ML) estimator of πj to allow comparison between, on one hand,
deviance and Pearson’s χ2 modified tests, and on the other hand, the conventional tests.
In terms of comparison, the performed tests were analyzed by the empirical probabilities

concerning type I errors and power rates obtained via the Monte Carlo simulation and
compared with the results of the original tests, where the values (0, 0) were assumed for
the prior information. As such, this paper will discuss the following results: type I error
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values and power. We emphasize that the choice of these prior distributions is justified
by the fact that the inclusion of the Bayesian argument in the construction of Deviance
and Pearson’s χ2 tests is very significant information to the researcher. Thus, the use
of non-informative prior distributions has not been applied since, in general, these prior
distributions are used in situations where data information is predominant when compared
with the vague knowledge of the researcher.

2.3 Application of FDR (False Discovery Rate) criteria for determining
an overall nominal level: A Monte Carlo Study

Considering the problem of detecting the occurrence of false positives, interpreted as the
proportion of errors due to erroneous rejection of H0 true, the deviance (3) and Pearson’s
χ2 (4) tests were applied and their p-values computed, given a set of m = 10, 000 null and
independent hypotheses, for each sample generated under the hypothesis H0 (2). At the
end of the Monte Carlo simulation, it was possible to obtain the empirical distribution of
p-values for each test.
The FDR criteria (false discovery rate) were used to determine an adjusted p-value, ie,

a new measure of evidence defined as q-value (q) that measures the lowest false discovery
rate, according to the methodology of Benjamini and Hochberg (1995). Therefore, the
application of the FDR criteria was made assuming a set of m = 10, 000 hypotheses H0

and computing m0 as the frequency of Hi, for i = 1, . . . , 10, 000, that were considered true.
For each hypothesis Hi, the tests (3) and (4) were applied and the corresponding p-values
were obtained.
With these specifications, we have assumed R as the number of rejected hypotheses, V

as the number of true null hypotheses that were rejected and S as the number of false
hypotheses rejected. Thus, FDR was defined as E[V/R] = F if R represents a number
other than zero and greater than V . In the situation of F = 0, the error of rejecting true
null hypotheses is not committed.
The determination of the cut-off that controls the FDRδ% = nc equivalent to an overall

nominal level and interpreted as the value to reject all the hypotheses H0 with p-values less
than or equal to nc were obtained according to the procedure described in the following
steps:

(i) 1 - For each hypothesis H01, H02, . . ., H010,000 the corresponding value Pi, for
i = 1, . . . , 10, 000, was obtained and put in a crescent order, that is, P(1), P(2), . . .,
P(10.000).

(ii) 2 - q = (m × Pi)/i was defined by determining the largest i for which FDR is
controlled at a level q∗ according to the relation q∗ ≥ (mPi)/i and interpreted as
the q-value cut-off.

3. Results and Discussion

According to the proposed objectives, the results presented below were obtained using
the Monte Carlo method in order to investigate whether the deviance and chi-square
tests, modified by replacing the MLE estimate for the posterior expectation (9) showed an
improvement in the control of type I error and power.
The simulation studies were used to obtain empirical results that contribute to the

evaluation of the proposed tests for two main reasons: (1) the tests listed in section 2
are asymptotically distributed as a χ2 distribution and (2) obtaining analytical results
through the construction of frequentist statistical tests with the incorporation of Bayesian
arguments is complex. Thus, the correlated binomial distribution (section 2.1) was only a
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manner for generating samples with overdispersion effect in the simulation process, since
one of the factors which cause this effect is associated with correlated responses.
Having been provided with this basic information, assuming different values for ρ > 0

(0.20; 0.50 and 0.70), it was possible to measure the overdispersion level present in the
generated samples and consequently a favorable environment for evaluating the power of
the tests was obtained. Assuming ρ = 0, samples are generated considering the binomial
distribution (Luceño, 1995). Thus, it becomes possible to evaluate rejection rate sunder
the null hypothesis defined in H0 by using the correlated binomial model as a sample
generating mechanism.
The functions implemented in the R software to generate contingency tables are de-

scribed in the Appendix, keeping the procedure described in Section 2.1 with an illustrative
example of the algorithms execution.
The results presented below refer to the performance of the statistics used in the de-

viance and Pearson’s χ2 tests to evaluate the multinomial logit model for goodness-of-fit.
Considering that some prior information was incorporated to construct these tests, specifi-
cally assuming a Beta distribution (α, β) for the observed probability (π̃) with the settings
Beta(2, 8), Beta(5, 5) and Beta(8, 2), the tests will now be called ”modified deviance and
Pearson’s χ2 tests”, due to the inclusion of a posterior expectation.
Regarding the results of the value of type I error (Table 2), in the case of deviance and

Pearson’s χ2 original tests, we observed that in all cases these tests controlled the type I
error rates, with values equal to or below the 0.05 nominal level, except for the situation in
which the binomial model was subjected to seven categories and larger samples (N = 80),
where the resultant rates were approximately 0.10. In comparison with the tests proposed
by Sutradhar et al. (2008), built to assess binomial and/or multinomial models goodness-
of-fit with overdispersion, based on Pearson’s χ2 statistic, our finding can be considered
reasonable.
Park et al. (1996) studied the overdispersion effect considering three categories, underthe

hypothesis H0 : π = π∗, where π∗ = (π1, . . . , πJ), fixed J = 3, in which the values of π
were defined as, respectively, 0.4, 0.2, and 0.4. Under this setting, the authors assumed
sample sizes for each π to be respectively, 10, 15, and 20 and they concluded that for
all overdispersion levels (ρ = 0.3, 0.5 and 0.7), their test controlled the Type I error with
rates close to nominal levels 0.10, 0.15, and 0.20. Another result was verified by Cressie
and Read (1984). The authors examined a family of statistics defined by

{
Iλ;λ ∈ ℜ

}
where λ = 1 resulted in Pearson’s χ2 test. They followed an approach based on statistical
moments of this statistic and they concluded that, under the hypothesis H0 : π = π∗

where π∗ = (π1, . . . , πJ), fixed J = 4, assuming nj = 20, their test did not control type I
error at a 0.10 nominal level.
Regarding the performance of modified tests, the results related to type I error control

revealed that in almost all cases the deviance test controlled type I errors with a proba-
bility close to the 0.05 nominal level. Moreover, with the adoption of a prior distribution
Beta(8, 2), a right-skewed distribution, the deviance test has remained conservative. There
is no discussion about the deviance performance in other bibliographies and, due to this
fact we are able to highlight the relevance of this research.
For the Pearson’s χ2 test, we observed some inconsistent results influenced by the number

of categories assigned to the binomial model. For J=3 categories, this test produced high
Type I error rates, when the prior distribution Beta(8, 2) was used. For higher J values (5
and 7), the test did not control type I errors, including a prior distribution Beta(5, 5).
Table 3 shows the empirical power of original and modified deviance tests and Table

4 shows the empirical power of original and modified Pearson’s χ2 tests. According to
Table 3, we observed that the deviance test resulted in expressive power rates in situations
of large samples (N = 80), when the number of categories was J=5 and J=7, given the
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Table 2. Rejection rates obtained in deviance and Pearson’s χ2 used for validation of a multinomial logit model
considering the parametric values πj for j = 1, . . . , J .

J = 3(0.33; 0.33; 0.34)
nj = 20 nj = 80

MLE (2,8) (5,5) (8,2) MLE (2,8) (5,5) (8,2)
Deviance 0.0533 0.0275 0.0175 0.0010 0.0500 0.0455 0.0415 0.0140
Pearson 0.0483 0.0125 0.0665 0.9620 0.0481 0.0370 0.0395 0.3860

J = 5(0.20; 0.20; 0.20; 0.20; 0.20)
nj = 20 nj = 80

MLE (2,8) (5,5) (8,2) MLE (2,8) (5,5) (8,2)
Deviance 0.0415 0.0180 0.0000 0.0000 0.0485 0.0515 0.0145 0.0000
Pearson 0.0380 0.0000 0.5370 1.0000 0.0455 0.0200 0.1135 1.0000

J = 7(0.15; 0.15; 0.15; 0.15; 0.15; 0.15; 0.10)
nj = 20 nj = 80

MLE (2,8) (5,5) (8,2) MLE (2,8) (5,5) (8,2)
Deviance 0.0224 0.0040 0.0000 0.0000 0.1045 0.0840 0.0040 0.0000
Pearson 0.0220 0.0000 0.9620 1.0000 0.1005 0.0385 0.5945 1.0000

overdispersion levels ρ = 0.50 and ρ = 0.70. Given the number of categories 5 and 7, we
noted that the modified tests with the inclusion of the prior distributions Beta(2, 8) and
Beta(5, 5) resulted in satisfactory power rates. However, this result was expected.

Table 3. Power values of deviance test obtained at different overdispersion levels of a multinomial logit model
considering distinct number of populations and parametric values πj , for j = 1, . . . , J .

J = 3(0.33; 0.33; 0.34)
nj = 20 nj = 80

ρ MLE (2,8) (5,5) (8,2) MLE (2,8) (5,5) (8,2)
0.20 0.3335 0.1785 0.1530 0.1060 0.4680 0.4650 0.4490 0.3525
0.50 0.4950 0.4010 0.2910 0.2330 0.6840 0.5760 0.5640 0.5294
0.70 0.5515 0.5070 0.2970 0.2470 0.6830 0.4685 0.4510 0.4525

J = 5(0.20; 0.20; 0.20.0.20.0.20)
nj = 20 nj = 80

ρ MLE (2,8) (5,5) (8,2) MLE (2,8) (5,5) (8,2)
0.20 0.2670 0.2315 0.1620 0.1380 0.6680 0.6890 0.6025 0.3301
0.50 0.5130 0.4225 0.3400 0.2820 0.9250 0.8990 0.7965 0.5805
0.70 0.5730 0.5095 0.4325 0.3820 0.8990 0.8475 0.7635 0.5825

J = 7(0.15; 0.15; 0.15; 0.15; 0.15; 0.15; 0.10)
nj = 20 nj = 80

ρ MLE (2,8) (5,5) (8,2) MLE (2,8) (5,5) (8,2)
0.20 0.2130 0.2025 0.1680 0.1275 0.8215 0.7735 0.4420 0.1870
0.50 0.4390 0.4115 0.3620 0.2775 0.9675 0.9435 0.6680 0.4195
0.70 0.5200 0.5215 0.4735 0.3600 0.9320 0.8910 0.6690 0.5050

A question that naturally arises is how such test procedures perform if the Bayes-Laplace
and Jeffreys priors are assumed. It is important to emphasize that in the case of the
Beta(5, 5) distribution, the modified deviance test proved to be a promising one because,
in comparison to results of type I error control (Table 2), this test was conservative and,
for this reason, we expected lower power.
Under the same settings, the results found in Table 4 revealed that the modified Pearson’s

χ2 test was also a competitor test in comparison to the original version. However, it should
be noted that the results that are discussed refer only to cases where the control of type I
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error was effective (Table 2). Thus, we proceed with the discussion of the results in Table
4.
Regarding the original Pearson’s χ2 test, for small samples (nj = 20) we observed that

the power rates (Table 4) were similar to those obtained with the deviance test (Table 3)
in general. This fact was expected according to the similarity of type I error control for
the two tests, expressed in Table 2. We observed the same behavior when considering the
modified Pearson’s χ2 test with the prior distribution Beta(2, 8). However, under the small
samples situation (nj = 20), with 3 categories and prior distribution Beta(5, 5), where the
Pearson’s χ2 test controlled the type I error (Table 2), we found that the modified test
presented low power rates. This happened to all overdispersion levels (ρ) and larger samples
(nj = 80).
Increasing the number of categories J for 5 and 7, the results in bold in Table 3 were

not interpreted because there was no control of the type I error by Pearson’s χ2 test, as
reported on the discussion made on Table 2.

Table 4. Power values of deviance test obtained at different overdispersion levels of a multinomial logit model
considering distinct number of populations and parametric values πj for j = 1, . . . , J .

J = 3(0.33; 0.33; 0.34)
nj = 20 nj = 80

ρ MLE (2,8) (5,5) (8,2) MLE (2,8) (5,5) (8,2)
0.20 0.3310 0.1750 0.5180 0.9810 0.4870 0.5140 0.5265 0.6725
0.50 0.5020 0.3940 0.8910 0.9900 0.7630 0.8700 0.8765 0.9320
0.70 0.5685 0.5230 0.9760 0.9840 0.7730 0.9660 0.9655 0.9810

J = 5(0.20; 0.20; 0.20.0.20.0.20)
nj = 20 nj = 80

ρ MLE (2,8) (5,5) (8,2) MLE (2,8) (5,5) (8,2)
0.20 0.2630 0.1990 0.8350 1.0000 0.6710 0.6750 0.7027 1.0000
0.50 0.5140 0.4145 0.9830 1.0000 0.9260 0.9610 0.9695 1.0000
0.70 0.5830 0.5560 0.9965 1.0000 0.9110 0.9950 0.9965 1.0000

J = 7(0.15; 0.15; 0.15; 0.15; 0.15; 0.15; 0.10)
nj = 20 nj = 80

ρ MLE (2,8) (5,5) (8,2) MLE (2,8) (5,5) (8,2)
0.20 0.2180 0.1930 0.9994 1.0000 0.7875 0.6800 0.9130 1.0000
0.50 0.4470 0.4120 0.9999 1.0000 0.9675 0.9670 0.9980 1.0000
0.70 0.5300 0.5340 1.0000 1.0000 0.9350 0.9950 1.0000 1.0000

Then, we discuss the application of FDR criteria (false discovery rate) to determine
the overall nominal level. Note that the FDR procedure is based on the distribution of
p-values, in cases of independent or multiple tests Benjamini and Yekutieli (2001). Thus,
many situations can be exemplified. However, in this work we emphasize that the FDR
procedure was applied in circumstances in which the estimates of MLE and nj = 80 were
considered. This was made because, in these cases, the tests were characterized in their
original form, keeping their asymptotic properties in the sense that, for large samples, the
tests statistics provide a better approximation to the chi-square distribution.
The results illustrated in Figure 1 correspond to application of the FDR procedurein the

distribution of p-values of Pearson’s χ2 and deviance tests in order to determine an overall
significance level q-value cut-off through the FDR criteria by setting the nominal level of
significance of δ = 5%. This fact is expressive when considering a q-value close to 0.8,
where a large number of tests were significant. Similarly, we observed the same behavior
for J = 5 categories; see Figure 1 (second panel). When we considered J = 7 categories,
this problem was not detected because assuming a q-value approximately equal to 0.07 for



82 M.A. Cirillo and P.S. Ramos

both tests resulted in a low number of significant tests; see Figure 1 (third panel).

4. Conclusion

According to the results obtained in the evaluations, the deviance test controlled type I
errors under all evaluated situations with values close to or below the 0.05 nominal level.
However, it should be noted that the modification given by the inclusion of a prior distri-
bution Beta(5, 5) caused high power rates. Therefore, we consider the deviance test more
promising than conventional deviance tests under large sample situations. This prior distri-
bution was efficient considering the simulated configurations in this research. However, it is
not possible to ensure that this efficiency will be the same in different cases of probability
and sample sizes.
Due to the Pearson’s χ2 test sensitivity for type I error control considering different

prior distributions, the modified Pearson’s χ2 test showed no benefits to recommend its
use when compared to the conventional test.
Based on the simulated results, the FDR criteria applied to Pearson’s χ2 and deviance

tests in its original configuration for J = 7 categories and nj = 80 samples provided an
overall nominal level close to the nominal significance level fixed at 5%.
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Appendix

R functions to generate contingency tables to obtain the rejection rates and power values
via Monte Carlo method.

Table 5. R function to compute yj ∼ CB(nj , πj , ρ)

bc=func t i on (n , phi , rho ) {
# Arguments : CB( nj , p i j , rho ) ( Sec t i on 2 . 1 ) #
x1=rbinom (1 ,n , phi )
x2=rbinom (1 ,1 , phi )∗n
u=rbinom (1 ,1 , rho )
y=(1−u)∗ x1+u∗x2

return ( y )
}

After the contingency tables generated, the adjusted probabilities were obtained using
the lm command. Repeating this process 10, 000 times it was possible to estimate the rates
by computing the empirical ratio given by the number of times that the p-value was greater
than the 0.05 fixed nominal value.
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Figure 1. Number of significant results of the Pearson’s χ2 (on the left) and deviance (on the right) tests in function
of the cut-off FDR values obtained at different nominal levels with J = 3 (first panel), J = 5 (second panel) and
J = 7 (third panel).
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Table 6. R Function to compute contingency tables used in the Monte Carlo simulation

t ab l e c on t=func t i on (J , parj , nj , pho , a l f a , beta ) {
# Arguments
# J = t o t a l number o f c a t e g o r i e s ( Table 1 − Sect i on 2 . 1 )

# par j = vetor p i j ( Table 1 − Sect i on 2 . 1 )
# nj = vetor nj ( Table 1 − Sect i on 2 . 1 )
# pho = pr obab i l i t y rho CB( nj , p i j , rho )
# ( eq . 1 , Sec t i on 2 . 1 )
# a l f a and beta = hyperparameters o f
# beta p r i o r d i s t r i b u t i o n

respns=matrix (0 , J , 6 )

for ( j in 1 : J )
{

sbc=bc ( nj [ j ] , pa r j [ j ] , pho ) # number o f occurences
# ( suc c e s s ) in j th category

f=nj [ j ]− sbc # nj−yj

#cons t ruc t i on o f cont ingency tab l e
re spns [ j ,1 ]= j # j th category
respns [ j ,2 ]= sbc # yj
respns [ j ,3 ]= f # nj−yj
re spns [ j ,4 ]= nj [ j ] # nj
respns [ j , 5 ]=( sbc+a l f a )/ ( nj [ j ]+( a l f a+beta ) ) # E( p i j | yj )
re spns [ j ,6]=1−( sbc+a l f a )/ ( nj [ j ]+( a l f a+beta ) ) # 1 − E( p i j | yj )

}
return ( re spns )

}

Table 7. Application of functions described in tables 5 and 6

J=5; a l f a =8; beta=2;pho=0.8
pj<−as . matrix ( c ( 0 . 2 0 , 0 . 2 0 , 0 . 2 0 , 0 . 2 0 , 0 . 2 0 ) )
nj<−as . matrix ( c (50 , 50 , 50 , 50 , 50 ) )
t ab l e=tab l e c on t (J , pj , nj , pho , a l f a , beta )
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