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Abstract

This paper provides an overview of locally stationary processes, a helpful methodology
for handling nonstationary time series. These techniques allow for the smooth evolution
of the model parameters. This work reviews estimation and predictions techniques,
illustrating the application of these methods to real-life data examples. These examples
show that the locally stationary methods provide a useful theoretical and practical
framework for the statistical analysis of nonstationary time series data.

Keywords: Kalman filter · State space system · Nonstationarity · Long-range
dependence · Local stationarity · Time-varying models.

Mathematics Subject Classification: Primary 62M10 · Secondary 60G15.

1. Introduction

During the last decades, locally stationary (LS) processes have been playing an important
role in time series analysis. They have provided a sound statistical methodology for mod-
eling data exhibiting nonstationary features without resorting to data transformations,
trend removals and other related techniques. The theory of LS processes is based on the
principle that a nonstationary process can be locally approximated by a stationary one if
the time variation of the model parameters is sufficiently smooth. The idea of developing
techniques for handling directly nonstationary processes dates back to the sixties. For ex-
ample, Priestley (1965), Priestley and Tong (1973), Tong (1973) and others developed the
concept of evolutionary spectra. In the ninities, Dahlhaus (1996a, 1997) provided a formal
definition of a family of LS processes which has generated a pleyade of related works, see
for example Dahlhaus (2000), Jensen (2000), Dahlhaus (2006, 2009), Chandler and Polonik
(2006), Palma and Olea (2010) and Palma et al. (2013), among others. Other classes of LS
processes have been discussed for example by Wang et al. (1973), Cavanaugh et al. (2003)
and Last and Shumway (2008).

In this paper we provide a brief overview of this important field of research in time
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series analysis, discussing estimation and prediction techniques as well as applications
to real-life data. In the context of parameter estimation, we discuss the calculation of
exact maximum likelihood estimators (MLE) by means of state space systems and the
computation of approximate MLE by means of an adaptation of the Whittle approach to
the nonstationary case. Additionally, we address the calculation of one-step and multi-step
ahead predictors, based on finite or infinity past.

The remaining of this article is structured as follows. A class of LS processes is defined
in Section 2 following Dahlhaus (1997). Section 3 discusses a state space framework for
modeling that class of LS processes models. Section 4 is devoted to a revision of estimation
methods including state space and Whittle techniques. Section 5 addresses methods for
obtaining both one-step and multi-step ahead forecats for LS processes . Conclusions are
provided in Section 6.

2. Locally Stationary Processes

Recall that a Gaussian stationary {Yt} can be written in terms of a Cramer spectral
representation,

Yt =

∫ π

−π
A(λ) eiλt dB(λ), (1)

where A(λ) is a transfer function and B(λ) is a Brownian motion on [−π, π]. In a series
of seminal papers, see for example Dahlhaus (1997), this expression is extended allowing
the transfer function to evolve in time as follows,

Yt,T =

∫ π

−π
A0
t,T (λ) eiλt dB(λ), (2)

for t = 1, . . . , T , where B(λ) is a Brownian motion on [−π, π] and there is a positive

constant K and a 2π-periodic function A : (0, 1] × R → C with A(u,−λ) = A(u, λ) such
that

sup
t,λ
|A0

t,T (λ)−A
(
t
T , λ

)
| ≤ K

T , (3)

for all T . The transfer function A0
t,T (λ) of this class of nontstationary processes changes

smoothly over time so that they can be locally approximated by stationary processes. Some
examples are discussed below.

Example 2.1 Consider the following time-varying version of the first order moving aver-
age process, denoted for simplicity as LSMA(1),

Yt,T = σ
(
t
T

) [
1 + θ

(
t
T

)
εt−1

]
, (4)

t = 1, . . . , T , where {εt} is a zero-mean and unit variance white noise sequence. The
covariance structure of this model is,

κT (s, t) =


σ2
(
t
T

) [
1 + θ2

(
t
T

)]
, s = t,

σ
(
t
T

)
σ
(
t−1
T

)
θ
(
t
T

)
, s = t− 1,

σ
(
t
T

)
σ
(
t+1
T

)
θ
(
t+1
T

)
, s = t+ 1,

0 otherwise.
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In this case, the transfer function of the process is given by

A0
t,T (λ) = A

(
t
T , λ

)
= σ

(
t
T

) [
1 + θ

(
t
T

)
eı̇λ
]
. (5)

Furthermore, the time-varying spectral density is

f
(
t
T , λ

)
= |A

(
t
T , λ

)
|2 = σ2

(
t
T

) [
1 + θ2

(
t
T

)
+ 2θ

(
t
T

)
cosλ

]
. (6)

Example 2.2 An extension of the previous model is the time-varying MA(∞) moving
average expansion

Yt,T = σ
(
t
T

) ∞∑
j=0

ψj
(
t
T

)
εt−j , (7)

t = 1, . . . , T , where {εt} is a zero-mean and unit variance Gaussian white noise and
{ψj(u)} are coefficients satisfying ψ0 (u) = 1 and

∑∞
j=0 ψj (u)2 < ∞ for all u ∈ [0, 1].

This model will be denoted LSMA(∞) hereafter. The time-varying spectral density of

(7) is fθ(u, λ) = σ2(u)|
∑∞

j=0 ψj(u)eı̇λj |2, for u ∈ [0, 1] and λ ∈ [−π, π]. For simplicity, if

|ψj(u)| ≤ K exp(−aj) for j ≥ 1 and u ∈ [0, 1] with K and a positive constants, model (7)
will be called a short-memory process. On the other hand, if |ψj(u)| ≤ Kjd−1 for u ∈ [0, 1]
and some d ∈ (0, 1/2), model (7) will be called a long-memory process. Another character-
ization is based on the spectral density. It is said that a LS process has short memory if
its spectral density is bounded at λ = 0 for u ∈ [0, 1]. On the other hand, the process has
long memory if its spectral density is unbounded near the origin for u ∈ [0, 1].

Example 2.3 Consider the LS autoregressive process LSAR(1) defined as

Yt,T = φ( tT )Yt−1,T + εt, (8)

for T = 1, . . . , T. Suppose that φ(u) = φ(0) for u < 0, and there exists a positive constant
K < 1 such that |φ(u)| ≤ K for u < 1. Thus, an expanded Wold expansion of this process
is given by,

Yt,T =

∞∑
j=0

ψj (t, T ) εt−j , (9)

where ψ0 (t, T ) = 1 for all t,T , and for j ≥ 1,

ψj (t, T ) =

j−1∏
k=0

φ( t−kT ). (10)

From this, we conclude that the transfer function can be written as

A0
t,T (λ) = 1 +

∞∑
j=1

j−1∏
k=0

φ( t−kT )eiλj . (11)

Note that by Theorem 2.3 of Dahlhaus (1996b), this transfer function satisfies the condition

(3). The spectral density of the limiting process is fθ(u, λ) = σ(u)2|1 − φ(u)eı̇λj |−2. This
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process satisfies definition (2) and its spectral density is bounded at the origin for all u.
Thus, this is a short-memory process.

Example 2.4 Observe that a stationary fractional noise process (FN) with long-memory
parameter d is given by

Yt = σ

∞∑
j=0

ψjεt−j , (12)

where ψj = Γ(j+d)
Γ(j+1)Γ(d) , where Γ(·) is the Gamma function. A nonstationary extension of

this model is the LS fractional noise process (LSFN) with coefficients ψj (u) = Γ[j+d(u)]
Γ(j+1)Γ[d(u)] ,

where d(·) is a smoothly time-varying long-memory parameter. Observe that according to
Lemma A.1 of Palma (2010), the covariances of a LSFN process are

κT (s, t) = σ
(
s
T

)
σ
(
t
T

) Γ
[
1− d

(
s
T

)
− d

(
t
T

)]
Γ
[
s− t+ d

(
s
T

)]
Γ
[
1− d

(
s
T

)]
Γ
[
d
(
s
T

)]
Γ
[
s− t+ 1− d

(
t
T

)] , (13)

for s, t = 1, . . . , T , s ≥ t. From this expression, and for large s− t we have that

κT (s, t) ∼ σ
(
s
T

)
σ
(
t
T

) Γ
[
1− d

(
s
T

)
− d

(
t
T

)]
Γ
[
1− d

(
s
T

)]
Γ
[
d
(
s
T

)](s− t)d( sT )+d
(
t
T

)
−1
,

The spectral density of this process is given by

fθ(u, λ) =
σ2(u)

2π

[
2 sin

λ

2

]−2dθ(u)

,

for λ ∈ [−π, π]. Thus, fθ(u, λ) ∼ σ2(u)
2π |λ|

−2d(u), for |λ| → 0. Consequently, fθ(u, λ) has a
pole at the origin and then this is a long-memory process.

3. State-Space Representations

Given that the state space (SS) systems provide a very useful framework for the efficient
calculation of estimates and forecasts, in this section we review the application of this
representations to the case of locally stationary processes. Consider the following state
space system,

Xt+1,T = Ft,TXt,T + Vt,T ,
Yt,T = Gt,TXt,T +Wt,T ,

(14)

where Xt,T is a state vector, Ft,T is a state transition operator, Vt is a state noise with
variance Qt,T , Yt,T is the observation, Gt,T is observation operator and Wt is a observation
noise with variance Rt,T . The LS process (7) can be represented by a state space system
(14) by generalizing the infinite-dimensional equations given in (Hannan and Deistler,
1988, p.22) to the nonstationary case.

According to Palma et al. (2013), the process (7) can be represented by the following



Chilean Journal of Statistics 137

infinite-dimensional state space system

Xt+1,T =

[
0
I∞

]
Xt,T +

[
1 0 0 · · ·

]′
εt+1,

Yt,T = σ( tT )
[
1 ψ1( tT ) ψ2( tT ) ψ3( tT ) · · ·

]
Xt,T ,

(15)

for t = 1, . . . , T , Var(Xt,T ) = I∞, where I∞ = diag{1, 1, . . . }, Rt,T = 0, Qt,T = (qij) with
qij = 1 if i = j = 1 and qij = 0 otherwise. In some cases, this state space representation
may not be minimal. For instance, for LSAR(2) processes, the state space is 2-dimensional:

Xt+1,T =

[
a1( tT ) a2( tT )

0 1

]
Xt,T + εt+1, Yt,T = [1 0]Xt,T .

It is ussually more practical to approximate the model by,

Yt,T = σ
(
t
T

) m∑
j=0

ψj
(
t
T

)
εt−j , (16)

for t = 1, . . . , T and some positive integer m. A finite-dimensional state state system for
(16) is given by

Xt+1,T =

[
0 0
Im 0

]
Xt,T +

[
1 0 · · · 0

]′
εt+1

Yt,T = σ( tT )
[
1 ψ1( tT ) ψ2( tT ) ψ3( tT ) · · ·ψm( tT )

]
Xt,T ,

(17)

for t = 1, . . . , T , where Ir denotes the r × r identity matrix hereafter. Let rm =
Var[

∑∞
j=m+1 ψj(u)εt−j ] be the variance of the truncation error for approximating {Yt,T }

by the finite moving average expansion (16). Then, according to Palma et al. (2013),
the asymptotic magnitude of the truncation error when approximating (7) by (16) is,
rm ∼ O(e−am) for a short-memory process and rm ∼ O(m2d−1) for a long-memory pro-
cess, for large m, where a > 0 and d = supud(u) < 1/2.

4. Estimation

4.1 Whittle Method

Let θ ∈ Θ be a parameter vector specifying model (2) where the parameter space Θ is
a subset of a finite-dimensional Euclidean space. Given a sample {Y1,T , . . . , YT,T } of the
process (2) we can estimate θ by minimizing the Whittle log-likelihood function

LT (θ) =
1

4π

1

M

∫ π

−π

M∑
j=1

{
log fθ(uj , λ) +

IN (uj , λ)

fθ(uj , λ)

}
dλ, (18)

where fθ(u, λ) = |Aθ(u, λ)|2 is the time-varying spectral density of the limiting process

specified by the parameter θ, IN (u, λ) = |DN (u,λ)|2
2πH2,N (0) is a tapered periodogram with

DN (u, λ) =

N−1∑
s=0

h
( s
N

)
Y[uT ]−N/2+s+1,T e

−iλs, Hk,N =

N−1∑
s=0

h
( s
N

)k
e−iλs,
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T = S(M − 1) +N , uj = tj/T , tj = S(j− 1) +N/2, j = 1, . . . ,M and h(·) is a data taper.

The Whittle estimator of the parameter vector θ is given by

θ̂T = arg minLT (θ), (19)

where the minimization is over a parameter space Θ.

The analysis of the asymptotic properties of the Whittle locally stationary estimates
(19) is discussed, for example, in Dahlhaus (1997) and Palma and Olea (2010).

4.2 State Space Method

Consider the state space representation (15) of Yt, T . The Kalman filter equations can
be used for estimating model parameters, state vectors, future observations and missing

values. Let ∆t, T = Var
(
Yt, T − Ŷt, T

)
be the prediction error variance and let Ωt, T =

Var
(
Xt, T − X̂t, T

)
= (ωi,j(t, T )) be the state prediction error variance-covariance matrix.

The Kalman recursive equations are defined in Palma et al. (2013) as follows for the

initial conditions Y0, T = (0, 0, . . .), X̂1 = E(X1) = (0, 0, . . .) and Ω1, T = E(X1, X
′
1) =

diag{1, 1, . . .}:

∆t, T = σ2
(
t
T

) ∞∑
i,j=1

ψi−1

(
t
T

)
ωi,j(t, T )ψj−1

(
t
T

)
,

Θt T (i) = σ
(
t
T

) ∞∑
j=1

ωi−1,j(t, T )ψj−1

(
t
T

)
,

ωt+1, T (i, j) = ωt, T (i+ 1, j + 1) + qi,j − δ(t) Θt, T (i) Θt, T (j)/∆t, T , (20)

Ŷt, T = σ
(
t
T

) ∞∑
j=1

ψj−1

(
t
T

)
X̂t, T (j),

X̂t+1, T (i) = X̂t, T (i− 1) + Θt, T (i)(Yt, T − Ŷt, T )/∆t, T ,

where δ(t) = 1 if observation Yt, T is available and δ(t) = 0 otherwise.

Let θ be the model parameter vector, then the log-likelihood function (up to a constant)

can be obtained from (20), L(θ) =
∑T

t=1 log ∆t, T +
∑T

t=1
(Yt, T−Ŷt, T )

2

∆t, T
. Hence the exact MLE

provided by the Kalman equations (20) is given by θ̂ = arg maxθ∈Θ L(θ), where Θ is a
parameter space. Note that the Kalman equations (20) can be applied directly to the
general state space representation (14) or to the truncated representation (17), yielding in
this case an approximate MLE.

4.3 Simulation Studies

4.3.1 Whittle Method

In order to gain some insight into the finite sample performance of the Whittle estimator
discussed in Section 4.1 we report next a number of Monte Carlo experiments for the LSFN



Chilean Journal of Statistics 139

model

Yt,T = σ(t/T ) (1−B)−d(t/T ) εt, (21)

for t = 1, . . . , T with d(u) = α0 + α1 u, σ(u) = β0 + β1 u and Gaussian white noise {εt}
with unit variance. Denote the parameter vector by α = (α0, α1) for d(·) and β = (β0, β1)
for the noise scale σ(·).

The samples of the LSFN process are generated by means of the innovation algorithm,
see for example (Brockwell and Davis, 1991, p.172). In this implementation, the covari-
ances of the process {Yt,T } is given by (13). The Whittle estimates in these Monte Carlo
simulations have been computed by using the cosine bell data taper h(x) = 1

2 [1−cos(2π x)].

Table 1 reports the results from Monte Carlo simulations for several parameter values,
based on 1000 replications. These tables show the average of the estimates as well as their
theoretical and empirical standard deviations (SD) given by

Γα =

[
π2

6 (i+ j + 1)

]
i,j=0,1

, Γβ = 2

[∫ 1

0

ui+j du

σ2(u)

]
i,j=0,1

. (22)

Observe from this table that the estimated parameters are close to their true values.
Besides, the empirical SD are close to their theoretical counterparts. These simulations
suggest that the finite sample performance of the proposed estimators seems to be very
good in terms of bias and standard deviations.

Estimated

4.3.2 Kalman Filter Method

Consider the LSMA(∞) model described by (7) with

ψj(u) = φ(u)j , φ(u) = α0 + α1 u, σ(u) = β0 + β1 u, (23)

with |φ(u)| < 1 and σ(u) > 0 for u ∈ [0, 1]. Denote the parameter vector by α = (α0, α1)
for φ(·) and β = (β0, β1) for the noise scale σ(·). In this case the theoretical SD are based
on the formulas given by Theorem 3.1 of Dahlhaus (2000) Dahlhaus (2000) for the MLE
of short-memory LS models:

Γ(α)i,j =

[∫ 1

0

ui+j−2

1− [φ(u)]2
du

]
i,j=1,2

. (24)

Table 2 displays the simulation results from the Kalman method for two truncation levels,
m = 40, 80. The number of missing values are 10% and 20%, which have been randomly
selected for each simulation. Finally, we use sample size T=1024 and 1000 replications.
From this table, note that the estimated parameters and SD are close to their theoretical
counterparts, especially as the truncation level m increases. As expected, the precision of
the estimates deteriorates as the percentage of missing data increases.

5. Prediction Methods

In this section, we describe a procedure for obtaining one-step and multi-step predictors
along with prediction bands by means of state space models. We will focus on the prediction
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of future values of time series generated by LS processes with short or long memory and
Gaussian innovations.

The Kalman filter described in Section 4.2 provides the state vector, X̂t+1,T , and its
mean square error (MSE) based on the information available at time t. These estimates
are given by

X̂t+1,T = Ft,TXt,T + Θt,T∆−1
t,TΥt,T , (25a)

Ωt+1,T = Ft,TΩt,TF
′
t,T +Qt,T −Θt,T∆−1

t,TΘ′t,T , (25b)

where Υt,T = Yt,T − Ŷt,T is the innovation, ∆t,T is its variance given by ∆t,T =
Gt,TΩt,TG

′
t,T +Rt,T and Θt,T = Ft,TΩt,TG

′
t,T .

5.1 Missing Observations

The analysis of missing observations in time series has been addressed by several authors
including Harvey (1989) and Durbin and Koopman (2009), among others. The state space
method and its associated Kalman filter algorithm provides a simple methodology for
handling missing values.

In order to describe this procedure, assume that the set of observations Yt,T for t =

Table 1. Whittle estimation for model (21): Sample size T = 1024, block size N = 128 and shift S = 64.

Parameters Estimates Theoretical SD Estimated SD

α0 α1 α̂0 α̂1 σ(α̂0) σ(α̂1) σ̂(α̂0) σ̂(α̂1)

0.10 0.20 0.080 0.213 0.049 0.084 0.060 0.112
0.15 0.25 0.133 0.277 0.049 0.084 0.066 0.109
0.20 0.20 0.187 0.221 0.049 0.084 0.067 0.113
0.20 0.25 0.197 0.258 0.049 0.084 0.057 0.092
0.25 0.20 0.252 0.204 0.049 0.084 0.057 0.091
0.10 0.20 0.078 0.215 0.049 0.084 0.059 0.114
0.15 0.25 0.132 0.275 0.049 0.084 0.067 0.115
0.20 0.20 0.193 0.214 0.049 0.084 0.067 0.114
0.20 0.25 0.195 0.262 0.049 0.084 0.058 0.088
0.25 0.20 0.254 0.198 0.049 0.084 0.055 0.089

β0 β1 β̂0 β̂1 σ(β̂0) σ(β̂1) σ̂(β̂0) σ̂(β̂1)

0.50 0.50 0.498 0.509 0.027 0.056 0.030 0.064
0.50 0.50 0.499 0.518 0.027 0.056 0.032 0.066
0.50 0.50 0.499 0.518 0.027 0.056 0.031 0.064
0.50 0.50 0.500 0.521 0.027 0.056 0.030 0.062
0.50 0.50 0.506 0.513 0.027 0.056 0.030 0.060
1.00 -0.50 0.998 -0.494 0.038 0.056 0.042 0.067
1.00 -0.50 1.001 -0.492 0.038 0.056 0.044 0.067
1.00 -0.50 1.004 -0.495 0.038 0.056 0.043 0.066
1.00 -0.50 1.003 -0.491 0.038 0.056 0.041 0.062
1.00 -0.50 1.008 -0.498 0.038 0.056 0.040 0.062
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Table 2. Estimation of model (23) with (α0, α1, β0, β1) = (−0.2, 0.7, 0.6, 0.4)

m=40 m=80

% NA 0% 10% 20% 0% 10 % 20%
α̂0 -0.2019 -0.2032 -0.1982 -0.2032 -0.2018 -0.1988
α̂1 0.7011 0.7033 0.6961 0.7036 0.7027 0.6950

β̂0 0.6052 0.5821 0.5554 0.6058 0.5945 0.5831

β̂1 0.3891 0.3608 0.3370 0.3945 0.3912 0.3856
σ(α̂0) 0.0613 0.0646 0.0686 0.0613 0.0646 0.0686
σ(α̂1) 0.1027 0.1082 0.1148 0.1026 0.1082 0.1149

σ(β̂0) 0.0305 0.0308 0.0311 0.0306 0.0317 0.0330

σ(β̂1) 0.0604 0.0607 0.0612 0.0606 0.0628 0.0654
σ̂(α̂0) 0.0613 0.0647 0.0679 0.0608 0.0641 0.0687
σ̂(α̂1) 0.1024 0.1073 0.1152 0.1028 0.1091 0.1150

σ̂(β̂0) 0.0313 0.0314 0.0319 0.0310 0.0316 0.0323

σ̂(β̂1) 0.0604 0.0604 0.0619 0.0600 0.0626 0.0658

n+1, . . . , T −n is missing, the vector Υt,T and the matrix Θt,T of the Kalman filter are set
to zero for these values, that is, Υt,T = 0 and Θt,T = 0, and the Kalman updates become

X̂t+1,T = Ft,TXt,T , (26a)

Ωt+1,T = Ft,TΩt,TF
′
t,T +Qt,T , (26b)

for t = n + 1, . . . , T − n. Forecasts of Yn+k,T together with their forecast error, can be
obtained by treating Yt,T for t > n as missing observations and continuing the Kalman
filter beyond t = n with Υt,T = 0 and Θt,T = 0 for t > n.

5.2 One step forecasting

Let us suppose we have observations {Y1,T , . . . Yn,T } which follow the state space model
(14) and we wish to forecast Yn+1,T . In this case the forecast is fairly straightforward
calculation. Namely, from (14), we have Yn+1,T = Gn+1,TXn+1,T +Wn+1,T so the one-step
in-sample predictor is given by

Ŷn+1,T = Gn+1,T X̂n+1,T ,

where X̂n+1,T is the estimate (26a) of Xn+1,T produced by the Kalman filter and Gn+1,T =[
1, ψ1

(
n+1
T

)
, ψ2

(
n+1
T

)
, . . .

]
. The corresponding MSE is given by

∆n+1,T = Gn+1,TΩn+1,TG
′
n+1,T ,

where Ωn+1,T is given by (26b). On the other hand, out-of-sample predictor ŶT+1 can be

obtained from the Kalman filter equations by redefining the sample size T̃ = T + 1 and
merely treating YT+1 as missing value. Thus, the best linear mean square predictor, is
given by

ŶT+1,T̃ = GT+1,T̃ X̂T+1,T̃ ,
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where X̂T+1,T̃ is produced by the Kalman filter relation (26a) and GT+1,T̃ =

[1, ψ1 (1) , ψ2 (1) , . . .]. Finally, the MSE is given by ∆T+1,T̃ = GT+1,T̃ΩT+1,T̃G
′
T+1,T̃

, with

ΩT+1,T̃ = FT,T̃ΩT,T̃F
′
T,T̃

+QT,T̃ .

5.3 Multi-step forecasting

Let Ŷn+k,T = E(Yn+k,T |Yn,T , Yn−1,T , . . . , Y1,T ) be the k-step-in-sample predictor based on
the finite past for 1 ≤ n+k ≤ T . Following the procedure described in the previous section,
these forecasts are obtained from the Kalman recursive equations given by (26), for more
details see Palma et al. (2013).

Assuming that future prediction errors are Gaussian, the k-step ahead prediction bands
for Yn+k are given by[

Ŷn+k,T − z1−α/2
√

∆n+k,T , Ŷn+k,T + z1−α/2
√

∆n+k,T

]
, (27)

where z1−α/2 is the
(
1− α

2

)
-percentile of the standard normal distribution, and Ŷn+k,T

and ∆n+k,T are the k-steps ahead prediction of Yn+k and its MSE given by

Ŷn+k,T = Gn+k,TF
kX̂n,T , (28a)

∆n+k,T = Gn+k,T

(
F k
)

Ωn,T

(
F k
)′
G′n+k,T +Gn+k,T

k−1∑
j=0

[(
F j
)
Q
(
F j
)′]

G′n+k,T (28b)

for k = 1, . . . , T − n, where Gn+k,T =
[
1, ψ1

(
n+k
T

)
, ψ2

(
n+k
T

)
, . . .

]
.

Finally, the k-step linear predictor for out-sample ŶT+k,T with k > 0, is obtained by

re-defining the sample size T̃ = T + k and considering the observations T̃ + 1, . . . , T̃ + k as
missing data. In practice, the unknown parameters involved in (28) and (27) are substituted
by consistent estimates such as MLE, which can be obtained by means of the Kalman
recursive equations.

5.4 Simulation Studies

This section reports the results from several Monte Carlo experiments carried out to an-
alyze the finite sample behavior of one-step and multi-step predictors of short and long-
memory LS processes. In order to study the behavior of the prediction bands defined in
(27), we consider their coverage and length, and the proportion of observations lying out to
both left and right. We compare these measures with the nominal coverage. In order to do
so, we consider simulations of a particular series generated by the specific LSMA process
discussed in Section 2, generating R = 1000 future values Yn+k,T from that series. Then,
for the LSMA process, we obtained a prediction band denoted by (L,U) and estimate the
coverage by

α̂ = #(L ≤ Y r
n+k ≤ U)/R,

where Y r
n+k(r = 1, 2, . . . , R) are the values generated previously. We have carried out

1000 Monte Carlo experiments and report average coverage, average length and coverage
proportion of observations on the left and on the right for each prediction interval.
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Thus, the best in-sample linear predictor (28a) was calculated for k = 1, 5 and 15. We
also consider different sample sizes T = 112, 512 and 1024, with n = T−k. In order to check
the suitability of Ŷn+k,T , let us consider two models: the first is a short-memory LSAR(1)
process and the second is a long-memory LSFN process. Both models have time-varying
parameters. For the LSAR(1) case, we consider time-varying φ(u) parameter and scale
factor σ(u) given by specification (23) with (α0, α1, β0, β1) = (−0.4, 0.8, 0.5, 0.5). On the
other hand, for the LSFN(d) case with time-varying long-memory parameter d(u) and scale
factor given by specification (21) with (α0, α1, β0, β1) = (0.2, 0.25, 0.5, 0.5). The models
are estimated using Kalman filters with truncation m = 30. Observations t = 1, . . . , n and
values t = n + 1, . . . , n + k are left for out-of-sample forecasting and then obtain, 95%
prediction bands computed using (27). Finally, we compute the coverage of each of these
bands as well as the length and the percentage of observations left out on the right and on
the left of the limits of the prediction bands. Table 3 reports the Monte Carlo averages of

Table 3. Monte Carlo average coverages, length and percentage of observations left out on the right and on the left
of the prediction bands for Yn+k and the nominal coverage is 95%.

Sample Average Coverage Average
Model Size k Coverage below/above Length

1 0.9294 0.0339 / 0.0368 3.7237
128 5 0.9163 0.0419 / 0.0418 3.8944

15 0.8285 0.0858 / 0.0857 3.9162

1 0.9477 0.0261 / 0.0262 3.8715
LSAR(1) 512 5 0.9421 0.0300 / 0.0279 4.1536

15 0.9267 0.0373 / 0.0360 4.1560

1 0.9464 0.0282 / 0.0254 3.8913
1024 5 0.9447 0.0297 / 0.0256 4.2385

15 0.9410 0.0316 / 0.0274 4.1518

1 0.9357 0.0267 / 0.0376 3.8571
128 5 0.9164 0.0411 / 0.0425 4.3063

15 0.7753 0.1132 / 0.1115 4.3905

1 0.9379 0.0312 / 0.0309 3.9362
LSFN 512 5 0.9265 0.0364 / 0.0371 4.6673

15 0.9032 0.0474 / 0.0494 4.7137

1 0.9480 0.0256 / 0.0264 3.9441
1024 5 0.9315 0.0356 / 0.0330 4.7418

15 0.9135 0.0423 / 0.0442 4.9860

these quantities. The average coverage of the bands is smaller than the nominal coverage
when the sample size is small (T = 128) and the prediction horizon is 5 and 15. When
comparing the prediction bands of these models, we can observe that in both cases their
average coverage get closer to their nominal values as the sample sizes increases to 512
and 1024 observations.
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5.5 Data Application

In this section, we apply the locally stationary methodology for estimating, predicting and
handling missing values to real-life time series consisting of tree-ring measurements.

5.6 Tree-Ring Data

Ring count is a typical procedure in studies of forest mass to determine growth and yield of
both natural forests and forest plantations. This methodology is known as forest analysis,
and it can be only implemented in species growing in temperate regions, where it is easy
to identify the ring growth. In tropical climates, where there is little differentiation among
seasons, growth rates are constant, making it difficult to clearly differentiate spring and
winter wood. Consequently, this data set can be used as climate proxies and to indicate
the chances of temperature and precipitation conditions in paleoclimatology, see Tan et
al. (2003).

Figure 1 plots annual tree-ring width of the Pinus Longaeva form the Mammoth Creek,
Utah, from 0 AD to 1989 AD. This data set, available at the National Climatic Data
Center, was reported in Graybill (1990). Following to Ferreira et al. (2013), tree ring
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Figure 1. Tree Ring Data.

data can be represented by a model with a constant mean over time and a LS process,
i.e. Yt,T = µ + εt,T , without loss of generality, we can define a zero-mean process by
Xt,T = Yt,T − µ̂, with sample mean given by µ̂ = 1.0017.

Figure 2 shows the sample ACF of Xt,T in panel (a), and the corresponding variances of
the sample mean in panel (b). The dashed line corresponds to its expected behavior for a
short-memory case with blocks of k observations, whereas the continuous line represents
the expected behavior for a long-memory case. From both panels, this series seems to
exhibit long-range dependence.

In addition, a closer look at the sample ACF of the data reveals that the degree of
persistence seems to vary over time. Indeed, Figure 3 shows the sample autocorrelation
of three segments of the sample: observations 1 to 500, observations 750 to 1250 and
observations 1490 to 1990. This figure provides information for arguing possible changes
in the degree of dependence. This represents a clear evidence of a nonstationary process.
Therefore, it seems that the data has a time-varying long-memory structure. In order to
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Figure 2. Tree Ring Data. (a) Sample ACF, (b) Variance Plot
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Figure 3. Tree Ring Data. Sample ACF: (a) Observations 1 to 500,(b) Observations 750 to 1250, (c) Observations
1490 to 1990.

handle these features, a LSFN process was used. Figure 4 shows an heuristic estimator
of the long-memory parameter and the variance of the noise scale along with stationary
fractional noise and locally stationary fractional noise model estimates of these quantities.
From this figure we suggest a linear and quadratic function for d(u) and σ(u) respectively;
i.e,

d(u) = α0 + α1 u, σ(u) = β0 + β1 u+ β2 u
2. (29)

Table 4 reports the parameter estimates using the Kalman filter for model (21) with
truncation level m = 80. The standard deviations and the t-tests have been obtained
using (22) for d(u) and σ(u), respectively. As we can observe in this table, the parameters
(α0, α1) and (β0, β1, β2) are statistically significant at the 5% level.
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Figure 4. (a) Estimates of the long-memory parameter. (b) Estimates of the noise variance. In all panels the heavy
line represents the locally stationary FN model, the horizontal broken line indicates the stationary FN model and
the dots represent the heuristic approach.

Table 4. Tree Ring Data: Parameters estimated with a truncation m=80

Parameter Estimates Standard Deviation t−value

α0 0.3294943 0.03495660 9.425811
α1 -0.2005137 0.06054661 -3.311725
β0 0.3391996 0.01566141 21.65831
β1 -0.1638700 0.07259525 -2.257310
β2 0.2076965 0.07137396 2.909976

The residuals of the model, et = Xt,T − X̂t,T , along with their SD, ∆
1/2
t,T , are plotted

in Figure 5. In particular, the figure exhibits three panels exploring the structure of the

standardized residuals rt = et∆
−1/2
t,T : panel (a) displays the standardized residuals for the

LSFN estimates, panel (b) shows the sample ACF, and panel (c) presents the Ljung-Box
statistic. From panel (b), it seems that there are no significant autocorrelations in the
residuals. This conclusion is formally supported by the Ljung-Box tests. Consequently, the
white noise hypothesis cannot be rejected at the 5% level.

In order to validate our estimates, we consider a data gap consisting of two blocks of 100
observations each removed from the sample. These blocks are located at t = 501, . . . , 600
and t = 1891, . . . , 1990, respectively. Figure 6 displays both forecasting Ŷ500+k , Ŷ1890+k

for k = 1, 2, . . . , 100 and their respective 95% predictions bands. These multi-step-ahead
prediction bands are based on formula (27). Notice that, as expected, most of the future
observations fall inside the prediction bands.

The evolution of the prediction error standard deviations is depicted in Figure 7. The
dashed line represents the SD of the process σ(Xt,T ), the dotted line corresponds to the
noise scale SD, σ(u) = 0.3391996 − 0.1638700u + 0.2076965u2, and the continuous line

denotes the estimated SD of the prediction error ∆
1/2
t,T . From this figure, notice that the

dashed line is an upper limit for the SD of the prediction error. In addition, it can be

observed that ∆
1/2
t,T increases right after the beginning of the data gap and it decays to

σ(t/T ) as new observations become available. Therefore we can conclude that σ(t/T ) ≤
∆

1/2
t,T ≤ σ(Xt,T ).
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Figure 5. Tree Ring Data: Residuals analysis (a)Residuals from the fitted model, (b) Sample ACF, (c) Ljung-Box
tests .
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Figure 6. Tree Ring Data: Multi-step forecasts of two blocks of missing values and 95% prediction bands.

6. Conclusions

In this paper we have reviewed the locally stationary processes, including a number of
estimation and prediction techniques. These models have proved to provide useful tools
for analyzing nonstationary time series which often arise in several fields. As shown in this
work, the LS methodologies allows for the modeling of real-life time series such as tree
rings, sheding some light into the dependence structure of these series.
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