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Abstract

We study with some details a lifetime model of the class of beta generalized models,
called the beta inverse Rayleigh distribution, which is a special case of the Beta Fréchet
distribution. We provide a better foundation for some properties including quantile
function, moments, mean deviations, Bonferroni and Lorenz curves, Rényi and Shannon
entropies and order statistics. We fit the proposed model using maximum likelihood
estimation to a real data set to illustrate its flexibility and potentiality.

Keywords: Beta-Generated class · Entropy · Generalized distribution · Maximum
likelihood estimation · Moment.
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1. Introduction

After its inception by Trĕier (1964), the inverse Rayleigh (IR) distribution was championed
by Vodă (1972) and Iliescu and Vodă (1973) during the 1970s. In Vodă (1972) several of its
statistical properties were addressed, in particular, maximum likelihood (ML) estimation,
confidence intervals, and hypotheses tests. An early application involved lifetime modeling
of experimental units. More recently, Gharraph (1993) provided closed-form expressions
for the mean, harmonic mean, geometric mean, mode and the median of this distribution.
In Mohsin and Shahbaz (2005) the negative moment estimator for the IR distribution was
investigated. Moreover, different methods of estimation have been numerically compared in
Gharraph (1993) and Soliman et al. (2010). Acceptance sampling techniques also received
a treatment based on the IR distribution Rosaiah and Kantam (2005). In 2010, a model
for lower record value based on the IR distribution was proposed in Soliman et al. (2010)
and a Bayesian approach for its associate parameter estimation.
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Distribution generalization theory has received considerable attention in the past
decades, Amoroso (1925), Good (1953), Hoskings and Wallis (1987) and McDonald (1984).
A particular prominent generalization model is the class of beta generalized distributions,
first introduced in Eugene et al. (2002). In this seminal work, the authors introduced the
new class of distributions from the logit of the beta random variable, and obtained as a
special case the beta normal (BN) distribution. This distribution could provide flexible
shapes including bimodality, being therefore a candidate for a wide range of applications.
Additional properties of the BN distribution have been studied in detail by Gupta and
Nadarajah (2004) and Rêgo et al. (2012). In a similar manner, other beta generalizations
have been proposed taking into account several baseline distributions. To cite a few, we
identify the beta Gumbel by Nadarajah and Kotz (2004), beta Fréchet by Nadarajah and
Gupta (2004), beta exponential by Nadarajah and Kotz (2005), beta Weibull by Lee et
al. (2007), beta Pareto by Akinsete et al. (2008), beta generalized exponential by Barreto-
Souza et al. (2010), beta generalized normal by Cintra et al. (2011) and beta generalized
half-normal by Pescim et al. (2010) distributions.
In this paper, we study the beta generalized distribution based on the IR distribution,

called the beta inverse Rayleigh (BIR) distribution. The BIR distribution is a special case
of the beta Fréchet (BF) distribution, which was introduced by Nadarajah and Gupta
(2004) and studied by Barreto-Souza et al. (2011). These two papers provide some mathe-
matical properties for the BF distribution, which in turn can be easily adapted for the BIR
distribution. We provide a better foundation for these and other mathematical properties.
An application to a real life data set is presented. The BIR distribution is expected to
have immediate application in reliability and survival studies.
The rest of the paper unfolds as follows. In Section 2, we present the BIR distribution,

derive its density and some expressions for the cumulative distribution function (cdf), and
provide an analytical study of the unimodality region. In Section 3, we give the hazard
rate function and its asymptotic behavior. In Section 4, we derive the formulae for the
moments. Further, in Sections 5–8, we derive quantile function, skewness and kurtosis,
mean deviations, Rényi entropy, Shannon entropy and order statistics. In Section 9, we
discuss ML estimation and present the elements of the observed information matrix. An
application to real data is performed in Section 10. Finally, in Section 11, we offer some
concluding remarks.

2. The BIR distribution

Let G(x) be a baseline cumulative distribution function (cdf). Then, the associated beta
generalized distribution F (x) based on the logit of the beta random variable is given by
Eugene et al. (2002)

F (x) = IG(x)(a, b), (1)

where a > 0, b > 0, Iy(a, b) is the incomplete beta function ratio

Iy(a, b) =
1

B(a, b)

∫ y

0
ωa−1(1− ω)b−1dω,

and B(·, ·) denotes the beta function. The extra shape parameters a and b control skewness,
kurtosis and tail weights.
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The IR distribution is a single-parameter distribution defined over the semi-infinite in-
terval [0,∞). Its cdf is given by

G(x; θ) = exp

(
− θ

x2

)
, x > 0, θ > 0.

Inserting G(x; θ) into (1), we obtain the BIR cumulative distribution

F (x) = Iexp(− θ

x2 )(a, b) =
1

B(a, b)

∫ exp(− θ

x2 )

0
ωa−1(1− ω)b−1dω, (2)

for x > 0, a > 0, b > 0 and θ > 0. Note that if we take Fréchet cdf G(x, σ, λ) =

exp
{
−
(
σ
x

)λ}
, where σ > 0 and λ > 0 are the scale and shape parameters, respectively,

into (1), we obtain the BF distribution. Thus, the BIR model is obtained for σ2 = θ and
λ = 2. Note also that for the special case a = b = 1/2, the BIR cumulative function has a
closed-form expression given by

F (x) =
2

π
arcsin

{
exp

(
− θ

2x2

)}
.

The BIR probability density function (pdf) can be expressed as (for x > 0)

f(x) =
2θ

B(a, b)x3
exp

(
−aθ
x2

)[
1− exp

(
− θ

x2

)]b−1

. (3)

The BIR random variable X is denoted by X ∼ BIR(a, b, θ). The parameters a and b
affect the skewness ofX by changing the relative tail weights. Figure 1 displays the BIR pdf
for several choices of parameter values. Simulating the BIR random variable is relatively
simple. Let Y be a random variable distributed according to the usual beta distribution
with parameters a and b. Thus, by means of the inverse transformation method, the random
variable X given by

X =

√
− θ

log(Y )

follows (3).

2.1 General expansion

Although the cdf and pdf of X require mathematical functions that are widely available
in contemporary statistical packages, Eaton et al. (2002) and R Development Core Team
(2011) often further analytical and numerical derivations take advantage of power series
expansions for the cdf. From the BIR density function (3), the cdf of X can be expressed
after usual integration as
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Figure 1. Plots of the BIR pdf for θ = 0.5 (solid line), θ = 1.0 (dashed line), θ = 3.0 (dotted line) and θ = 5.0 (bold
line).

F (x) =
1

B(a, b)

∫ x

0

2θ

y3
exp

(
−aθ
y2

){
1− exp

(
− θ

y2

)}b−1

dy.

Setting u = θy−2, it follows that

F (x) =
1

B(a, b)

∫ ∞

θ

x2

exp(−au) {1− exp(−u)}b−1 du. (4)

Notice that for |z| < 1 and b > 0 a real non-integer number, we have the power series
expansion
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(1− z)b−1 =

∞∑
n=0

(−1)n Γ(b)

Γ(b− n)n!
zn, (5)

where Γ(·) is the gamma function. Applying this identity into (4) yields

F (x) =
1

B(a, b)

∞∑
n=0

(−1)nΓ(b)

Γ(b− n)n!

∫ ∞

θ

x2

exp{−(a+ n)u}du

and then

F (x) =
1

B(a, b)

∞∑
n=0

(−1)n Γ(b)

(a+ n) Γ(b− n)n!
exp

{
−(a+ n)θ

x2

}
. (6)

Now, considering the following quantity,

cn(a, b) =
(−1)nΓ(a+ b)

(a+ n)Γ(a)Γ(b− n)n!
,

we can write the BIR cdf as a linear combination of IR cdfs. Indeed, we obtain

F (x) =

∞∑
n=0

cn(a, b)G(x; (a+ n)θ).

In a similar way, the BIR pdf can be expressed according to the following linear combi-
nation

f(x) =

∞∑
n=0

cn(a, b) g(x; (a+ n)θ),

where g(x; (a+ n)θ) denotes the IR density function with parameter (a+ n)θ.

2.2 Unimodality

The BIR distribution is unimodal for all values of a, b, θ > 0. In order to investigate the
critical points of its density function, the first derivative of f(x) with respect to x is given
by

d

dx
f(x) =

θ2

B(a, b)x6
exp

(
−aθ
x2

)[
1− exp

(
− θ

x2

)]b−1

×

[
4a− 6x2

θ
+

4(b− 1)

1− exp
(

θ
x2

)] , x > 0.

(7)
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Figure 2. Plots of t(y) for b = 0.25 (solid line), b = 0.5 (dashed line), b = 0.75 (dotted line) and b = 0.95 (bold
line).

The signal of this derivative is determined by the expression in the last square brackets,
since the remaining terms are all positive. Considering the substitution y = θx−2, the
expression in square brackets becomes

4a− 6

y
+ 4

b− 1

1− exp(y)
. (8)

Now, we demonstrate that this expression is a monotonic function; therefore, (7) has a
single zero, which implies a unique mode.
Indeed, the derivative of (8) becomes

t(y) =
6

y2
+ 4(b− 1)

exp(y)

[1− exp(y)]2
.

For b ≥ 1, this derivative is clearly positive.
For 0 < b < 1, Figure 2 displays the numerical results that illustrate the positiveness of

the derivative of (8).

Moreover, let y0 be the zero of (8). The BIR mode location is then given by
√
θ/y0.

Since y0 is independent of θ, the mode location is an increasing function of θ.

3. Hazard rate function

The survival and hazard rate functions are given by S(x) = 1−F (x) and h(x) = f(x)/S(x),
where F (x) and f(x) are the BIR cdf and pdf, respectively. Thus, the hazard rate function
of the random variable X is

h(x) =
2θ

B(a, b)x3

[
1− exp

(
− θ

x2

)]b−1
exp

(
−aθ

x2

)
I1−exp(− θ

x2 )(b, a)
.
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Notice that we applied in (2) the symmetry property of the incomplete beta function
1− Ix(a, b) = I1−x(b, a).
We now examine the asymptotic behavior of h(x) when x → ∞ or x → 0. First, we

prove that h(x) ∼ 1/x as x→ ∞. To establish this result, we verify that limx→∞ h(x)/x−1

is a constant.
Indeed, we have

lim
x→∞

h(x)

1/x
= lim

x→∞

2θ

B(a, b)

1

x3

[
1− exp

(
− θ

x2

)]b−1
exp

(
−aθ

x2

)
I1−exp(−θ/x2)(b, a)

x.

Since exp
(
−aθ

x2

)
→ 1 as x→ ∞, we can write

lim
x→∞

h(x)

1/x
=

2θ

B(a, b)
lim
x→∞

[
1− exp

(
− θ

x2

)]b−1
/x2

I1−exp(−θ/x2)(b, a)
.

For any value of b > 0, the last expression gives rise to an indeterminate form. Invoking
L’Hôpital’s rule and again considering that exp

(
−aθ

x2

)
→ 1 as x→ ∞, we obtain

lim
x→∞

h(x)

1/x
=2θ(b− 1) lim

x→∞

[
1/x2

1− exp
(
− θ

x2

)]− 2.

Applying the L’Hôpital rule again we note that the above limit is well-defined and is
equal to −2b.
Similarly, let us show that h(x) ∼ exp(−aθ/x2)/x3 as x→ 0. In fact, we have immedia-

tely that

lim
x→0

h(x)

exp(−aθ/x2)/x3
=

2θ

B(a, b)
lim
x→0

[
1− exp

(
− θ

x2

)]b−1

I1−exp(−θ/x2)(b, a)

=
2θ

B(a, b)
.

Notice also that limx→0 exp(−aθ/x2)/x3 = 0. Figure 3 displays the behavior of h(x) for
selected values of the model parameters.

4. Moments

The moments play a crucial role in any statistical analysis. The rth moment of X is

E(Xr) =
2θ

B(a, b)

∫ ∞

0
xr−3 exp

(
−aθ
x2

)[
1− exp

(
− θ

x2

)]b−1

dx.

Now, we simplify the above integral. First, letting y = θx−2, we have
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Figure 3. Plots of the BIR hazard rate function for θ = 0.5 (solid line), θ = 1.0 (dashed line), θ = 1.5 (dotted line)
and θ = 3.0 (bold line).

E(Xr) =
θr/2

B(a, b)

∫ ∞

0
y−r/2 exp(−ay) {1− exp(−y)}b−1 dy.

We refer to the last integral as Sr(a, b). Applying the series expansion (5), for any real
r, we obtain

Sr(a, b) =

∫ ∞

0
y−r/2 exp(−ay)

∞∑
n=0

(−1)n
Γ(b)

Γ(b− n)n!
exp(−ny)dy

=

∞∑
n=0

(−1)n
Γ(b)

Γ(b− n)n!

∫ ∞

0
y−r/2 exp {−(a+ n)y}dy.

(9)

This integral has a closed-form expression by means of a direct application of the gamma
function integral, (Abramowitz and Stegun, 1972). Since a + n > 0, some manipulations
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yield

∫ ∞

0
y−r/2 exp {−(a+ n)y}dy =

Γ
(
1− r

2

)
(a+ n)1−r/2

, r < 2. (10)

Therefore, we can rewrite (9) as

Sr(a, b) = Γ(b)Γ
(
1− r

2

) ∞∑
n=0

(−1)n

(a+ n)1−r/2Γ(b− n)n!
, r < 2.

If b > 0 is an integer,we obtain

Sr(a, b) = Γ
(
1− r

2

) b∑
n=0

(−1)n
(
b− 1

n

)
1

(a+ n)1−r/2
, r < 2.

We can write the rth moment of X as

E(Xr) =
θr/2

B(a, b)
Sr(a, b), r < 2.

In particular, for r = 1 and integer an b, we obtain

E(X) =

√
πθ

B(a, b)

b∑
n=0

(
b− 1

n

)
1√
a+ n

.

Negative moments can also be evaluated. For example, considering r = −1 and for an
integer b, we have

E(X−1) =

√
π/θ

2B(a, b)

b∑
n=0

(−1)n
(
b− 1

n

)
1√

(a+ n)3
.

Notice that attempting to compute (10) outside r < 2 gives undefined forms. For ins-
tance, if r = 2, we have

∫ ∞

0

exp[−(a+ n)y]

y
dy = E1(0),

where E1(·) is the exponential integral function (Abramowitz and Stegun, 1972), which
tends to −∞ as its argument goes to zero. As a consequence, the second moment of X
does not exist, as well as all remaining higher order moments.
It is known that the second and higher order moments of IR distribution are inexistent

(Vodă, 1972). As shown above, the BIR distribution inherits this characteristic.
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5. Quantile function and quantile measures

The quantile function of X is given by

Q(u) = F−1(u) =

√
− θ

log(I−1
u (a, b))

, 0 < u < 1,

where I−1
u (a, b) is the inverse of the incomplete beta function. The function I−1

u (a, b) can
be written as a power series expansion Wolfram|Alpha (2011)

I−1
u (a, b) =

∞∑
i=1

qi [aB(a, b)u]
i/a,

where q1 = 1 and the remaining coefficients satisfy the following recursion

qi =
1

i2 + (a− 2)i+ (1− a)

{
(1− δi,2)

i−1∑
r=2

qrqi+1−r[r(1− a)(i− r)− r(r − 1)]+

i−1∑
r=1

i−r∑
s=1

qrqsqi+1−r−s[r(r − a) + s(a+ b− 2)(i+ 1− r − s)]

}
,

where δi,2 = 1 if i = 2 and δi,2 = 0 if i ̸= 2.
Because the second, third, and fourth moments of the BIR distribution are nonexistent,

usual skewness and kurtosis are not defined.
However, quantile based measures, such as Bowley skewness (Kenney and Keeping, 1962)

and Moors kurtosis (Moors, 1998), can quantify asymmetry and the peakedness of a given
distribution. These measures exist even when moments are not available.
Bowley skewness and Moors kurtosis are expressed according to

B =
Q(3/4)− 2Q(1/2) +Q(1/4)

Q(3/4)−Q(1/4)
,

M =
Q(7/8)−Q(5/8)−Q(3/8) +Q(1/8)

Q(6/8)−Q(2/8)
.

Plots of the Bowley skewness and Moors kurtosis for selected values of a and b are
displayed in Figure 4(a). The parameter θ was set to one.

6. Mean deviations and inequality measures

The amount of scatter in X is measured to some extent by the totality of deviations from
the mean (µ) and median (m). These are known as the mean deviation about the mean
and the mean deviation about the median given by
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Figure 4. Plots of the Bowley skewness and Moors kurtosis in terms of (a) a for b = 1.0 (solid curve) and b = 1.5
(dashed curve), b = 3.5 (dotted line) and b = 4.5 (bold line); (b) b for a = 1.0 (solid curve), a = 1.5 (dashed curve),
a = 3.5 (dotted line) and a = 4.5 (bold line); (c) a for b = 1.0 (solid curve) and b = 1.5 (dashed curve), b = 3.5
(dotted line) and b = 4.5 (bold line); and (d) b for a = 1.0 (solid curve), a = 1.5 (dashed curve), a = 3.5 (dotted
line) and a = 4.5 (bold line).

δ1(X) = 2µF (µ)− 2µ+ 2

∫ ∞

µ
xf(x)dx and δ2(X) = 2

∫ ∞

m
xf(x)dx− µ,

respectively, where µ = E(X) and m = Q(1/2).
Defining the integral J(z) =

∫ z
0 xf(x)dx, the measures δ1(X) and δ2(X) are given by

δ1(X) = 2µF (µ)− 2J(µ) and δ2(X) = µ− 2J(m),

where F (µ) and F (m) are easily obtained from (2).
We now determine J(z). Substituting y = θx−2 in equation (3), we obtain
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J(z) =

∫ z

0
xf(x)dx =

√
θ

B(a, b)

∫ ∞

θ/z2

y−1/2 exp(−ay) [1− exp(−y)]b−1 dy.

Considering the power series (5), we have

J(z) =

√
θ

B(a, b)

∞∑
n=0

(−1)n

Γ(b− n)n!

∫ ∞

θ/z2

y−1/2 exp{−(a+ n)y}dy

=
√
πθ

Γ(b)

B(a, b)

∞∑
n=0

(−1)n

Γ(b− n)n!

1√
a+ n

erfc(
√
θ/z2

√
a+ n),

where erfc(x) = 2√
π

∫∞
x e−t2dt is the complementary error function. Bonferroni (1930)

and Lorenz (1905) curves are inequality measures which have applications in economics,
reliability, demography, actuarial sciences, and medicine, among others. They are defined
by

B(p) =
1

pµ

∫ Q(p)

0
xf(x)dx =

1

pµ
J(Q(p)) and L(p) =

1

µ

∫ Q(p)

0
xf(x)dx =

1

µ
J(Q(p)),

respectively, for 0 < p ≤ 1, see Pundir et al. (2005) for details.

7. Shannon and Rényi entropies

The entropy of a random variable quantifies its associated uncertainty (Song, 2001). Two
important entropy measures are the Shannon entropy and its generalization known as the
Rényi entropy. For the BIR distribution, the Shannon entropy is

H(X) =− E{log[f(X)]} = −
∫ ∞

0
f(x) log[f(x)]dx

=−
∫ ∞

0
f(x) log

{
2θ

B(a, b)x3
exp

(
−aθ
x2

)[
1− exp

(
− θ

x2

)]b−1
}
dx

=−
∫ ∞

0
log

(
2θ

B(a, b)

)
f(x)dx+ 3

∫ ∞

0
log(x)f(x)dx

+ aθ

∫ ∞

0

1

x2
f(x)dx− (b− 1)

∫ ∞

0
log

[
1− exp

(
− θ

x2

)]
f(x)dx,

where the first of the last four integrals is equal to − log[2θ/B(a, b)]. The second integral
can be calculated as follows
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∫ ∞

0
log(x)f(x)dx =

∫ ∞

0
log(x)

{
2θ

B(a, b)x3
exp

(
−aθ
x2

)[
1− exp

(
− θ

x2

)]b−1
}
dx

=
2θ

B(a, b)

∞∑
n=0

(−1)nΓ(b)

Γ(b− n)n!

∫ ∞

0

log(x)

x3
exp

{
−(a+ n)θ

x2

}
dx

=
2θ

B(a, b)

∞∑
n=0

(−1)nΓ(b)

Γ(b− n)n!

log[(a+ n)θ] + γ

4(a+ n)θ
,

where γ is the Euler-Mascheroni constant. The third integral can be expressed by

∫ ∞

0

1

x2
f(x)dx =

∫ ∞

0

2θ

B(a, b)x5
exp

(
−aθ
x2

)[
1− exp

(
− θ

x2

)]b−1

dx

=
2θ

B(a, b)

∫ ∞

0

1

x5
exp

(
−aθ
x2

) ∞∑
n=0

(−1)nΓ(b)

Γ(b− n)n!
exp

{
−nθ
x2

}
dx

=
2θ

B(a, b)

∞∑
n=0

(−1)nΓ(b)

Γ(b− n)n!

∫ ∞

0

1

x5
exp

{
−(a+ n)θ

x2

}
dx.

Setting t = (a+n)θ
x2 , we obtain

∫ ∞

0

1

x2
f(x)dx =

2θ

B(a, b)

∞∑
n=0

(−1)nΓ(b)

Γ(b− n)n!

∫ ∞

0

exp(−t)
[2(a+ n)θ]2

dt

=
1

θB(a, b)

∞∑
n=0

(−1)nΓ(b)

Γ(b− n)n!

1

(a+ n)2
.

Considering the fourth integral, let u = θx−2. From the power series expansion log(1 +
z) = z + 1

2z
2 − 1

3z
3 − · · · , we can write

∫ ∞

0
log[1− exp(−θ/x2)]f(x)dx =

1

B(a, b)

∫ ∞

0
log{1− exp(−u)} exp(−au)[1− exp(−u)]b−1du

=− 1

B(a, b)

∫ ∞

0

∞∑
k=1

exp{−u(k + a)} [1− exp(−u)]b−1

k
du

=
1

B(a, b)

∞∑
k=1

∞∑
n=0

(−1)n+1 Γ(b)

kΓ(b− n)n!

∫ ∞

0
exp {−u(a+ k + n)} du

=
1

B(a, b)

∞∑
k=1

∞∑
n=0

(−1)n+1 Γ(b)

k(a+ k + n)Γ(b− n)n!
.

Finally, we obtain
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H(X) =− log

{
2θ

B(a, b)

}
+

Γ(b)

B(a, b)

∞∑
n=0

(−1)n

Γ(b− n)n!

[
3

2

log{(a+ n)θ}+ γ

a+ n
+

a

(a+ n)2
+ (b− 1)

∞∑
k=1

1

k(a+ k + n)

]
.

Now, the Rényi entropy can be expressed as

Hα(X) =
1

1− α
log

(∫ ∞

0
f(x)αdx

)
, α > 0, α ̸= 1, (11)

where α > 0 and α ̸= 1.
Notice that when α→ 1, the Rényi entropy converges to the Shannon entropy. For calcu-
lating (11), we apply (3) and consider the power series expansion (5) yielding

∫ ∞

0
f(x)αdx =

[
2θ

B(a, b)

]α
Γ(α(b− 1) + 1)

∞∑
n=0

(−1)n

Γ(α(b− 1) + 1− n)n!

×
∫ ∞

0
x−3α exp

{
−(aα+ n)

θ

x2

}
dx.

The last integral can be evaluated as follows. Let u = θx−2. Then, we have

∫ ∞

0
x−3α exp

{
−(aα+ n)

θ

x2

}
dx =

∫ ∞

0
u

3(α−1)

2 exp {−(aα+ j)u}du

=

(
1

aα+ n

) 3α−1

2

Γ

(
3α− 1

2

)
.

Finally, we obtain

∫ ∞

0
f(x)αdx =

[
2θ

B(a, b)

]α Γ
(
3α−1

2

)
2θ

3(α−1)

2
+1

∞∑
n=0

(−1)n

(aα+ n)
3α−1

2

Γ(α(b− 1) + 1)

Γ(α(b− 1) + 1− n)n!
.

8. Order statistics

Here, we present an explicit expression for the density function fi:n(x) of the ith order
statistic Xi:n in a random sample of size n from the BIR distribution. Consider the well-
known result

fi:n(x) =
f(x)

B(i, n− i+ 1)
F (x)i−1{1− F (x)}n−i,

for i = 1, . . . , n.
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Applying the binomial expansion in the above equation, we obtain

fi:n(x) =
f(x)

B(i, n− i+ 1)

n−i∑
l=0

(
n− i

l

)
(−1)lF (x)i+l−1.

Inserting (3) and (6) in the last equation, fi:n(x) can be expressed as

fi:n(x) =
2θ

B(i, n− i+ 1)x3
exp

(
−aθ
x2

)[
1− exp

(
− θ

x2

)]b−1 n−i∑
l=0

(
n− i

l

)
(−1)l

B(a, b)i+l

×

 ∞∑
j=0

(−1)j

a+ j

Γ(b)

Γ(b− j)j!
exp

(
−(a+ j)θ

x2

)i+l−1

,

(12)

for b > 0 real non-integer.
Now, using the following identity

( ∞∑
i=0

ai

)k

=

∞∑
m1=0

· · ·
∞∑

mk=0

am1
· · · amk

,

for k positive integer, we can write (12) as

fi:n(x) =

n−i∑
l=0

∞∑
m1=0

· · ·
∞∑

mi+l−1=0

δi,lfi,l(x), (13)

where

fi,l(x) =
2θ exp

(
−aθ

x2

) [
1− exp

(
− θ

x2

)]b−1
exp

{
− θ

x2

∑i+l−1
j=1 (a+mj)

}
x3B

(
a(i+ l) +

∑i+l−1
j=1 mj , b

) ,

and

δi,l =
(−1)l+

∑i+l−1
j=1 mj

(
n−i
l

)
Γ(b)i+l−1B

(
a(i+ l) +

∑i+l−1
j=1 mj , b

)
B(a, b)i+lB(i, n− i+ 1)

∏i+l−1
j=1 (a+mj)Γ(b−mj)mj !

.

Note that fi,l(x) is the density function of the BIR(a(i+ l) +
∑i+l−1

j=1 , b, θ) distribution.
Also, the constants δi,l are obtained given i, n, l and a sequence of indices m1, . . . ,mi+l−1.
The sums in (13) extend over all (i+ l)-tuples (l,m1, . . . ,mi+l−1) of non-negative integers.
These sums indicate that the density function of the BIR order statistics is a linear com-
bination of BIR densities. So, several structural quantities of the BIR order statistics can
be obtained from those of BIR distribution.
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9. Maximum likelihood estimation and information matrix

Consider independent BIR distributed random variables X1, . . . , Xn with parameter vector
λ = (a, b, θ)T . The log-likelihood function ℓ(λ) for the BIR model reduces to

ℓ(a, b, θ) =n[log(2θ)− log{B(a, b)}]− 3

n∑
i=1

log(xi)− aθ

n∑
i=1

1

x2i

+ (b− 1)

n∑
i=1

log

{
1− exp

(
− θ

x2i

)}
.

The elements of the score vector are:

Ua(λ) =
∂

∂a
ℓ(a, b, θ) = n[ψ(a+ b)− ψ(a)]− θ

n∑
i=1

1

x2i
,

Ub(λ) =
∂

∂b
ℓ(a, b, θ) = n[ψ(a+ b)− ψ(b)] +

n∑
i=1

log

{
1− exp

(
− θ

x2i

)}
,

Uθ(λ) =
∂

∂θ
ℓ(a, b, θ) =

n

θ
−

n∑
i=1

a

x2i
+ (b− 1)

n∑
i=1

exp
(
− θ

x2
i

)
x2i

[
1− exp

(
− θ

x2
i

)] ,

where ψ(·) is the digamma function, see Abramowitz and Stegun (1972).
The ML equations can be solved numerically for a, b, and θ.
Under standard regularity conditions (Cox and Hinkley, 1974) that are fulfilled for the

proposed model whenever the parameters are in the interior of the parameter space, the
observed information matrix I(λ) can be employed for interval estimation of the model
parameters and for hypothesis tests. The BIR observed information matrix is given by

I(λ) = −

Uaa(λ) Uab(λ) Uaθ(λ)
Uab(λ) Ubb(λ) Ubθ(λ)
Uaθ(λ) Ubθ(λ) Uθθ(λ)

 ,

whose elements are
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Uaa(λ) =
∂

∂a
Ua(λ) =n [ψ1(a+ b)− ψ1(a)] ,

Uab(λ) =
∂

∂b
Ua(λ) =nψ1(a+ b),

Uaθ(λ) =
∂

∂θ
Ua(λ) =−

n∑
i=1

1

x2i
,

Ubb(λ) =
∂

∂b
Ub(λ) =n [ψ1(a+ b)− ψ1(b)] ,

Ubθ(λ) =
∂

∂θ
Ub(λ) =

n∑
i=1

exp
(
− θ

x2
i

)
x2i

[
1− exp

(
− θ

x2
i

)] ,
Uθθ(λ) =

∂

∂θ
Uθ(λ) =− n

θ2
− (b− 1)

n∑
i=1

exp
(
− θ

x2
i

) [
2− exp

(
− θ

x2
i

)]
x4i

[
1− exp

(
− θ

x2
i

)]2 ,

and ψ1(·) is the polygamma function, which satisfies ψ1(x) =
d
dxψ(x). Since the Fisher in-

formation matrix is not available, the standard errors (SEs) are obtained by square-rooting
the diagonal elements of the covariance matrix, i.e., the inverse of the second derivative
matrix of the log-likelihood function, evaluated at the ML estimates (MLEs). We can com-
pute the maximum values of the unrestricted and restricted log-likelihoods to obtain the
likelihood ratio (LR) statistics for testing some sub-models of the BIR distribution. The

LR statistic for testing the null hypothesis H0: λ1 = λ
(0)
1 versus the alternative hypothesis

H1: λ1 ̸= λ
(0)
1 is given by w = 2{ℓ(λ̂) − ℓ(λ̃)}, where λ̂ and λ̃ are the MLEs under the

alternative and null hypotheses, respectively. The statistic w is asymptotically distributed
as χ2

k, where k is the dimension of the subset λ1 of interest.

10. Application to real data

In this section, the BIR is fitted to an example of real data concerning the tensile
strength, which were originally reported by Bader and Priest (1982) and can also be found
in Ghitany et al. (2011). These data represent the strength measured in GPa for single
carbon fibers and impregnated 1000-carbon fiber tows. Table 1 provides some descriptive
measures for strength data, which include central tendency statistics, the standard de-
viation (SD), and coefficients of variation (CV), of skewness (CS) and of kurtosis (CK),
among others. These data are fitted by using the BIR, exponentiated inverse Rayleigh
(EIR) (Gupta et al., 1998) and IR distributions. All these distributions are common mod-
els for lifetime data.
The ML estimators of the model parameters are obtained by using the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) quasi-Newton nonlinear optimization algorithm with analytic
derivatives; for more details, see Nocedal and Wright (1999) and Mittelhammer et al.
(2000, p. 199). Computational implementation was performed in Ox matrix programming
language (Doornik, 2006).
Tables 2 report the MLEs of the model parameters (SEs in parentheses) for each model.

It is also shown the values for the Akaike information criterion (AIC) (Akaike, 1973),
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Table 1. summary statistics.

Data set n Min. Median Mean Max. SD CV CS CK
strength 69 1.312 2.478 2.451 3.585 0.495 20.19% −0.028 −0.144
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Figure 5. (a) QQ plot with envelope for the BIR distribution and (b) fitted densities of the BIR (bold line), EIR
(dashed line) and Inverse Rayleigh (dotted line) distributions for strength data.

Bayesian information criterion (BIC) (Schwarz, 1978), bias-corrected Akaike information
criterion (BAIC) (Hurvich and Tsai, 1989), Hannan-Quinn information criterion (HQIC)
(Hannan and Quinn, 1979), and Kolmogorov-Smirnov (KS) goodness-of-fit test. The KS
test indicates that there is not sufficient statistical evidence as for supporting that the
data do not follow the BIR and EIR distributions; see Table 2. In Figure 5(a), we present
the quantile against quantile (QQ) plot with envelope, which allows us to compare the
empirical distribution of the data for the BIR distribution. This graphical goodness-of-fit
method supports the result obtained by the KS test. In terms of AIC, BAIC, and HQIC
values, the horse race winner is the BIR distribution; see Table 2. Plots of the estimated
densities of the BIR, EIR and IR models fitted to these data are displayed in Figure
5(b). The overall results suggest that the BIR distribution is superior to the remaining
distributions in terms of model fitting.

Table 2. Parameter estimates, goodness-of-fit measures and KS statistics for strength data.

Estimates Goodness-of-fit KS p-value
(SEs) measures statistics

â b̂ θ̂ AIC BIC BAIC HQIC
BIR 0.2686 69.3250 42.5446 104.77 111.47 174.14 107.43 0.0519 0.9923

(0.0394) (21.6710) (2.1419)
EIR − 10.2986 15.6410 108.14 112.61 177.32 109.91 0.0777 0.7985

(−) (8.8910) (1.5547)
IR − − 5.2111 178.83 181.06 247.89 179.71 0.3549 < 0.0001

(−) (−) (0.6273)

In order to confirm that the log-likelihood function is well behaved and that an unequiv-
ocal optimum has been reached, we plot the profiles of the negative log-likelihood function
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Figure 6. Profiles of the negative log-likelihood function for the BIR distribution.

for the BIR distribution; see Figure 6. Note that in each case the parameter estimate had
a nice quadratic neighborhood.
Here, we test the null hypothesis H0 : EIR against the alternative hypothesis H1 : BIR

and also H0 : IR against H1 : BIR, i.e., H0 : a = 1 against H1 : b ̸= 1 and H0 : a = b = 1
against H1 : H0 is false, respectively. The LR statistics are listed in Table 3. For any usual
significance level, we reject both null models (EIR and IR) in favor of the alternative BIR
model.

Table 3. LR tests.

Models Hypotheses w p-valor
BIR vs EIR H0 : a = 1 vs H1 : H0 is false 5.370 0.0205
BIR vs IR H0 : a = b = 1 vs H1 : H0 is false 78.06 < 0.0001

11. Conclusion

In this work, we study the beta inverse Rayleigh distribution as a generalization of the
inverse Rayleigh distribution. We also provide a better foundation for some mathemati-
cal properties for this distribution, including the derivation of the hazard rate function,
moments, quantile measures, mean deviations, entropy measures and order statistics.
The model parameters are estimated by maximum likelihood.
An application of the BIR distribution to a real data set indicates that this distribution

outperforms both the exponentiated inverse Rayleigh and inverse Rayleigh distributions.
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Rêgo, L.C., Cintra, R.J., Cordeiro, G.M., 2012. On some properties of the beta normal
distribution. Communications in Statistics - Theory and Methods, 41, 3722-3738.

Rosaiah, K., Kantam, R.R.L., 2005. Acceptance Sampling Based on the Inverse Rayleigh
Distribution. Economic Quality Control, 20, 277-286.

Schwarz, G., 1978. Estimating the Dimension of a Model. Annals of Statistics, 6, 461-464.
Soliman, A., Amin, E., Abd-El Aziz, A., 2010. Estimation and Prediction from Inverse

Rayleigh Distribution Based on Lower Record Values. Applied Mathematical Sciences,
4(62), 3057-3066.
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