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Abstract

Modern archaeological investigations are designed to gain maximum information whilst
minimising damage to the archaeological site. Hence non-invasive surface studies are a
key preliminary stage. One such technique is magnetometry which produces a surface
grid of readings, each giving information about the whole 3D subsurface. The inversion
of this convolution is an inverse problem requiring substantial regularization. Current
approaches incorporate prior information describing smoothness in a Bayesian setting.
Typically the subsurface reconstruction is as a single layer, and requires various physical
parameters, such as the depth and extent of the layer, to be known. In general, simulta-
neous estimation of depth and extent along with the magnetic susceptibility distribution
is not possible without including further prior information – in particular about depth
and extent. Here it is proposed that information about the stratigraphy is obtained from
a separate technique where vertical cores of material are extracted from the site. This
borehole data allows estimation of depth, extent and susceptibility at a small number
of locations across the site. Resulting information can then be used in prior densities in
the full subsurface reconstruction. Further, a multi-layer subsurface model is proposed
which allows different depth and extent across the archaeological site. The approach is
illustrated with part of a dataset from a real archaeological site for which excavation
records are also available.

Keywords: Bayesian model · borehole data · empirical Bayes · image reconstruction
· inverse problems · magnetometry · MCMC · stratigraphy.
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1. Introduction

Everything around us is magnetic, and just as we can describe objects and materials by
their size, colour or chemical composition, so we can describe them by their magnetic
properties. Since the mid 1940s, archaeologists have been using geophysical methods for
surveys of archaeological sites. In particular, during the last 30 to 40 years magnetic
surveying has become an important tool of research in archaeology.
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LeBorgne (1960) showed that soil magnetization is a product of the Earth’s field strength
and the magnetic susceptibility of the soil, which arises from iron-bearing minerals. Ad-
ditionally, heated objects, such as clay, brick and pottery, can exhibit thermo-remanent
magnetism, in which the object retains its magnetism in the absence of an external field.
The sources of this magnetization are the iron compounds in the soils. The key property
is the magnetic susceptibility which is a dimensionless quantity, but which is usually ex-
pressed with SI or emu after the value to indicate the system of units of the magnetic field
intensities. All soils have magnetic susceptibility to some degree. A typical susceptibility
value for rock is 10, with subsoils 10-100 and topsoils 100-1000. Once rocks, clays and soil
have been heated the susceptibility can increase to 1000-5000. Figure 1 shows the suscep-
tibilities of different subsoil geologies. It is clear that the sand has higher susceptibility
compared to the other materials and that topsoil, pits and ditches tend to have higher
susceptibility than the subsoil.
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Figure 1. Susceptibility of different types of soil.

Archaeological structures beneath the ground surface cause small local changes, called
anomalies, in the Earth’s magnetic field due to different magnetic susceptibilities compared
to the surrounding ground. The measured data are usually preprocessed and displayed as
images then manually interpreted by experts (Scollar 1970). The archaeological interpre-
tation of magnetic anomalies is very difficult for several reasons: first, because it is a 2D
projection of a 3D world. Secondly, the anomalies of nearby structures may be superim-
posed and finally, there is always a large amount of noise in the measurement caused by
the susceptibility variance of the topsoil, by geological structures and by other sources
(Eder-Hinterleitner et al. 1995). Although the archaeologist can estimate whether there is
an anomaly of an archaeological structure or not and the probable kind of structure, the
image of such anomalies itself does not give any detailed description of the buried object,
such as its depth and extent.
In most current approaches, a simplified single-layer model is used where the archae-

ological features are assumed to be at a known depth below the surface, and to have
the same vertical extent. Only the magnetic susceptibility is allowed to vary. In real sit-
uations, quantities such as depth and extent are unlikely to be known. Any statistical
analysis incorrectly fixing such parameters is likely to produce biased estimates of mag-
netic susceptibility which could again mislead site interpretation. To determine vertical
stratigraphy a cylindrical core of material can be obtained using a soil borer, which can
penetrate over 1m deep in stone free ground. Often the strata in the core show no varia-
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tion in colour or texture, but an analysis of the magnetic susceptibility can differentiate
between the separate periods of the now departed landscape. Once collected, the core is
passed through a detector coil, allowing readings of the susceptibility to be made along
the length of the sample. The use of borehole data for stratigraphy has been studied by
Allum (1997) and Allum et al. (1999) and single-layer reconstruction from surface mag-
netometry data by Aykroyd et al. (2001). This paper concentrates on the most important
parameters after the magnetic susceptibility, which are the depth and extent. The aim is
to achieve improved estimates for the magnetic susceptibility of the features as well as
present a better description of the subsurface.
The two applications to be considered can both be defined as inverse problems – see,

for example, Ribés and Schmitt (2008) for a general introduction. Further, when written
in their usual form both applications are referred to as linear inverse problems. Although
a full description will be given later, here consider the simple example of linear regression
with n× 1 data vector Y, n×m design matrix X and m× 1 vector of model parameters
β. Assuming independent and identically distributed Gaussian errors would naturally lead
to the usual maximum likelihood solution of β̂ = (XTX)−1XTY. However, it is clear
that if the number of parameters is greater than the number of data values, that is m >
n, then there is no solution. Also, if X is multi-collinear then the solution may change
dramatically for only small changes in data. These difficulties characterise an ill-posed
inverse problem as one in which some combination of the following conditions are true: (i)
there is no solution, (ii) there is more than one solution, and (iii) the solution does not
depend continuously on the data. In a traditional approach a unique solution and numerical
stability are usually achieved by imposing, sometimes arbitrary, additional constraints with
point estimation achieved through constrained deterministic optimisation. In this paper,
two alternative approaches to the solution of inverse problems are taken. In the first,
the problem is re-parameterized to produce a well-posed, but non-linear, inverse problem,
whereas in the second carefully chosen prior knowledge is incorporated into the estimation
process as part of a Bayesian model and estimation achieved via a stochastic Markov chain
Monte Carlo (MCMC) algorithm. A comprehensive review of Bayesian methods for inverse
problems, from a mathematical point of view, can be found in Stuart (2010), and examples
of applications in industrial process monitoring are given in Watzenig and Fox (2009) and
West et al. (2005), and in medical imaging in Li et al. (2011) and West et al. (2004).
The rest of the paper is organised as follows. The next section looks at the physical

and statistical modelling for the two inverse problems, and briefly outlines the MCMC
algorithm used for estimation. Section 3 describes the data to be analysed. Section 4
considers the first inverse problem, analysis of borehole data, to identify key parameters.
In Section 5, this information is then included as part of the model of the surface data
to estimate locations of the underground features. Finally, some conclusions are given in
Section 6.

2. Physical and Statistical modelling

2.1 Borehole data

A core sample is obtained using a soil borer and although the strata in the core often show
no variation in colour or texture, an analysis of the magnetic susceptibility can differentiate
between the different layers. Once collected, the core is passed through a magnetic detector
coil, allowing readings of the susceptibility to be made along the length of the sample.
Let the output readings be denoted z = {zi : i = 1, . . . , n} recorded at positions {ti :

i = 1, . . . , n} along the core length. Although the core susceptibility, x(s), is a continuous
function of position, s, along the core length, it is usual for estimation purposes to consider
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the core partitioned into elements. Let these discretized susceptibilities be denoted by
x = {xj : j = 1, . . . ,m} at positions {sj : j = 1, . . . ,m}.
The susceptibility is measured by detecting small changes in the inductance of the coil

as the core is passed through it. Since the detector coil is sensitive to the susceptibility
across an extended section of the sample, the instantaneous reading indicates not the value
at a sharply defined point, but a weighted average of the values over an extended range.
Hence the expectation of the observed reading at position i is then given by:

µi(x) = E[zi] =

m∑
j=1

xjhij for i = 1, . . . , n (1)

where the appropriate form of the spread function, hij is given by (Allum et al. 1999)

hij = h(d = ||sj − ti||) =
1

4w

[
(d+ w)√

(r − a)2 + (d+ w)2
− (d− w)√

(r − a)2 + (d− w)2

]
, (2)

where a is the radius of the core, and r and 2w are the radius and length of the coil. For
the equipment used here, a = 17.5mm, r = 40mm and w = 5mm.
In practice, the observed measurements are subject to error from various sources. As-

suming an additive Gaussian error model the conditional distribution of the data given
the truth is

zi|x ∼ N(µi(x), σ
2) for i = 1, . . . , n (3)

with likelihood

π(z|x) = 1

(2πσ2)n/2
exp

{
− 1

2σ2

n∑
i=1

(zi − µi(x))
2

}
. (4)

Due to the form of Equation (1), and since typically the number of unknowns,m, is much
greater than the number of observed readings n, estimation of x is an ill-posed linear inverse
problem which cannot be reliably solved using the likelihood alone. However, rather than
resorting to some form of smoothing prior as part of a Bayesian analysis (as in Allum et
al. , 1999) a re-parametrization, in terms of a few key parameters, is proposed. The aim
being that the re-parametrized model will contain few parameters and hence leads to a
well-posed problem in which no prior information is needed.
Suppose that the archaeology occupies a single layer at unknown depth and that it is

of unknown extent and susceptibility. Also, that the susceptibility of the remaining core is
unknown. Further suppose that data collection starts before the core enters the recording
device, and continues for a short time after it has passed completely through. Figure 2
shows a diagram of a simple core along with model parameters and a susceptibility profile.
Let d1 be the distance over which measurements are taken before the core enters the

data recorder. It is assumed that the susceptibility here is exactly zero. The first part of
the core, of length d2, has susceptibility xB which represents a background level. The ar-
chaeological feature, with susceptibility xF , is contained in the next part which is of length
d3. Then there is a second background part which is of length d4 and has susceptibility
xB. Finally, there is a distance d5 of zero susceptibility before the data recording stops.
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Figure 2. Diagram of the extracted core and corresponding susceptibility profile.

Let the susceptibility along the core be denoted x, and at location t (0 ≤ t ≤ l)

x(t) =


0 0 ≤ t < d1

xB d1 ≤ t < d1 + d2
xF d1 + d2 ≤ t < d1 + d2 + d3
xB d1 + d2 + d3 ≤ t < d1 + d2 + d3 + d4
0 d1 + d2 + d3 + d4 ≤ t ≤ d1 + d2 + d3 + d5 = l.

(5)

This re-expresses the parameter set as Θ = {d1, d2, d3, d4, d5, xF , xB}. It would be possible
to include prior information regarding the values of these parameters based on previous
investigations, or expert opinion, but here uniform prior densities have been used for all
parameters hence our aim is to estimate these by maximising the likelihood

π(z|Θ) =
1

(2πσ2)n/2
exp

{
− 1

2σ2

n∑
i=1

(zi − µi(Θ))2

}
. (6)

2.2 Surface data

Surface data are collected using a gradiometer which measures the local magnetic field
gradient using two sensors about 50cm apart, one above the other. Suppose that n mea-
surements y = {yi : i = 1, . . . , n} are recorded at locations {si : i = 1, . . . , n}. In general,
the locations will form a regular square grid, but the proposed approach is valid for general
locations.
In our model, the archaeological site subsurface is divided into L co-planar layers, with

each layer further subdivided into m 3D rectangular pixels. Previous approaches have
used only a single layer. The distance from the surface to the mid-plane of layer l is
denoted dl. Within a layer the centres of the pixel are denoted {tlj : j = 1, . . . ,m} and the

corresponding magnetic susceptibility values by xl = {xlj : j = 1, . . . ,m}. The complete
sets of susceptibilities will be denoted x.
The measurement at location si is influenced by all components of x, but by an amount

dependent on the distance between. The expected magnetometer reading is the superpo-
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sition of the influence of all the susceptibility values in all L layers

µi(x) =

L∑
l=1

m∑
j=1

xljh
l
ij (7)

where the point spread function (see Aykroyd et al. 2001) has negative as well as positive
values, is symmetric in the West-East direction, but not in the North-South direction. Its
maximum value is not at the origin, but at a distance to the south which depends on
the depth of the feature. The noise component of the data is appropriately represented
by an additive Gaussian error model (Allum, 1997) with zero mean and variance σ2. The
corresponding likelihood π(y|x), is the joint distribution of the data given a susceptibility
distribution x

π(y|x) = 1

(2πσ2)n/2
exp

{
− 1

2σ2

n∑
i=1

(yi − µi(x))
2

}
. (8)

The form of Equation (7), and since the number of unknowns, L × m, is much greater
than the number of observed readings, n, this is another ill-posed linear inverse problem
which, again, cannot be reliably solved from the likelihood alone. The traditional approach
to solving such problems is to impose additional constraints through regularization, which
is mathematically equivalent to the approach of penalized likelihood. Here, as in many
other inverse problems, the Bayesian framework using prior information to regularize is
adopted. This gives an intuitive hierarchical structure to the modelling with results which
can easily be interpreted. The posterior density of a susceptibility distribution given the
data is the result of combining a prior density with the likelihood using Bayes’ theorem:

π(x|y) = π(y|x)π(x)
π(y)

.

The unknown susceptibility distribution x is modelled by a prior density π(x). This
prior should be designed to give high probabilities to susceptibility distributions which
agree with our aprior expectations and low probabilities to unacceptable susceptibility
distributions. Here we expect neighbouring locations to have similar susceptibilities and
hence the prior should encourage smoothness. Although any form of probability density
function which suitably describes smoothness can be incorporated into the estimation, it is
helpful to have a representation which is easy to describe and interpret. In image analysis,
this prior information is commonly quantified in the form of a Gibbs distribution

π(x) =
1

z(β)
e−U(x;β) (9)

where z(β) is the normalising constant such that z(β) =
∫
x e

−U(x;β)dx. The constant β is
a vector of non-negative smoothing parameters reflecting the degree of correlation between
neighbouring pixels and determining the level of influence the prior has in the posterior
distribution. The origins of this type of distribution is in statistical mechanics, to describe
gas thermodynamics for example, and hence the function U(x;β) is often called the energy
function, and is designed to assign high probabilities to the expected configurations which
have low energy. Similarly, the parameter β is related to temperature, and so increasing β
increases the energy of the configuration.
The three dimensional prior model and subsequent estimation procedures are a di-

rect generalization of those developed for two dimensional applications (see, for example,
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Aykroyd et al. 2001). The prior beliefs about the subsurface of an archaeological site are
that neighbouring pixels within a feature have similar susceptibilities and sharp changes
exist only at the edge of a feature. This applies also when the same feature extends verti-
cally into neighbouring layers.
Hence in the multi-layer model the energy, U(x;β), has two components which represent

the within-layer energy and the between-layer energy, that is

Total energy = within-layer energy + between-layer energy

U(x;β) =

L∑
l=1

βl
W

∑
i∼j

wi,j ϕ(x
l
i − xlj) +

L−1∑
l=1

βl
B

m∑
j=1

ϕ(xlj − xl+1
j ) (10)

where i ∼ j indicates all pairs of neighbouring pixels, and wi,j gives different weights to
different neighbouring pairs. Here a second-order neighbourhood is chosen containing the
horizontal and vertical nearest neighbours (with wi,j = 1) and the four diagonal nearest

neighbours (with wi,j = 1/
√
2). This is considered to be the smallest neighbourhood capa-

ble of capturing patterns seen in practice. The parameter set β = (βW ,βB) is accordingly
divided into two groups, smoothing within layers, βW , and smoothing between layers, βB.
In this formulation it is expected that the smoothing parameters will vary from one layer
to another, and also could be allowed to vary within layer – though only the former is
considered here. The potential function ϕ measures the difference between susceptibility
values. The most commonly chosen quadratic, corresponding to a Gaussian prior, often
over-smooths susceptibility distributions and so many other implicit discontinuity or edge-
preserving alternatives have been proposed. One such example is the absolute value, which
corresponds to a double-exponential or Laplace prior. Here we use the implicit discontinu-
ity prior recommended in Aykroyd et al. (2001).

2.3 Estimation algorithms

A simple MCMC algorithm is used to produce approximate samples from the posterior
distribution by simulating a Markov chain with the required distribution as its equilibrium
distribution. The use of such methods for parameter estimation, and more general density
exploration is widespread. See Besag et al. (1995) and Chapter 4 of Voss (2013) for general
details and Aykroyd et al. (2001) for an archaeological example.
In the two uses of MCMC estimation in this paper the parameters to be considered are of

quite different natures. For the borehole model the parameters are a mixture of distances
and susceptibilities, Θ = {d1, d2, d3, d4, d5, xF , xB}, whereas in the subsurface reconstruc-
tion they are all susceptibilities, Θ = {xj : j = 1, . . . ,m}. Despite this the algorithms share
a common structure. Let the set of model parameters be labelled Θ = {θ1, . . . , θp}, The
general approach is to consider single parameter changes; let the parameter being consid-
ered be θi. A proposed new value θ′i is drawn from a proposal distribution, qi(θ

′
i|θi). Let

the set of parameters containing the proposed value be Θ′ = {θ1, ..., θi−1, θ
′
i, θi+1, ..., θp}.

The proposal is accepted, and the parameter value updated accordingly with probability

α(Θ′,Θ) = min

{
1,

p(Θ′|Y )qi(θ
′
i|θi)

p(Θ|Y )qi(θi|θ′i)

}
(11)

otherwise it is rejected and the previous value retained. Here most of the parameters are
non-negative, hence a negative proposal is immediately rejected and no change is made
– maintaining detailed balance. A non-negative proposal is accepted with the probability
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given in Equation (11). Note that if the proposal distributions are symmetric, qi(θ
′
i|θi) =

qi(θi|θ′i), then their ratio in Equation (11) cancels, but that there is no need for the proposal
distributions to be the same for the different parameters.
If the algorithm is designed carefully, then as the iterations progress the current param-

eter set does not depend on the starting values, and can be treated as a correlated sample
from the posterior distribution. Key issues then become how to judge when this initial
transient behaviour has ended, and the chain is in equilibrium, and how many iterations
to perform to have a sufficiently large sample for reliable estimation. Once the sample has
been generated from the posterior distribution, the sample mean is used to estimate the
posterior mean, and sample percentiles to estimate confidence bounds. It is also possible
to inspect low dimensional marginal distributions, and functions of the simulated values.

3. Data Example

Figure 3 shows the magnetometer readings across the Park, Guiting Power, which is a late
iron-age farmstead. As well as the full site data, an extract which will be analysed here, is
also shown. The approximate horizontal location, size and shape of many features can be
seen reasonably well. In particular a diagonal linear ditch towards the top, a rectangular
boundary ditch surrounding various collections of circular pits and post-holes.
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Figure 3. (a) Magnetometry survey of the Park, Guiting Power showing grid labels and distances, and (b) grid
selected for analysis.

It is usually assumed that the features are buried at the same depth from the modern
site surface, but that they have different susceptibilities and extents. The assumption of
constant depth is not unreasonable as ancient structures are often levelled to the prevailing
ground level and any pits or ditches in-filled to the same level. At later stages the whole
site is uniformly covered with topsoil leading to the common modern surface level. Figure
4 shows a map along with values of the susceptibilities and extents of the selected grid
features measured when this part of the site was excavated.
The strength of the surface magnetic reading depends on the depth of the features. If

the other parameters are fixed, the magnetometer records high values for shallow features
and low values for deep features.
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Figure 4. Feature map, susceptibilities and extents.

A key part of our proposed approach is the combination of surface magnetic data with
borehole data, but unfortunately no such datasets are currently available – in fact it is
expected that this paper will motivate the future collection of combined datasets. Hence
we shall use the excavation records to generate phantom cores and corresponding borehole
data. Suppose five boreholes are taken at feature locations 1, 2, 3, 11 and 12 as a represen-
tative set covering all feature types. The boreholes penetrate all features and go a further
50cm beneath the deepest. This leads to core lengths of 2.4m.
To generate data we assume that the first 30cm corresponds to modern topsoil deposited

after the archaeology was levelled to the prevailing ground level. There is then the archae-
ological feature of vertical extent dependent on the feature. Finally, there is a depth of
background soil taking the core to the chosen 2.4m. All background susceptibilities have
been fixed at 0.2 (SI×10−3), but the feature susceptibility are taken from the excavation
records. The result of this is a perfect step function, which will be called the truth, and
which is the goal of the estimation process. Natural soil variability and local mixing, how-
ever, will introduce departures from this ideal. In an attempt to capture some elements
of this complex process, small variance Gaussian noise and small-scale Gaussian blur are
combined with the step function. The resulting susceptibility profiles are shown as solid
lines in Figure 5 for Core 1 and Core 11. This natural variability and mixing is only
included in the data generation model and will not be included in the analysis model.
The borehole cores are placed in the middle of a support tray which is passed through

the magnetic coil. The recording starts as soon as the support tray enters the detector and
finishes when the tray leaves the detector. Hence the first and last readings correspond to
an empty detector. Finally, to produce measurement data these susceptibility profiles are
combined with the models defined in Equations (1)-(3).
Figure 5 also shows two example datasets for (a) Core 1 and (b) Core 11 as points. The

solid lines show the naturally varying susceptibility profiles and the dashed lines are the
true susceptibilities. Table 1 shows the true parameters for all 5 borehole cores for the
model illustrated in Figure 5. The parameters d1 and d5 correspond to the readings when
no core is in the detector, d2 is the depth of the feature layer, d3 is the extent of the feature
and d4 is the depth of background below the feature layer. The feature and background
susceptibilities are the parameters xF and xB. The key parameters are d2, d3 and xF ,
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Figure 5. Truth (dashed line) and naturally varying susceptibility profile (solid line) along with data (points) from
feature locations (a) Core 1 and (b) Core 11.

whereas d1 and d2 can be measured with high reliability, the background susceptibility xB
can be measured by taking a separate sample, and d4 can be calculated by subtraction
given d2 and d3 and the length of the core.

Table 1. True values for depth parameters, background and feature susceptibility.

Distances Susceptibilities
Core d1 d2 d3 d4 d5 xF xB

(cm) (cm) (cm) (cm) (cm) ( SI×10−3) (SI×10−3)
1 80 30 70 140 80 1.1 0.2
2 80 30 70 140 80 1.5 0.2
3 80 30 80 130 80 1.8 0.2
11 80 30 160 50 80 1.1 0.2
12 80 30 150 60 80 1.0 0.2

4. Stratigraphic Analysis from Borehole Data

As a first stage, the five distance and two susceptibility parameters are estimated using
the 1D borehole data. These estimates will then be used to describe prior information in
the main site reconstruction, which will be the second stage.
Figure 6 shows histograms and kernel density smoothed empirical posterior distributions

for the parameters from Core 1, along with a point-wise posterior median of the suscepti-
bility profile with 95% credibility interval. Table 2 summarizes the posterior distributions
for all five boreholes using the posterior means and standard deviations. We shall now
consider each of the parameters in turn. Although not evident from either Figure 6 nor
Table 2, the most important feature of these results is the extreme correlation between
some parameter estimates. For example, the correlation between d̂1 and d̂2 is -0.97, be-
tween d̂4 and d̂5 is -0.94, and between d̂3 and x̂F is -0.79. Also, note that the estimates of
d1 have a negative bias and of d2 a positive bias. For d4 the estimate is always less than
the true value while for d5 the estimate is greater than the true value. In the case of d3



Chilean Journal of Statistics 29

 

d1

De
ns

ity

40 60 80 100

0.0
0

0.0
5

0.1
0

0.1
5

d2
De

ns
ity

10 30 50 70

0.0
0

0.0
5

0.1
0

0.1
5

   

d3

De
ns

ity

40 60 80

0.0
0

0.0
5

0.1
0

0.1
5

 

d4

De
ns

ity

110 130 150

0.0
0

0.0
5

0.1
0

0.1
5

xF

De
ns

ity

1.00 1.05 1.10 1.15

0
5

10
15

20
25

30
35

 

xB

De
ns

ity

0.10 0.15 0.20 0.25

0
5

10
15

20
25

30
35

0 100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Distance along core (cm)

S
u

sc
e

p
tib

ili
ty

(a) (b) (c) (d)

(e) (f) (g)

Figure 6. Core 1: Posterior distributions of (a) initial blank, d1, (b) depth, d2, (c) extent, d3, (d) final blank, d4,
(e) feature susceptibility, xF , (f) background susceptibility, xB , and (g) susceptibility profile along core.

Table 2. Posterior means and, in parentheses, standard deviations for all distances and susceptibilities.

Distances Susceptibilities
Core d1 d2 d3 d4 d5 xF xB

(cm) (cm) (cm) (cm) (cm) (SI×10−3) (SI×10−3)
1 71.2 39.1 68.2 137.6 84.0 1.10 0.19

(6.1) (7.0) (2.9) (4.9) (4.7) (0.03) (0.01)
2 71.2 38.8 69.3 137.2 83.5 1.49 0.19

(5.7) (6.0) (1.8) (5.5) (5.6) (0.03) (0.01)
3 72.5 37.7 78.9 125.7 85.1 1.79 0.20

(5.8) (6.1) (1.5) (5.1) (5.2) (0.03) (0.01)
11 75.7 35.1 158.8 41.6 88.9 1.08 0.24

(9.4) (8.6) (4.2) (7.3) (8.7) (0.01) (0.09)
12 75.2 35.0 149.7 51.7 88.4 0.97 0.22

(6.1) (6.3) (3.2) (5.6) (6.0) (0.01) (0.04)

and xF , recall these are the width and susceptibility of the feature, the width is estimated
slightly too small and the susceptibility also slightly too small – that is there is a tendency
to underestimate the archaeological importance of the feature. Hence it is clear that there
is insufficient information to separately estimate all parameters. Given that it is possible
to record d1 and d5 through simple and accurate physical measurement, however, it is
reasonable to assume that they are known and the estimation process used for a reduced
set of parameters.
Table 3 shows the posterior estimates for the reduced set of parameters. All cases show

similar estimates of the feature depth, d2, of between 29.0cm and 29.7cm, which are now
very close to the true values and with dramatically reduced variability. Although these
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Table 3. Posterior means and, in parentheses, standard deviations for the reduced set of distances and susceptibil-
ities.

Distances Susceptibilities
Core d2 d3 d4 xF xB

(cm) (cm) (cm) (SI×10−3) (SI×10−3)
1 29.7 68.7 141.5 1.10 0.19

(1.8) (3.3) (1.9) (0.03) (0.01)
2 29.7 69.4 140.9 1.49 0.19

(1.1) (1.9) (1.2) (0.03) (0.01)
3 29.6 80.1 130.3 1.78 0.19

(0.8) (1.4) (0.9) (0.02) (0.01)
11 29.4 160.4 50.2 1.08 0.20

(1.4) (2.4) (1.3) (0.01) (0.02)
12 29.0 151.2 59.8 0.97 0.20

(1.7) (2.8) (1.6) (0.01) (0.02)

appear slightly biased, as the true value is 30cm, given the sampling interval of 5cm and
the standard deviations of about 1cm it is not considered important. For d3, the feature
extent, there is a slight reduction in bias and variability. For d4, as for d2, there is a
substantial improvement due to the removal of d5 from the estimation. There is virtually
no change in the estimates and variability of the susceptibility parameters.
Although this gives a new method for analysing borehole core data – which will be useful

in its own right – recall, that the reason for this analysis is to suggest prior distributions
for depth, extent and susceptibility for use in the analysis of the surface data. Hence, from
the above it is reasonable to assume a common depth for the whole site of about 30cm.
An alternative approach would be to define a Gaussian depth prior with mean of 30cm
and standard deviation 2cm.
For extent the posterior distributions are rather different, in particular in terms of the

posterior mean values. Boreholes 1, 2 and 3 have estimates of about 70cm, while for bore-
holes 11 and 12 the posterior means are 160cm and 151cm respectively. Clearly, although
this gives very definite information about extent at the borehole locations, it is difficult to
infer the extent of features further away without some other information. Hence we choose
only to use this information at the borehole locations. The background susceptibility pos-
terior means are all close to each other, and hence a suitable fixed value might be 0.2, or a
prior distribution with this mean and small standard deviation could be used. Finally, the
feature susceptibility ranges from about 1.0×10−3 to 1.8×10−3, but with each estimate
having a very small standard deviation of about 0.02×10−3. Clearly, we would not want
to fix the susceptibility of the features as a single value, but it might be reasonable to de-
scribe their susceptibility by a mixture distribution reflecting the susceptibilities of likely
features or a vague uni-modal prior could be used which covers the range of values seen
in the various boreholes. For example with a mean of 1.4×10−3 and standard deviation of
0.2×10−3.

5. Fusion of Depth and Surface Data

5.1 General

Although Bayesian approaches to subsurface reconstruction have been successfully used,
showing important improvements in both spatial and gray-scale resolution, a more realistic
subsurface model is needed. This is because in previous models various physical parameters,
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Figure 7. Standard single layer reconstruction.

such as depth and extent, are currently assumed known, when in fact these quantities
should be key outputs of an analysis. In this section, the multi-layer model will be used
with stratigraphic information supplied from the borehole analysis. The rationale for the
technique is that having knowledge of some of the parameters allows available data to
estimate remaining parameters more reliably. This should allow not only the detection of
a typical anomaly, as in standard magnetic surveys, but should also provide “diagnostic”
information about the main physical properties such as size, depth or an idea about the
extent of the buried features. The development of such new approaches brings the promise
of much improvement to subsurface estimation.

5.2 Reconstruction without prior information

In this section a simple single layer analysis is considered first, and then the approach will
be extended to the multi-layer model. In the former, the main physical parameters are
fixed using the borehole data, whereas in the latter the borehole information is used to
guide the susceptibility estimation. Note that this is already an improved model compared
to the common approach of subjectively fixing these physical parameters.
Suppose that there is an archaeological feature present as a whole in one horizontal

layer. In a previous single layer analysis conducted on part of the the same data (Allum

1997), it was found that β̂ = 623, δ̂ = 175, σ̂ = 0.33 gave good reconstructions. (Note
that δ is a threshold parameter in the prior distribution.) As a baseline, Figure 7 shows
the reconstruction using these parameter values for a single layer. Comparing this to the
feature map in Figure 4, all features are evident, but there is no information regarding
their true depth and extent. Also, having fixed depth and extent has the knock-on effect
of influencing the susceptibility estimates. In particular notice the dark areas in the top-
left and bottom-right, which correspond to features 11 and 12. Given that these actually
correspond to deep pits, but that the susceptibility has been estimated assuming a shallow
extent, it is likely that this value has been overestimated. Also the white area below feature
12 is likely to be a remnant of the spread function, evident in the data, which has not been
corrected.
The straightforward first extension is to repeat the analysis using two layers. So the

subsurface is partitioned into two layers of equal extent – without additional information
there is no reason to do otherwise. The susceptibility estimates of the two layers, without
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(a) (b)

Figure 8. Two-layer reconstruction without prior information: (a) is the upper layer and (b) the lower layer.

  

(a) (b)

Figure 9. Two layer reconstructions using susceptibility prior information: (a) is the upper layer and (b) the lower
layer.

between-layer smoothing, are shown in Figure 8. It can be seen that the estimation in
each layer is affected by the other layer with features expected only in the first layer also
appearing in the second layer. Given that the between-layer smoothing parameter is set to
zero, that is the two layers are independent, this apparent depth correlation is somewhat
unexpected.

5.3 Reconstruction with prior information

Although it would be possible to extend the model to many-layers, given the limited range
of depths and extents seen across the site, it seems reasonable to continue to define two
layers. In contrast, however, to the earlier two-layer reconstruction both the depth, extent
and susceptibility information from the borehole data will be used. The top layer is fixed
at 30cm below the surface with an extent of 70cm and the second layer with an extent
of 90cm. Note that in the previous reconstruction the two layers were assumed of equal
extent. The borehole diameter is assumed to be about 35mm which is equivalent to a 2×2
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block of pixels. Therefore, at each of these locations, the susceptibility will be fixed, at the
background or foreground value as appropriate. Elsewhere the susceptibility is unknown,
and is to be estimated. It seems reasonable however to assume that the susceptibility is
similar to that encountered in the various boreholes. This is described using a two-part
mixture of Gaussian distributions, describing the background and feature susceptibilities
with means and variances obtained from the first stage and with a fixed mixing proportion
of 10% feature. Although it would be possible to extend the model to allow this mixing
proportion to be estimated, in separate experiments the reconstructions have not been
found to be sensitive to small changes in this value.
Figure 9 shows the new two-layer reconstruction using the susceptibility information

derived from the borehole data as prior information. The estimates look reasonable, since
the second layer estimate is not affected by the features truly in only the first layer. Pits
11 and 12 appear in the image of the second layer as their extents are approximately twice
that of the other features.

6. Conclusion

Any archaeological magnetometry data set can be explained by an infinite number of
spatial susceptibility distributions. This is because we typically try to estimate many pa-
rameters from highly correlated data – increasing the sampling interval adds little new
information. Instead, identifying the most plausible models can only be achieved by in-
cluding additional knowledge as apriori constraints. For example, the number of acceptable
models can be reduced markedly if the magnetic signals are generated by features for which
the depths and extents are known.
While the surface magnetometry data provides a good indication of the horizontal loca-

tion of features, it can not resolve the depth distribution on its own. An observed magnetic
signal, in the presence of noise, can not uniquely define the shape and depth of the feature
producing the signal because an infinite number of combinations of susceptibility and depth
can produce essentially the same given magnetic readings. Strong features seen in the mag-
netic survey data may either represent deep high susceptibility objects, or could equally
be produced by shallower low susceptibility objects. If a feature has low susceptibility, or
is deeply buried, then it will produce a weaker signal than if it has high susceptibility, or
is buried near the surface.
As well as being physically confounded, their estimates are also highly correlated with

the level of smoothing used in the reconstruction. Increasing the level of smoothing usually
leads to the distortion of feature boundaries, especially for weak signals, whereas decreasing
smoothing does not help as the signal can be hidden by noise.
Although other site survey methods, such as ground penetrating radar, seismology or

electrical tomography, could be used to give complimentary information, all surface based
methods suffer from similar confounding of depth and physical properties. The most fruitful
source of the necessary information is direct observation, but it is clearly impossible to
obtain such information across a full site. It is possible, however, to gather information at a
few key locations. The use of extracted borehole cores can provide exactly the information
needed, that is estimates of depth, extent and susceptibility values.
Although several papers use data from multiple sensing systems none use it to produce

a single underground reconstruction. For example, Chianese et al. (2004) collect magnetic
surface data and 3D radar images but make no attempt to combine the two. Similarly,
Leopold et al. (2010) record aerial photographs, electrical resistance images, magnetic data
and ground penetrating radar images, but only combine these sources by overlaying the
data. Argote et al. (2009) perform 3D estimation, with very limited success, but carefully
match reconstruction grid size and data dimensions to produce a well-posed problem and
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use an approximation for the spread function. Also, as they state, this will only work in
cases where feature and background are highly contrasting – which is not usually the case.
Traditionally it has not been possible to combine such diverse types of information, but
the Bayesian framework provides a natural way to incorporate partial prior knowledge into
the estimation process.
This paper proposes an approach for full surface estimation from archaeological mag-

netometry data which makes efficient use of available data. The approach is based on the
concept of exploiting the information gained from the statistical analysis of the borehole
data to achieve more precise estimates of the physical parameters of the whole archaeo-
logical site. The estimation process has been split into two sequential stages. In the first
stage, a parametric model is fitted to the borehole core data and the resulting parameter
estimates are used in the prior densities for the second stage estimation. In the second
stage, using an MCMC algorithm, all physical model parameters are estimated in a fully
Bayesian setting. The approach has produced improved image reconstructions as well as
estimation of key physical parameters. The improvements allow a more detailed and useful
interpretation of the archaeological site. Further, the general framework can also be used to
incorporate other types of data leading to enhanced resolution. This gives the potential to
reduce environmental damage on important archaeological sites and, perhaps, eventually
allow site interpretation without the need for physical excavation.
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