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Abstract

In this paper we present the standard mixture model with a frailty term. This model
has the advantage in relation the usual survival models, in the sense of incorporate the
heterogeneity of two subpopulations (immune and susceptible) to the event of interest.
We consider the model with a frailty term as alternative to modelling long-term survival
data. In this model a random effect, also called frailty, is introduced on the baseline
hazard function, in order to control the unobservable heterogeneity of the units under
study. A simulation study is present to analyze the frequentists properties of estimation
procedures. A cost study in the estimation of the cured rate is discussed. We explore
the use of the gamlss package in R as a tool for inference in cure rate models. The
developed procedures are illustrated on a real data set.

Keywords: Frailty model · GAMLSS · Long-term survival models · Survival analysis
· Variances ratio.

Mathematics Subject Classification: Primary 62N01 · Secondary 62P10.

1. Introduction

In standard survival models, there is an assumption that all units involved in the experiment
are at risk and certainly it will experience the event of interest. However, consider the
usual survival models to certain data sets can not be appropriate. There are survival data
in which a portion of units under study will never experience the event of interest, even
if accompanied by a sufficiently large time. Certainly a bulb will fail, however, a patient
“cured” of cancer can not experience the disease recurrence. We say that these individuals
are (immune, cured or non-susceptible) to the event of interest and the population which
they belong has a cure fraction. In this context, the standard mixture model by Boag (1949)
and Berkson and Gage (1952) is the best known to estimate the cured rate.

The cure rate models allow a survivors proportion in the population. These models have
historically been utilized to analyze long-term survival data and they allow flexibility in
estimate the effects of covariates that can influence in the cured fraction, as well as the
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population at risk. When the cure fraction is not present, the data analysis reduces to the
usual techniques of survival data.

The long-term survival models have the advantage in relation to usual survival models,
in sense of incorporate the heterogeneity of two subpopulations. Among these models, the
most common type is the mixture model, where it considers that the population is divided
into two subpopulations (immune and susceptible) to the event of interest.

We find several applications of long-term survival models in areas such as biomedical stud-
ies, financial, criminology, demography, reliability, among other. For instance, in biomedical
data an event of interest can be the patient’s death, which can occur due to tumor recur-
rence. When we consider financial data, an event of interest can be the shutdown of a
customer of the bank due to various reasons. In criminology data, the event of interest
can be the crime recurrence. These examples can be found in Anscombe (1961), Farewell
(1977), Goldman (1984), Broadhurst and Maller (1991), Meeker and Escobar (1998). For
more details and examples of long-term survival models can be found in Maller and Zhou
(1996).

The cure rate models implicitly assume for the susceptible individuals a homogeneous
population, however, a way of quantifying the amount of observed heterogeneity is including
covariate in the model. Like that, a portion of the heterogeneity can be explained by
covariates, however there is a degree of heterogeneity induced by unobservable risk factors.
The models which incorporate unobservable heterogeneity among individuals are known as
frailty models; see Vaupel et al. (1979).

The frailty models are characterized by the inclusion of a random effect, that is, an
unobservable random variable, that represents the information that can not be observed
or have not been observed, such as: environmental factors, genetic or information that
for some reason were not considered at the planning. One of the ways to incorporate this
random effect, called frailty, is to introduce on the baseline hazard function, in order to
control the unobservable heterogeneity of units under study.

Several authors studied the use of multiplicative frailty models, which represent a gen-
eralization of the Cox (1972) proportional hazards model. Andersen (1993) and Hougaard
(1995) presented a review of the multiplicative frailty models in the classical perspective,
while Sinha and Dey (1997) developed a full review of these models, under the Bayesian
point of view. The frailty term was initially introduced by Vaupel et al. (1979) in univari-
ate survival models. Clayton (1978) and Oakes (1982) explored the multivariate survival
models. Aalen (1988), Hougaard et al. (1994), Longini Jr and Halloran (1996), Price and
Manatunga (2001), Peng et al. (2007), Yau and Ng (2001), Yu and Peng (2008), among
others, extended the frailty models considering the cured fraction.

The main goal this paper is to realize a simulation study with the aim of analyzing the
frequentists properties of the estimation procedures. Investigate in the presence of frailty
term what is the cost in the estimation of the cure rate. An application to a real leukemia
data set shows the applicability of the model, which the parameter estimates are obtained
through gamlss package. The reader is referred to Rigby and Stasinopoulos (2005) for a
full account of the GAMLSS framework. Stasinopoulos and Rigby (2007) described the
implementation of GAMLSS in R software; see R Development Core Team (2012).

This paper is organized as follows. In Section 2 the frailty model is described. The
standard mixture model is presented in Section 3. In Section 4 we present the frailty
standard mixture model and we discuss the procedure used to estimate the parameters.
A simulation study in Section 5. A study of cost in the estimation of the cured rate is
described in Section 6. An application to a real leukemia data set is illustrated in Section
7. Availability of the programs constitute the Section 8. Finally, in Section 9 we make close
general remarks.
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2. Frailty Model

The multiplicative frailty model is an extent of Cox proportional hazards model, where
the individual hazard depends of an unobservable random variable V , which acts multi-
plicatively on the baseline hazard function, so the hazard for individual i at time t is given
by

hi(t) = hi(t|vi) = vih0(t) exp(x
⊤
i β), i = 1, . . . , n, (1)

where v1, . . . , vn represent the individual frailties, h0(t) is baseline hazard function, β is
a vector of coefficients to be estimated and xi is the covariates vector. The frailty model,
Equation (1), assumes proportional hazards structure conditioned on the random effect.

Note in Equation (1) that the individual hazard increase if vi > 1, decrease for vi < 1
and when vi = 1 the frailty model reduces to the Cox proportional hazards model.

The key idea of this model is that individuals have different frailties, and that the most
frail will die earlier than the less frail, hence the name frailty; see Wienke (2011). The frailty
term in this model does not only explain the heterogeneity among individuals, it also allows
to assess the covariates effect that for some reason were not considered at the planning.
For instance, if an important covariate was not included in the model the unobservable
heterogeneity will increase affecting the inferences about the parameters related to the
covariates. This way, with inclusion of frailty term in the model it will assuage this problem.

The frailty term is a unobservable random variable and we must assume distribution for it.
Due to the way as the frailty term acts on the hazard function, natural frailty distribution
candidates supposed to be continue and time independent, such as gamma, lognormal,
Weibull and inverse Gaussian distributions; see Hougaard (1995). In many papers, the
gamma distribution is often applied, because it presents an easy algebraic treatment.

In the context of proportional hazards, according to Elbers and Ridder (1982) is necessary
that the random effect distribution has finite mean for the model to be identifiable. This
way, in order to keep the identifiability of the model it is convenient to take the distribution
with mean 1. In this paper, we assume a gamma distribution with parameters (α, α) where
1/α quantifies the amount of heterogeneity among subjects. If α is large it implies low
variability among individuals, that is, a homogeneous population, so the frailty variable
values will be equal 1, hence the gamma distribution is degenerate at the point 1, and
like that we have the standard proportional hazards model for independent data. On the
other hand, if α is small it indicates that there is an unobservable heterogeneity among
individuals.

Now let us consider the Equation (1) without the presence of the covariates. The hazard
function for ith individual is given by

hi(t) = hi(t|vi) = vih0(t),

with survival function

Si(t) = Si(t|vi) = (S0(t))
vi ,

where S0(t) is baseline survival function.
In order to obtain the likelihood function is necessary to find the unconditional survival

function, so we need to integrate the frailty term, that is

S(t) =

∫ ∞

0
S(t|v)g(v)dv =

∫ ∞

0
(S0(t))

v g(v)dv =

∫ ∞

0
e−H0(t)vg(v)dv = LV (H0(t)),
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where g(·) is probability density function of the frailty variable, H0(·) is the cumulative
hazard function and LV (·) denotes the Laplace transform. Thus the unconditional survival
function considering gamma distribution is given by

S(t) =

(
1 +

H0(t)

α

)−α

. (2)

From Equation (2), if α → ∞ we have the homogeneous model, that is, S(t) = S0(t).

3. Mixture model to estimate the cured proportion

The standard mixture model by Berkson and Gage (1952) is the best known in survival
analysis to modelling long-term survival data. This model consists of a mixture of paramet-
ric distributions being an improper survival function considered for the total population
and a proper survival function for the susceptible individuals.

Let T be a nonnegative continuous random variable representing the lifetime of an indi-
vidual in population. The survivor function of the standard mixture model is given by

Spop(t) = p0 + (1− p0)S(t), (3)

where p0 represent the cured rate.
The time until the occurrence of any event of interest, in general, can be accommodated

by a probability distribution. In literature, numerous distributions have been used to de-
scribe survival times, however, the Weibull distribution is widely used to modelling the
survival function of those individuals at risk. Note in Equation (3) as the time increases
the improper survival function converges to p0, exactly the cured fraction, indicating that
Spop(t) is an improper function.

The corresponding improper density function is written as

fpop(t) = −S′
pop(t) = (1− p0)f(t),

where f(·) is proper density function for the individuals group at risk. The improper hazard
function is given by

hpop(t) =
fpop(t)

Spop(t)
=

(1− p0)f(t)

p0 + (1− p0)S(t)
. (4)

From Equation (4) the proper hazard function can be written as

h(t) =
Spop(t)hpop(t)

(1− p0)S(t)
=

(
Spop(t)

Spop(t)− p0

)
hpop(t). (5)

As (Spop(t)/(Spop(t) − p0)) > 1, we obtain hpop(t) < h(t), that is, the improper hazard
function is limited by hazard function. Note in Equation (5) that h(t) does not satisfy the
proportional hazards property, because (Spop(t)/(Spop(t)− p0)) always it will depend of t;
see Rodrigues et al. (2009). From Equation (4) we have

lim
t→∞

hpop(t) = lim
t→∞

(1− p0)f(t)

Spop(t)
=

(
1− p0
p0

)
lim
t→∞

f(t) = 0. (6)
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The result in Equation (6) shows us as time increases the population at risk converges
to zero, this reflects the fact that the population survival curve stabilize at a value (cured
fraction), indicating that a portion of individuals have not failed and possibly they were
cured.

4. Frailty standard mixture model

In medical area the argumentation that individuals are different is widely accepted. There
are biological variations that are not mensurable among subjects that explaining this fact.
This variability is generally considered as one of the most important sources of unobservable
variation.

In order to modelling long-term survival data and to quantify the amount of heterogeneity
among subjects, the population survival function is given by

Spop(t) = p0 + (1− p0)LV (H0(t)), (7)

where the unobservable random variable V follows a continuous distribution with support
on positive real.

Upon substituting Equation (2) into Equation (7) we obtain the improper survival func-
tion

Spop(t) = p0 + (1− p0)

(
1 +

H0(t)

α

)−α

, (8)

with improper density function

fpop(t) = (1− p0)h0(t)

(
1 +

H0(t)

α

)−α−1

.

The Equation (8) has the following properties:

• If p0 = 0 and α → ∞, we have homogeneous survival model;
• For p0 = 0, we have gama frailty model;
• When α → ∞, we have standard mixture model.

The frailty standard mixture model comprises some well-known sub-models. This is im-
portant because we can perform hypothesis tests to verify whether there are evidence of
cured individuals, as well as the unobservable heterogeneity.

4.1 Maximum likelihood estimation

In order to estimate the model parameters, we utilize the method of maximum likelihood.
Let us the consider the situation when the time to event is not completely observed and is
subject to right censuring. Let Ci denote the censoring time. We observe Ti = min(Yi,Ci)
and δi = I(Yi ≤ Ci), where δi = 1 se Yi is a time to event and δi = 0 if right censored,
i = 1, . . . , n. Let θ denote the parameter vector of the lifetime distribution. For the n
pairs of times and censoring indicators (t1, δ1), . . . , (tn, δn), the likelihood function under
uninformative censoring is given by

L(p0, α,θ; t, δ) ∝
n∏

i=1

(fpop(ti; p0, α,θ))
δi (Spop(ti; p0, α,θ))

1−δi . (9)
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Henceforward, we assume a Weibull distribution for the time to event T. In our notation,

F(t;θ) = 1− exp(−σtγ) and f(t;θ) = σγtγ−1 exp(−σtγ),

where θ = (σ, γ)⊤, with σ > 0 and γ ≥ 0 are scale and shape parameters, respectively.
Let ϑ = (p0, σ, γ, α)

⊤ the vector of parameters. The estimation of vector ϑ is done
through the maximum likelihood method applied in Equation (9). The numerical maxi-
mization of log-likelihood function ℓ(ϑ) = logL(ϑ; t, δ) is realized using by RS method
available in the gamlss package in R; see Rigby and Stasinopoulos (2005).

The asymptotic properties of maximum likelihood estimators are needed to build con-
fidence intervals and hypotheses tests about the model parameters, utilizing that ϑ̂ has
asymptotic multivariate normal distribution under certain regularity conditions, with mean
ϑ and variance and covariance matrix Σ(ϑ̂), which is estimated by

Σ̂(ϑ̂) =

(
−∂2ℓ(ϑ; t, δ)

∂ϑ∂ϑ′

)−1

evaluated at ϑ = ϑ̂. The required second derivatives are computed numerically.

5. Simulation study

In view of possibility of a sample there is an amount of unobservable heterogeneity and
under premise of homogeneous risk for susceptible individuals, arise the question of the
estimators. How do they behave when we ignore the presence of the heterogeneity in the
sample?

To answer this question, samples were generated of the frailty standard mixture model,
which we consider Weibull distribution for the lifetime. The censoring times were generated
independently from the survival times according to an exponential distribution. Initially
were generated 1000 samples of the frailty Weibull standard mixture model (FWM), given
in Equation (8), following the three scenarios:

• p0 = 0.5, σ = 1, γ = 1 and α = 0.5;
• p0 = 0.5, σ = 1, γ = 1 and α = 1.0;
• p0 = 0.5, σ = 1, γ = 1 and α = 2.0.

For each sample, we fitted the FWM model and Weibull standard mixture model (WM).
We considered for initial values in the optimization process the fixed values. The simulations
that did not converge were discarded. For both models, we compared mean of the parameter
estimates, standard error (SE) and mean square error (MSE). We considered sample sizes
n = 50, 70, 100 and 300 to assess as it affects the asymptotic properties of the estimators.
The simulations results are summarized in Table 1.

The results show that for both models the mean estimates p0 were not much affected
with the increase in sample and in degree heterogeneity. Even for small samples the mean of
the estimates were close to the fixed values. An interesting fact occurred on the parameter
of cured, the mean of the estimates, mean square error and standard error showed results
very similar. This fact is mentioned by Shao and Zhou (2004), which they observed that
there was a large difference in deviance, but that estimates of the cured rate did not differ,
arguing that the estimate of p0 is determined largely by data values near the tail to the
right, while the likelihood function is influenced evenly throughout the data set.

In the three scenarios studied, as we increase the sample size the mean of the estimates
approximate of the fixed values. The inclusion of the frailty term in the standard mixture
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Table 1. Simulations results for p0 = 0.5, σ = 1, γ = 1 and α = 0.5, 1 and 2.
Degree of heterogeneity 1/α

α = 0.5 α = 1 α = 2
n Model Parameter Mean SE MSE Mean SE MSE Mean SE MSE

FWM

p0 0.510 0.078 0.006 0.507 0.074 0.005 0.507 0.072 0.005
σ 1.397 1.261 0.910 1.303 0.909 0.638 1.186 0.653 0.328
γ 1.190 0.460 0.217 1.178 0.389 0.165 1.159 0.349 0.123
α 0.656 0.601 0.360 1.237 1.207 0.696 2.120 2.444 0.858

50
p0 0.497 0.070 0.005 0.501 0.071 0.005 0.504 0.071 0.005

WM σ 0.494 0.132 0.267 0.626 0.155 0.161 0.768 0.177 0.088
γ 0.446 0.066 0.317 0.660 0.100 0.133 0.837 0.131 0.055

FWM

p0 0.494 0.063 0.004 0.503 0.062 0.004 0.505 0.061 0.004
σ 1.321 1.016 0.717 1.241 0.748 0.500 1.190 0.560 0.304
γ 1.138 0.377 0.143 1.132 0.325 0.103 1.131 0.288 0.086
α 0.647 0.495 0.287 1.289 1.127 0.737 2.120 2.091 0.971

70
p0 0.485 0.059 0.004 0.498 0.060 0.004 0.503 0.060 0.004

WM σ 0.495 0.113 0.263 0.628 0.131 0.153 0.766 0.145 0.079
γ 0.441 0.055 0.318 0.652 0.083 0.133 0.808 0.105 0.053

FWM

p0 0.497 0.052 0.002 0.501 0.052 0.003 0.501 0.051 0.002
σ 1.239 0.795 0.497 1.190 0.584 0.311 1.109 0.408 0.145
γ 1.097 0.307 0.093 1.115 0.267 0.077 1.096 0.230 0.050
α 0.628 0.397 0.195 1.234 0.897 0.605 2.150 1.811 0.831

100
p0 0.490 0.050 0.002 0.496 0.050 0.003 0.500 0.050 0.002

WM σ 0.497 0.094 0.258 0.628 0.110 0.147 0.757 0.124 0.075
γ 0.438 0.045 0.320 0.636 0.067 0.142 0.799 0.087 0.052

FWM

p0 0.502 0.030 0.001 0.501 0.030 0.001 0.501 0.029 0.001
σ 1.148 0.394 0.151 1.123 0.291 0.099 1.055 0.204 0.040
γ 1.062 0.169 0.030 1.070 0.148 0.024 1.043 0.125 0.014
α 0.495 0.158 0.024 0.980 0.375 0.117 1.980 0.961 0.270

300
p0 0.493 0.029 0.001 0.497 0.029 0.001 0.500 0.029 0.001

WM σ 0.498 0.054 0.253 0.624 0.063 0.144 0.751 0.071 0.067
γ 0.405 0.023 0.354 0.596 0.035 0.165 0.761 0.047 0.061

model inflated the SE of the estimates. The estimation of the shape and scale parameters
of the Weibull distribution in the model, representing by Equation (3), show lower mean
estimates than FWM model. As we increase α (lower heterogeneity), the mean of the
estimates σ and γ are close to the fixed value 1, this is expected, since large values of α
leads to standard mixture model. As expected, the values of MSE and SE decrease as the
sample size increases.

We also obtain for each parameter the asymptotic 95% confidence interval and we verify
if the confidence interval contained the true value of the parameter, in order to obtain the
coverage probabilities (CP) of the confidence intervals. We also found the mean amplitude.
The Table 2 displays the coverage probabilities and mean amplitudes.

The procedure for constructing confidence intervals based on asymptotic normality of
maximum likelihood estimators was satisfactory in the most cases. For the parameters p0
and γ, the simulation results show that the coverage probabilities of confidence intervals
based on maximum likelihood estimator are close to the desired confidence level. The same
occurs for the parameter σ when we fix α = 2, while for α = 0.5, 1 and n ≤ 100 the coverage
probabilities are considerably lower than the desired confidence levels. When the sample
is small and α = 0.5, 1 the coverage probabilities of confidence intervals are considerably
lower than the desired confidence levels for parameters σ and α.
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Table 2. 95% coverage probabilities for the confidence intervals based on maximum likelihood estimator and mean
amplitudes.

Degree of heterogeneity 1/α
α = 0.5 α = 1 α = 2

n Parameter CP Amplitude CP Amplitude CP Amplitude

50

p0 0.947 0.304 0.953 0.289 0.953 0.283
σ 0.897 4.941 0.913 3.565 0.959 2.561
γ 0.959 1.801 0.984 1.523 0.982 1.370
α 0.888 2.357 0.880 4.733 0.893 9.580

70

p0 0.935 0.246 0.929 0.243 0.929 0.238
σ 0.887 3.983 0.911 2.934 0.956 2.195
γ 0.956 1.478 0.987 1.275 0.991 1.131
α 0.913 1.942 0.889 4.417 0.876 8.195

100

p0 0.954 0.203 0.944 0.202 0.946 0.200
σ 0.898 3.115 0.930 2.289 0.959 1.599
γ 0.949 1.201 0.980 1.046 0.989 0.902
α 0.938 1.557 0.885 3.516 0.909 7.097

300

p0 0.948 0.118 0.941 0.116 0.937 0.115
σ 0.953 1.543 0.963 1.141 0.980 0.798
γ 0.967 0.663 0.973 0.581 0.972 0.490
α 0.938 0.621 0.935 1.471 0.939 3.768

5.1 Artificial data

We consider a sample with 100 observation generated by FMW model following sets of
parameters p0 = 0.5, σ = 1, γ = 1 and α = 1. For the censoring times we suppose
an exponential distribution. The generation of the data set and the maximum likelihood
estimates were obtained as done in the simulation study. Table 3 displays the parameter
estimates for the FWM model which we obtain cure rate of approximately 50%. We also
observed that the estimated values are close to the fixed values, as well as the asymptotic
95% confidence intervals contain the true values of the parameters.

Table 3. Parameter estimates for the FWM model following sets of parameters p0 = 0.5, σ = 1, γ = 1 and α = 1.
Parameter Estimate 95% confidence interval

p0 0.502 (0.402 ; 0.602)
σ 1.167 (0.150 ; 2.185)
γ 1.034 (0.508 ; 1.560)
α 1.069 (0.252 ; 4.531)

6. Estimation cost p0

When we consider frailty models arises the question about the estimation cost of certain
parameters with the inclusion of random effect, that is, considering the frailty standard
mixture model, we wish to know what is the cost (variance inflation) to estimate p0 in the
presence of α. To realize this study, we proceeded with a study simulation. The generation
of the data set and the maximum likelihood estimates were obtained as done in Section 5.
The data were generated of the FWM model following sets of parameters p0 = 0.5, σ = 1,
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γ = 1 and α = 0.5, 1, 1.5, 2, 5, n = 30, 50, 70, 100 and 300.
Let ϑ = (p0, σ, γ, α)

⊤ parameters vector of the FWM model and ϑ̂ = (p̂0, σ̂, γ̂, α̂)
⊤

the maximum likelihood estimates with observed information matrix denoted by J . Let
ϑ̂∗ = (p̂0∗, σ̂∗, γ̂∗)

⊤ the maximum likelihood estimates of the WM model with observed
information matrix denoted by J∗.

The aim is established the estimation cost p0 in presence of α, that is, measure as the
variance of p̂0 is inflated when α is present in the model. A measure of this cost is given
by variances ratio (VR) defined by

VR(p̂0) =
J−1
11

J−1
∗11

,

where Jii is the ith diagonal element of the observed information matrix J , evaluated in
their maximum likelihood estimates, p̂0, σ̂, γ̂ and α̂, and J∗ii is the ith diagonal element of
the observed information matrix J in their maximum likelihood estimates, p̂0∗, σ̂∗ and γ̂∗.

We say there is not estimate cost p0 in presence of α, if variances ratio VR(p̂0) is equal
to 1. In our simulation study a quantity of 1000 samples were generated for each sample
sizes. At each sample, we obtained the estimate cost p0 and later we determined the mean
cost. The variances ratios mean are presented in Table 4. The results indicate there are
estimate cost when there is a large heterogeneity in the sample (small α), however, as the
population becomes more homogeneous (large α), the variances ratios mean assume values
close to 1, thus it indicate there is not estimation cost p0.

Table 4. Variances ratios mean.
n

α 30 50 70 100 300
0.5 1.686 1.348 1.122 1.078 1.080
1.0 1.154 1.089 1.085 1.057 1.040
1.5 1.044 1.043 1.030 1.022 1.019
2.0 1.053 1.050 1.017 1.014 1.008
5.0 1.004 1.003 1.002 1.001 1.001

The Figure 1 illustrates for different values of α and n the behavior of mean cost.
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Figure 1. Variances ratios mean.
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The simulation study shows that the cost in include the frailty in the model does not
inflate significantly the variance of p0 when α is greater than 2. However, whether there is
a large heterogeneity in the population (small α) there is an estimation cost of the cured
proportion.

7. Example with leukemia data set

In this section, we attempt to analysis the leukemia data of Kersey et al. (1987). The data
set consists of lifetime up to recurrence of leukemia, in years, for a group of 44 patients who
received autologous marrow. The observed maximum time was about five years. Censuring
is observed for 20% of the lifetimes. The authors reported that the fraction of cured patients
was estimated to be 20%.

Before we fit the model, we must verify the shape of the hazard rate function. We follow
a standard graphical methodology for data analysis, we use the total time on test (TTT)
plot, which is described by Aarset (1985). The empirical version of the TTT plot is given
by

G(r/n) =

∑r
i=1 Yi:n − (n− r)Yr:n∑r

i=1 Yi:n
,

where r = 1, . . . , n and Yi:n i = 1, . . . , n are the order statistics of the sample.
The increases (decreases) hazard function if the TTT plot has concave (convex) shape.

If the TTT plot approximates of a diagonal line we have constant hazard function and, if
the curve is concave and then convex, so unimodal hazard function. If the TTT plot has
convex shape and then concave shape, we have bathtub shape hazard function. The TTT
plot is only a sufficient and not necessary condition to indicate the shape of the hazard
function for the individuals at risk and it will be used as an indicator of their behavior.
The Figure 2 presents the TTT plot for the leukemia data, implying in increase hazard
function. This situation can be represented by Weibull distribution.
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Figure 2. TTT plot to the leukemia data set.
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The FMW and WM models are fitted to the data set and the results of maximum likeli-
hood estimates of the parameters and the asymptotic and bootstrap confidence intervals are
presented in Table 5. Bootstrap percentile intervals are based on 5000 replicates. The fitted
models can be compared employing the log-likelihood function at its maximum, expressed
by maxL(·), the Akaike information criterion (AIC), and the Information Bayesian crite-
rion (BIC). Table 6 presents these statistics from the adjusted models. The FWM model
yields the best fitting according to these criteria.

Table 5. Maximum likelihood estimates and approximate confidence intervals from the FWM and WM models.

Model Parameter Estimate
95% confidence interval

Asymptotic Bootstrap
p0 0.201 (0.083 ; 0.318) (0.091 ; 0.322)

FWM
σ 6.731 (1.430 ; 12.033) (4.902 ; 10.412)
γ 1.862 (1.276 ; 2.447) (1.587 ; 2.260)
α 2.535 (0.745 ; 8.637) (1.011 ; 3.356)

p0 0.205 (0.104 ; 0.338) (0.090 ; 0.319)
WM σ 3.391 (2.301 ; 4.793) (2.102 ; 8.015)

γ 1.371 (1.075 ; 1.684) (1.111 ; 2.143)

Table 6. Statistics from the adjusted models.

Model
Statistic

AIC BIC max logL(·)
FWM 39.07 45.29 -15.54
WM 44.88 49.55 -19.44

The results presented in Table 5 shows that the estimation cure rate in both models
are close, this fact was expected as seen in the simulation study. We also note that the
asymptotic and bootstrap confidence intervals are close. On the other hand, the bootstrap
confidence intervals for the parameters σ, γ and α have lower amplitude. For the WM model,
the bootstrap confidence intervals show upper amplitude than asymptotic intervals.

The Figures 3 and 4 show the wormplot of the quantile residuals for the FWM and WM
models, respectively.
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Figure 3. Wormplot of the quantile residuals for the FWM model.
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Figure 4. Wormplot of the quantile residuals for the WM model.

The wormplot indicate the FWM model as best fitted, because all the points belong to
the region bounded by the two dashed curves. In Figure we see that for the WM model
there are points not belonging to this central region, indicating that this model is not
appropriate for this data set.

In the presence of long-term survival data, we are interested in estimating the cured
rate of the population, so it is reasonable to proceed with a test to verify if there are
really immune individuals in the population, that is, we are interested in testing the null
hypothesis H0 : p0 = 0. The statistic test most used is likelihood ratio. Asymptotically this
statistic has distribution χ2

1, but under H0 the parameter value is on the boundary of the
parametric space and problems can occur when testing the null hypothesis mentioned.

Let θ denote the parameter vector of lifetime distribution and D is the observed data.
The likelihood ratio test (LRT) is given by

Λ = 2
(
ℓ
(
p̂0, α̂, θ̂ ;D

)
− ℓ

(
0, α̃, θ̃ ;D

))
, (10)

where α̃ and θ̃ are the maximum likelihood estimates under null hypothesis.
Under certain regularity conditions, Maller and Zhou (1995) showed that the statistical

distribution Λ is a mixture in proportions (50%, 50%) of a chi-square distribution with one
degree of freedom and a point mass at zero, that is

P(Λ ≤ ξ) =
1

2
+

1

2
P(χ2

1 ≤ ξ). (11)

The 95th percentil of distribution given in Equation (11), it is represented by ξ0.95, is
such that

1

2
+

1

2
P
(
χ2
1 ≤ ξ0.95

)
= 0.95,

so ξ0.95 = 2.71. Therefore, we reject H0 significance at 5% level if Λ > 2.71.
For this, we proceeded with the hypothesis test to check if there are immune individuals

in the population. From Equation (10), we obtain Λ = 35.18 > 2.71. Therefore, we have
evidence of immune individuals in the population. To check if the unobservable hetero-
geneity is present, we used the LRT considering the usual gamma frailty model and the
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homogeneous survival model, obtaining Λ = 37.06, that is, there is evidence of a degree of
unobservable heterogeneity in the sample.

This way, we must include frailty in the standard mixture model. Considering the FWM
model, we need to check if there are evidence of immune individuals. We realized the
hypothesis test and we obtained Λ = 10.15 > 2.71, that is, there are evidence of cured
individuals in population.

Taking into account the results in Table 6, Figures 3 and 4 and hypothesis tests, we
selection the FWM model as our working model. All parameters are significant at a 5%
level. The cured rate was estimated in 0.201, the estimates of the scale and shape parameters
of the Weibull distribution are, respectively, σ = 6.731 and γ = 1.862, what means increase
failure rate. With the inclusion of frailty term, we can quantify the amount of heterogeneity
among individuals and for this example the unobservable heterogeneity is 1/α = 0.395.

The Figure 5 presents the Kaplan-Meier curve jointly with the estimated survival function
for the FWM and WM models.
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Figure 5. Survival functions of the fitted models jointly Kaplan-Meier curve.

8. Mode of availability

Computational codes of the long-term survival models and the example in Sections 5, 6
and 7 can be downloaded from http://www.ufscar.br/jcfogo/Files/Programs.rar.

9. Conclusions

The standard mixture model by Berkson & Gage implicitly assume for the individuals
susceptible homogeneous risk, however, we know that the individuals are different and con-
sequently there are biological variations among those individuals that can not be measure.
With aim to quantify the amount of heterogeneity among subjects, we add a frailty term
and we suppose a Weibull distribution for the lifetime, obtaining the FWM model.

With the studies realized in this paper, we can conclude that realize a traditional anal-
ysis when there is a degree of unobservable heterogeneity the parameter estimates of the
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Weibull distribution are significantly affected, however, for the cured fraction there is not
problem. Through of simulations study, we quantify this error, which we compare the mean
of estimates of the models, the standard error and mean squared error. For the frailty pa-
rameter α, the results showed that for small sample there are biased estimates. Therefore,
asymptotic results should be used with caution. From a practical standpoint, the frailty
standard mixture model provide better fit to the leukemia data set, since it allowed to
quantify the amount of unobservable heterogeneity among individuals beyond of estimate
of the cured fraction. Although further research must be conducted in regard to the models,
initial investigation suggests will serve as an enhancement to the field of survival analysis.
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