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Abstract

In this paper we propose an objective Bayesian estimation methodology for the pa-
rameter of the Poisson-exponential lifetime distribution, which is a new two-parameter
lifetime distribution with increasing failure rate. This distribution has an important
position on the latent complementary risk problem scenario. We also perform a simula-
tion study in order to analyze the frequentist coverage probabilities of credible interval
derived from non-subjective posteriors. The developed procedures are illustrated on a
real data set.
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· Poisson distribution · Survival analysis.
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1. Introduction

Survival analysis in presence of complementary risks (CR) is a statistical modeling concept
which aims to account for situations where the risks are latent in the sense that there
is no information about which factor was responsible for the component failure, which
can be often observed in field data, such as public health, actuarial science, biomedical
studies, demography and industrial reliability; see Basu and Klein (1982); Louzada-Neto
(1999); Davison and Louzada-Neto (2000); Cancho et al. (2011). On many occasions this
information is not available or it is impossible that the true cause of failure be specified by
an expert. In reliability studies, the components can be totally destroyed in the experiment.
Further, the true cause of failure can be masked from our view. In modular systems, the
need to keep a system running means that a module that contains many components
can be replaced without the identification of the exact failing component. Goetghebeur
and Ryan (1995) addressed the problem of assessing covariate effects based on a semi-
parametric proportional hazards structure for each failure type when the failure type is
unknown for some individuals. Reiser et al. (1995) considered statistical procedures for
analyzing masked data, but their procedure can not be applied when all observations have
an unknown cause of failure. Lu and Tsiatis (2001) present a multiple imputation method
for estimating regression coefficients for risk modeling with missing cause of failure. A
comparison of two partial likelihood approaches for this situation is presented in Lu and
Tsiatis (2005).
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Simplistically, in reliability, we observe only the maximum component lifetime of a paral-
lel system. That is, the observable quantities for each component are the maximum lifetime
value to failure among all risks, and the cause of failure. Full statistical procedures and ex-
tensive literature are available to deal with these problems and interested readers can refer
to Lawless (2003), Crowder et al. (1991) and Cox and Oakes (1984). In the classical com-
plementary risk scenarios the lifetime associated with a particular risk is not observable;
rather we observe only the maximum lifetime value among all risks.
The exponential distribution (ED) provides a simple, elegant and close form solution

to many problems in lifetime testing and reliability studies. However, the ED does not
provide a reasonable parametric fit for some practical applications where the underlying
hazard rates are nonconstant, presenting monotone shapes. In recent years, in order to
overcome such a problem, new classes of models were introduced based on modifications
of the ED. Gupta and Kundu (1999) proposed a generalized ED. This extended family
can accommodate data with increasing and decreasing failure rate functions. Kus (2007)
proposed another modification of the ED with a decreasing failure rate function. While
Barreto-Souza and Cribari-Neto (2009) generalizes the distribution proposed by Kus (2007)
by including a power parameter in his distribution. In this paper, we propose a new
distribution family based on the ED with increasing failure rate function. Its genesis is
stated on a complementary risk problem base (Basu and Klein, 1982) in presence of latent
risks, in the sense that there is no information about which factor was responsible for the
component failure and only the maximum lifetime value among all risks is observed. The
proposed distribution can be seem as an counterpart of the distribution proposed by Kus
(2007), since he only observe the minimum lifetime value among all risks, while on our
formulation is only the the maximum lifetime value among all risks is observed.
The model presented in this article will be considered under an objective Bayesian per-

spective. From this perspective, the outcome of any inference problem is the posterior
distribution of the quantity of interest, which combines the information provided by the
data with available prior information. It has been often recognized that there is a prag-
matically important need for a form of prior to posterior analysis which captures, in a
well-defined sense, the notion that the prior should have a minimal effect, relative to the
data, on the posterior inference. For instance, we can cite the Jeffreys (1946) and the
reference Bernardo (1979) priors, which have such purpose. The Jeffreys prior is invari-
ant in the sense of yielding properly transformed priors under reparametrization. Also,
it has proved to be remarkably successful in one-dimensional problems. Jeffreys himself,
however, noticed difficulties with the method when the parameter is multidimensional and
then provided ad hoc modifications to the prior.
Reference priors introduced by Bernardo (1979) and further developed by Berger and

Berger and Bernardo (1989, 1992a,b,c) is a method to achieve posterior distributions which
produces objective Bayesian inference, meaning that inferential statements depend only
on the postulated model and the available data. Moreover, there is the requirement that
the prior distribution is minimally informative in a precise information-theoretic sense.
The information provided by the data should dominate the prior information, reflecting
the vague nature of the prior knowledge. The driving idea is to maximize the expected
Kullback-Leibler divergence of the posterior distribution with respect to the prior. Start-
ing from a reference prior, the reference posterior is a consequence of a formal application
of the Bayes theorem. Reference analysis provides posterior distributions with some nice
properties, such as invariance, consistent marginalization and consistent sampling proper-
ties. See Bernardo (2005) for a recent discussion of these ideas.
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The paper is organized as follows. In Section 2, we present the new Poisson-exponential
(PE) distribution and discuss its properties, where most of the review material is based
on Cancho et al. (2011). In Section 3 we carry out Bayesian inference for this model. Some
measures of model selection are presented in Section 3.3 and an comparison of the PE
model with the exponential model is presented in Section 4. In Section 3.4 a simulation
study is presented. In Section 4 the methodology is illustrated in a real data set. Some
final comments are presented in Section 5.

2. Formulation of the Model

Following Cancho et al. (2011), the PE model can be derived as follows. LetM be a random
variable denoting the number of CR related to the occurrence of an event of interest.
Further, assume that M has a zero truncated Poisson distribution with probability mass
function given by

P(M = m) =
e−θθm

m![1− e−θ]
, m = 1, 2, . . . , θ > 0. (1)

Let Tj (j = 1, 2, . . .) denote the time-to-event due to the jth CR, hereafter lifetime.
Given M = m, the random variables Tj , j = 1, . . . ,m are assumed to be independent and
identically distributed with a common distribution function with pdf given by

f(t;λ) = λe−λt, t > 0, λ > 0. (2)

In the latent CR scenario, the number of causes M and the lifetime Tj associated with
a particular cause are not observable, but only the maximum lifetime Y among all causes
is usually observed. So, the component lifetime is defined as

Y = max (T1, . . . , TM ) . (3)

The following result shows the distribution of Y.

Proposition 2.1 If the random variable Y is defined as in Equation (3), then consid-
ering Equations (1) and (2), Y is distributed according to a Poisson-exponential (PE)
distribution with pdf given by

f(y) =
θλe−λy−θe−λy

1− e−θ
, y > 0. (4)

Proof The conditional density function of Equation (3) given M = m is given by

f(y|M = m,λ) = mλ(1− e−λy)m−1e−λy, y > 0, m = 1, . . . .
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Then, the marginal pdf of Y is given by

f(y) =

∞∑

m=1

mλ(1− e−λy)m−1e−λy ×
θme−θ

m![1− e−θ]

=
θλe−θ−λy

1− e−θ

∞∑

m=1

(
θ[1− e−λy]

)m−1

(m− 1)!

=
θλe−λy−θe−λy

1− e−θ
.

�

From Equation (4), the parameter λ controls the scale of the distribution while the
parameter θ controls its shape; see Figure 1. As θ approaches zero, the PE distribution
converges to an exponential distribution with parameter λ. Figure 1 (left panel) shows the
PE probability density functions for some fixed values of θ. The PE density function is
decreasing if 0 < θ < 1 and unimodal for θ ≥ 1. The modal value λe−1 is obtained at
y = log θ/λ. The parameters of the PE model have a direct interpretation in terms of com-
plementary risks. The parameter θ represents the mean of the number of complementary
risks, while λ denotes the lifetime failure rate.
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Figure 1. Left panel: probability density function of the PE distribution. Right panel: hazard function of the PE
distribution. The parameters were fixed at λ = 1 and θ = 0.1, 1, 2, 4, 8.

The pth quantile of the PE distribution is expressed by (Cancho et al., 2011),

yp =
log(θ)− log(− log(p− e−θ[p− 1]))

λ
, 0 < p < 1,

as well as, the survival (or reliability) function of the PE model is given by

S(y) =
1− e−θe−λy

1− e−θ
, y > 0. (5)

From Equations (4) and (5) it is easy to verify that the hazard function is given

h(y) =
θλe−λy−θe−λy

1− e−θe−λy , y > 0. (6)
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The hazard function given in Equation (6) is increasing. The right panel of Figure 1
shows some hazard function shapes for some fixed values of θ. The initial and long-term
hazard values are both finite and are given by h(0) = λθ[eθ − 1] and h(∞) = λ.
In comparison with the Kus (2007) formulation we follows an opposite way, since he

defines the component lifetime as Y = min (T1, . . . , TM ), while, according to Equation (3),
we are considering Y = max (T1, . . . , TM ).

2.1 Moments

A general expression for the rth ordinary moment µ′
r = E[Y r] of the PE distribution

can be obtained analytically by considering the generalized hypergeometric function de-
noted by Fp,q(a, b, θ) and defined as Fp,q(a, b, θ) =

∑∞
j=0[θ

j
∏p

i=1 Γ(ai + j)Γ(ai)
−1]/[Γ(j +

1)
∏q

i=1 Γ(bi + j)Γ(bi)
−1], where a = [a1, . . . , ap], p is the number of terms of a, b =

[b1, . . . , bq], and q is the number of terms of b.
In our case, following Cancho et al. (2011), suppose Y is a PE random variable with

parameters λ > 0 and θ > 0, and density function given by Equation (4); then

µ′
r = E[Y r] =

θΓ(r + 1)

λr[1− e−θ]
Fr+1,r+1([1, . . . , 1], [2, . . . , 2],−θ), (7)

where Fp,q(a, b, θ) is the generalized hypergeometric function. The proof of the Equation
7 is obtained by direct integration; see Cancho et al. (2011).
Considering Equation (7), the mean and variance of the distribution are given, respec-

tively, by

E[Y ] =
θ

λ[1− e−θ]
F2,2 ([1, 1], [2, 2],−θ) ,

Var[Y ] =
θ

λ2[1− e−θ]

[
F3,3 ([1, 1, 1], [2, 2, 2],−θ) −

θ

[1− e−θ]
F2,2 ([1, 1], [2, 2],−θ)

2

]
.

The skewness and kurtosis of the PE distribution can be computed as

γ1 =
µ3

µ
3/2
2

, γ2 =
µ4

µ2
2

− 3,

where µ2, µ3 and µ4 are the second, third and fourth central moments, respectively, and
can be represented in terms of the generalized hypergeometric functions:

µ2 =
1

λ2

[
θF3,3(a, b,−θ)

1− e−θ
−

θ2F 2
2,2(a, b,−θ)

(1− e−θ)2

]
,

µ3 =
1

λ3

[
2θ3F 3

2,2(a, b,−θ)

(1− e−θ)3
−

3θ2F2,2(a, b,−θ)F3,3(a, b,−θ)

(1− e−θ)2
+

12θF4,4(a, b,−θ)

(1− e−θ)

]
,

µ4 =
1

λ4

[
−3θ4F 4

2,2(a, b,−θ)

(1− e−θ)4
+

6θ3F2,2(a, b,−θ)F3,3(a, b,−θ)

(1− e−θ)3
−

48θ2F2,2(a, b,−θ)F4,4(a, b,−θ)

(1− e−θ)2
+

24θF5,5(a, b,−θ)

(1− e−θ)

]
,

where a = [1, . . . , 1] and b = [2, . . . , 2]. It should be stressed that vectors a and b have
variable dimension in the above formulas. The skewness and kurtosis are both independent
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of the scale parameter. Figure 2 shows a graphical representation of skewness and kurtosis.
It is observed that both skewness and kurtosis are decreasing functions of θ, moreover, the
limiting value of the skewness is approximately 1.139712 and the limiting value of the
kurtosis is approximately 2.400126.
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Figure 2. Left panel: skewness of the PE distribution. Right panel: kurtosis of the PE distribution.

3. Reference Analysis

The declared objective of reference Bayesian analysis introduced by Bernardo (1979) and
further developed by Berger and Bernardo (1992a) and Berger and Bernardo (1992b) is
to specify a prior distribution such that, even for moderate sample sizes, the information
provided by the data should dominate the prior information because of the “vague” nature
of the prior knowledge.
An important feature in the Berger-Bernardo approach to construct a non-informative

prior is the different treatment for interest and nuisance parameters. When there are nui-
sance parameters (typical case in this paper), one must establish an ordered parametriza-
tion with the parameter of interest singled out and then follow the procedure below.

Proposition 3.1 Let f (x|θ, λ), (θ, λ) ∈ Θ × Λ ⊆ R×R be a probability model with
two real-valued parameters θ and λ, where θ is the quantity of interest. Let I(θ, λ) the
corresponding 2x2 Fisher’s matrix in terms of θ and λ, and let V (θ, λ) = I−1(θ, λ). Suppose
that the joint posterior distribution of (θ, λ) is asymptotically normal with covariance

matrix V (θ̂, λ̂), where θ̂ and λ̂ are the corresponding consistent estimators of θ and λ. It
follows that:

(i) the conditional reference prior of λ given θ is

π (λ|θ) ∝ I22(θ, λ)
1/2 λ ∈ Λ (θ) ;

(ii) if π (λ|θ) is not proper, a compact approximation {Λi (θ) , i = 1, 2, . . . , } to Λ (θ) is
required, and the reference prior of λ given θ is

πi (λ|θ) =
I22(θ, λ)

1/2

∫
Λi(θ)

I22(θ, λ)1/2dλ
, λ ∈ Λi (θ) ;
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(iii) the sequence of priors can be obtained as

πi(θ) ∝ e

∫

Λi(θ)

πi(λ|θ) log(v1/2
11 (θ,λ))dλ

,

where v
1/2
11 (θ, λ) = Iθ (φ, λ)=I11 − I12I

−1
22 I21;

(iv) the reference posterior distribution of θ given data {y1, . . . , yn} is

π(θ|y1, . . . , yn) ∝ π(θ)





∫

Λ(θ)

(
n∏

l=1

p (yl|θ, λ)

)
π (λ|θ) dλ





.

Proof See a heuristic justification in Bernardo (2005). �

Corollary 3.2 If the nuisance parameter space Λ (θ) = Λ is independent of θ, and the

functions v
−1/2
11 (θ, λ) and I

1/2
22 (θ, λ) factorize in the form

(v11 (θ, λ))
−1/2 = f1 (θ) g1 (λ) , (I22(θ, λ))

1/2 = f2 (θ) g2 (λ) .

Then

π(θ) ∝ f1 (θ) , π (λ|θ) ∝ g2 (λ) .

Thus, the reference prior relative the ordered parametrization (θ, λ) is given by

π (λ, θ) = f1 (θ) g2 (λ) ,

and there is no need for compact approximation, even if the conditional reference prior
π (λ|θ) is not proper; Bernardo (2005).

Proof See proof of Theorem 12 in Bernardo (2005). �

3.1 Prior and posterior densities

According to Bernardo (2005), let yk = (y1, . . . yk) k-independent replications of the PE
model and consider h(ϑ) = 1 a positive function. Then, q(ϑ, y1, . . . yk) ∝ L(ϑ)h(ϑ) is an
asymptotic approximation of posterior distribution. Under certain regularity conditions
whereas there is a maximum likelihood estimator (θ̂(yk), λ̂(yk)) we have that the posterior
density q(ϑ, y1, . . . yk) is approximately normal k-dimensional, i.e,

q(ϑ, y1, . . . yk) ∼ Nk

(
(θ̂, λ̂), nI(θ̂, λ̂)

)
,

where I(θ̂, λ̂) is the Fisher information matrix; see Bernardo (2005).
Considering that the posterior distribution is asymptotically normal, then the refer-

ence prior only depends on Fisher information matrix. Here we derive the reference prior
considering the approach of one nuisance parameter described above.
The likelihood function of ϑ = (θ, λ) based on the observed sample of size n, y =

(y1, . . . , yn), from the PE distribution is given by

L(ϑ) = en log(θλ)−λ
∑n

i=1 yi−θ
∑n

i=1 e
−λyi−n log(1−e−θ). (8)
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From Equation (8), the Fisher information matrix are given by,

I(ϑ) = n




1
θ2 −

eθ

(eθ−1)2 − θF2,2([2,2],[3,3],−θ)
4λ(1−e−θ)

− θF2,2([2,2],[3,3],−θ)
4λ(1−e−θ)

1
λ2

[
1 + θ2F3,3([2,2,2],[3,3,3],−θ)

4(1−e−θ)

]


 . (9)

From Corollary 3.2 and Equation (9), the joint reference prior of θ and λ is given by

π(λ, θ) ∝
π(θ)

λ
, (10)

where

π(θ) ∝
√

ϕ(θ)

(
1 +

θ2F3,3([2, 2, 2], [3, 3, 3],−θ)

4(1− e−θ)

)−1/2

(11)

and

ϕ(θ) =

[
1

θ2
−

eθ

(eθ − 1)2

] [
1 +

θ2F3,3([2, 2, 2], [3, 3, 3],−θ)

4(1− e−θ)

]
−

θ2F 2
2,2([2, 2], [3, 3],−θ)

16(1 − e−θ)2
.

Combining the likelihood function, L(ϑ) in Equation (8) and the prior specification given
in Equation (10), the joint posterior distribution for θ, λ is given by,

π(θ, λ|y) ∝
θnλn−1

(1− e−θ)n
e−λ

∑n
i=1 yi−θ

∑n
i=1 e

−λyi
π(θ). (12)

Theorem 3.3 Under the PE model, with prior given in Equation (11), it follows that the
joint posterior distribution given in Equation (12) is proper.

Proof Since e−λyi ≤ 1, for all yi > 0, (i = 1, . . . , n) and λ > 0, it follows that

∫ ∞

0

∫ ∞

0
π(θ, λ|y)dθdλ ≤

∫ ∞

0

∫ ∞

0

θnλn−1e−nθe−λ
∑n

i=1 yi

(1− e−θ)n
π(θ)dθdλ

=

∫ ∞

0

θne−nθ

(1− e−θ)n
π(θ)

∫ ∞

0
λn−1e−λ

∑n
i=1 yidλdθ

=
Γ(n)

(
∑n

i=1 yi)
n

∫ ∞

0

θne−nθ

(1− e−θ)n
π(θ)dθ

≤
Γ(n)

(
∑n

i=1 yi)
n <∞,

since θe−θ/(1− e−θ) ≤ 1 for θ > 0 and
∫∞
0 θne−nθ/(1− e−θ)nπ(θ)dθ = 0.272897 (obtained

numerically). �

3.2 Computation

In the Bayesian approach, the target distribution for inference is the posterior of the pa-
rameters of interest. Thus, we need to obtain the marginal posterior densities of such a
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parameter. The posterior distribution is proper considering the reference prior given in
Equation (10). However, irrespective to the prior distribution chosen, the marginal pos-
terior distributions for the parameters of the proposed model are analytically intractable.
We then consider the use of Markov chain Monte Carlo methods (MCMC), e.g. Gibbs
Sampling and Metropolis-Hastings algorithm; see, e.g., Chib and Greenberg (1995).
The Gibbs sampler is an iterative procedure of a broad class of methods generically

named Markov Chain Monte Carlo (MCMC). Many practical aspects of MCMC are de-
scribed in Gelfand and Smith (1990) and Gamerman and Lopes (2006). This method is
applicable in situations where one is not able to generate samples directly from the joint
posterior density. It requires the full conditional densities for generating samples. The full
conditional densities for θ and λ, obtained from Equation (12), are given by

π(θ|λ,y) ∝ θne−θ
∑

n
i=1 e

−λyi−n log(1−e−θ)π(θ)

and

π(λ|θ,y) ∝ λn−1e−λ
∑

n
i=1 yi−θ

∑
n
i=1 e

−λyi
.

Since the conditional densities above do not belong to any known parametric family,
in order to generate our samples we then implement a Metropolis-Hasting algorithm
within Gibbs iterations; see Chib and Greenberg (1995). For example, to implement
the Metropolis-Hastings algorithm for the parameter θ, we consider a target distribution
gθ(θ) = π(θ|λ,y), and under given model, θ > 0 we consider the transformation η = log(θ),
where, −∞ < η <∞. Then, gη(η) = gθ(η)e

η .
Instead of directly sampling θ, we generate η by a random-walk. That is, we consider

transition kernels q(η,w), mapping η to w such that w ← η + σz, with z ∼ N(0, τ2) and
σ is parameter of scale that controle the rate of acceptance of algorithm. Following Carlin
and Louis (2001), we choose τ2 as the correspondent diagonal element of the inverse of
the minus the matrix of second derivative of logarithm of joint posteriori distribution of
η = log(θ) and γ = log(λ), π(η, γ|y), evaluated in the mode posteriori of π(η, γ|y). The
algorithm to generate η operates as follows:

(1) let η be the current value;
(2) generate a point η∗ according to the transitional kernel q(η,w);
(3) a move from η to η∗ is made with probability min {1, gη(η

∗)/gη(η)}.

After we sample η we obtain θ = eη. We assume τ a same value in all step of algorithm.
In our case, as in Carlin and Louis (2001), we choose the scale parameter to be equal

to two, i.e, σ = 2. However, other higher values were also considered but the convergence
becomes slow and rate of acceptance low. To implement the Metropolis-Hastings algorithm
for the parameter λ, we proceed in the same way as for the parameter θ, but considering
a target distribution gλ(λ) = π(λ|θ,y) and respective diagonal element of the minus the
matrix of second derivative of logarithm of joint posteriori distribution. The Metropolis-
Hasting algorithm within Gibbs is shown in Appendix A.

3.3 Model comparison strategies

In the literature, there are various methodologies which intend to analyze the suitabil-
ity of a model, as well as selecting the best fitting among a collection of models. In this
paper we shall consider some of these Bayesian model selection criterion, which penalize
the number of parameters in the model. Namely, the deviance information criteria (DIC)
(Spiegelhalter et al., 2002), the expected Akaike information criterion (EAIC) (Brooks,
2002), and the expected Bayesian (or Schwarz) information criterion (EBIC) (Carlin and
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Louis, 2001). These criteria are based on the posterior mean of the deviance, E[D(ϑ)],
which is also a measure of fit and can be approximated from the MCMC output by
Dbar = [1/B]

∑B
b=1 D(ϑ(b)), where the index b indicates the bth realization of a total

of B realizations and D(ϑ) = −2
∑n

i=1 log(f(yi|ϑ)), where f(·) is the probability den-
sity of the PE distribution. The EAIC, EBIC and DIC criterion can be calculated us-

ing the MCMC output by means of ÊAIC = Dbar + 2q, ÊBIC = Dbar + q log(n) and

D̂IC = Dbar + ρ̂D = 2Dbar − Dhat, respectively, where q is the number of parameters in
the model and ρD is the effective number of parameters, defined as E[D(ϑ)] − D(E[ϑ]),
where D(E[ϑ]) is the deviance evaluated at the expected values of the posterior distribu-

tions, and can be estimated as Dhat = D([1/B]
∑B

b=1 ϑ
(b)). Having to compare alternative

models, the preferred model is the one with the smallest value of the criterion. In our case,
for instance, we shall be interested in comparing the PE and the exponential models. This
will be done in Section 4.
Moreover, in order to decide for the best model we can use the Bayes factors which is

the relative weight of evidence for model M1 compared to model M2 given by

B12 =
f(t0|M1)

f(t0|M1)
, (13)

where t0 denotes the actual observations and f(t0|Mj) denotes the marginal density under
model Mj , j=1,2; see Gelfand (1996); Louzada et al. (2007). The model M1 is preferred
over M2 when B12 > 1; see Kass and Raftery (1995) for more details. We approximate
the marginal densities in Equation (13) by their Monte Carlo estimates, obtained from the

R generated samples, given by [1/B]
∑B

b=1 f(t0|ϑ
(b)
j ,Mj). For more details on Bayesian

discrimination, interested readers may refer to Robert and Wraith (2009) for a survey
of some recent approaches on Bayes factor used in Bayesian hypothesis testing and in
Bayesian model choice, and to Marin and Robert (2010) for methods for Bayesian discrim-
ination between embedded models.

3.4 Frequentist properties

Non-subjective posterior credible interval are often numerically very close, and sometimes
identical, to the frequentist confidence intervals based on sufficient statistics; see Jaynes
(1976). The analysis on the frequentist coverage probabilities of credible interval derived
from non-subjective posteriors, in an attempt to verify whether or not they are “well
calibrated” and it does provide some bridge between frequentist and Bayesian inference.
Reference within this topic include Lindley (1958) and Datta and Ghosh (1996). This
section presents some frequentist properties of the estimators of θ and λ based on the
non-informative prior proposed here. We focus on the frequentist mean squared error and
on the frequentist coverage probability of 95% credible intervals for different samples sizes,
n = 30, 50, 100, 150 and 200. For each set up 1, 000 generated samples were considered.
In this study we considered the PE distribution given in Equation (4) with parameters

θ = 5 and λ = 2. For each simulated data set, we obtained the posterior summaries
of the parameters. We simulated two parallel chains of size 10,000 for each parameter,
disregarding the first 5,000 iterations to eliminate the effect of the initial values obtaining
a sample of size 5,000. For each setup, we conducted 1,000 replicates and then we averaged
the estimates of parameters, and calculate the mean square error (MSE), the coverage of
the lower HPD bound (L), the coverage of the upper HDP bound (U) and the coverage
of the 95% HPD intervals (C) for θ and λ. The results are summarized in Table 1. The
empirical MSEs decrease as the sample size increases and the differences between the
average estimates and the true values are almost always smaller than one empirical MSE.
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Also, for instance, for the sample size 30, L = 0 and U = 0.049, indicates that 4.9% of
the posterior estimates that are not covered by the 95% HPD are located above the upper
bound. Although, balance between lower and upper HPD interval bounds is only observed
for large samples, the empirical coverage probabilities are close to the nominal level even
for small sample sizes.

Table 1. Means, empirical MSEs, coverage probabilities of the lower HPD bound (L), upper HDP bound (U) and
the 95% HPD intervals (C) for θ and λ.

θ λ
n Mean MSE L U C Mean MSE L U C
30 4.930 1.730 0.000 0.049 0.951 1.963 0.334 0.013 0.037 0.950
50 4.956 1.244 0.002 0.051 0.947 1.972 0.252 0.011 0.045 0.944
75 4.971 0.994 0.003 0.039 0.958 1.979 0.204 0.013 0.048 0.939
100 4.974 0.893 0.010 0.042 0.948 1.990 0.188 0.022 0.034 0.944
150 4.973 0.718 0.015 0.036 0.949 1.988 0.159 0.019 0.036 0.945
200 5.022 0.609 0.019 0.026 0.955 1.997 0.126 0.025 0.034 0.941

We also evaluate the performance of the EAIC criterion via Monte Carlo simulation
study considering the samples generated as above. The idea is to verify the percentage of
times the PE distribution, which originated the sample, was the best fitted model when
compared to the exponential distribution. Table 2 summarizes the results of the simulation
study. The percentage of times the PE distribution was the best fitted model increases with
θ and sample size n. We point out that DIC and EBIC criterion were also evaluated via
Monte Carlo simulation, but the results are very similar to the results obtained to the
EAIC criterion and are then omitted.

4. Deep Groove Ball Bearings Data

We reanalyze the data extracted from Lawless (2003, p. 98), which arises in tests on
endurance of deep groove ball bearings. The data consist of the number of million revolution
before failure for each of the 23 ball bearings in a life test.
Firstly, in order to identify the shape of a lifetime data hazard function we shall consider

a graphical method based on the total time on test (TTT) plot; see Aarset (1987). In its
empirical version the TTT plot is given byG(r/n) = [(

∑r
i=1 Yi:n)−(n−r)Yr:n]/(

∑r
i=1 Yi:n),

where r = 1, . . . , n and Yi:n represent the order statistics of the sample. It has been
shown that the hazard function increases (decreases) if the TTT plot is concave (convex).
Although the TTT plot is only a sufficient condition, not a necessary one for indicating
the hazard function shape, it is used here as a crude indicator of its shape. Figure 3
(left panel) shows the TTT plot for the considered data, which is concave indicating an
increasing hazard function, that can be accommodated by a PE distribution.

Table 2. Percentage of times the PE model, which originated the sample was the best fitted model.

Sample size
θ 30 50 75 100 150 200
0.1 19.3 24.3 21.7 23.3 22.7 21.0
1.0 38.7 46.3 55.5 63.8 74.6 81.0
2.0 71.7 85.9 92.7 97.7 99.7 99.9
4.0 99.0 99.9 100.0 100.0 100.0 100.0
8.0 100.0 100.0 100.0 100.0 100.0 100.0
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Figure 3. Left panel: empirical scaled TTT-Transform for the data. Right panel: Kaplan-Meier curve with estimated
survival functions of the Poisson-exponential and exponential distributions.

Then, the PE and the exponential models were fitted the data via our Bayesian reference
approach. We ran two parallel independent runs of the Gibbs sampler with size 20,000 for
each parameter, disregarding the first 5,000 iterations to eliminate the effect of the initial
values and, to avoid correlation problems, we considered a spacing of size 10, obtaining a
sample of size 3,000. To monitor the convergence of the Gibbs sampler we resorted to the
methods recommended by Cowles and Carlin (1996). MCMC computations were imple-
mented in the R system (R, 2008); see Appendix. Table 3 shows the posterior summaries
for the parameters of both distributions and the three model comparison criteria. The PE
distribution outperforms the exponential one irrespective of the criterion to be used.

Table 3. Posterior means and 95% HDP intervals for the parameters, in brakets, and Bayesian comparison criteria.

Model λ θ DIC EAIC EBIC
Exponential 0.01343 244.800 245.940 247.090

(0.0015 , 0.022202)
PE 0.035 7.095 230.243 232.290 234.561

(0.024 , 0.047) (3.082, 13.125)

The right panel of Figure 3 exhibits the Kaplan–Meier estimate of the survival function
and the Bayesian estimates from the exponential and PE distributions. The poorest fit is
achieved with the exponential distribution. At earlier times the PE model yields a closer
concordance with the Kaplan–Meier estimates. Overall, confronting the PE model with
the exponential distribution, since in Table 3 the estimate of θ is statistically different
from zero, 0 /∈ (3.082; 13.125), we have evidence in favor of the PE distribution. Further,
Table 3 shows the posterior summaries for the parameters of both distributions and the
three model comparison criteria. The PE distribution outperforms the exponential one
irrespective of the criterion to be used.

5. Concluding Remarks

In this paper we present the PE distribution with a formal derivation of its pdf, show-
ing its survival and failure rate functions, quantiles and moments (particularly, the mean,
variance, skewness and kurtosis). The parameters of the PE distribution have a direct
interpretation in terms of CR. Also we present a motivation for deriving the reference pos-
terior distribution in the case of one nuisance parameter. We discuss Bayesian inference via
MCMC, including a straightforwardly model comparison procedure. We have illustrated
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the theory considering simulated data and an important example extracted from Lawless
(2003), suggesting that the PE distribution outperforms the exponential one, irrespective
of the criteria used. The codes used in the paper can be obtained by emailing the authors.

Appendix A: Code of the Metropolis-Hasting algorithm within Gibbs

library(hypergeo)

##########################################################################

### psi function ###
##########################################################################

psi=function(theta){(((1/theta^2-exp(theta)/(exp(theta)-1)^2)*
(1+genhypergeo(c(2,2,2),c(3,3,3),-theta)*theta^2/(4*(1-exp(-theta))))-
(genhypergeo(c(2,2),c(3,3),-theta)*theta/(4*(1-exp(-theta))))^2))

}

###########################################################################
### Log_posteriori function ###
###########################################################################

log_posteriori=function(vpar){
theta=exp(vpar[1])

lambda=exp(vpar[2])
adFunc=0

for(i in 1:n)
{

vf=theta*lambda*exp(-lambda*t[i]-theta*exp(-lambda*t[i]))/(1-exp(-theta));

adFunc=adFunc+log(vf);
}

adFunc=adFunc +log(theta)+0.5*log(abs(psi(theta)))-
0.5*log(1+genhypergeo(c(2,2,2),c(3,3,3),-theta)*theta^2/(4*(1.00000-exp(-theta))))
return(adFunc)

}

###########################################################################

### Gibbs with Metropolis-Hasting algorithm ###
### R: Iteration Number; burn: Burn in; vpar: vector parameters ###
### log_posteriori: logarithm of posteriori density ###

###########################################################################
GM_H=function(vpar, log_posteriori, scale=2,R, burn=10){

fit=optim(vpar, log_posteriori, hessian = TRUE, control = list(fnscale = -1),
method = "BFGS")

start = fit$par
sD=sqrt(diag(-solve(fit$hessian)))
p = length(start)

vth = array(0, dim = c(R, p))
f0 = log_posteriori(start)

arate = array(0, dim = c(1, p))

th0 = start

th1 = th0
for (i in -burn:R) {

for (j in 1:p) {
th1[j] = th0[j] + scale*rnorm(1) * sD[j] # proposal

f1 = log_posteriori(th1)
proba = exp(f1 - f0)

if (is.na(proba) == FALSE) {

u = runif(1) < proba
th0[j] = th1[j] * (u == 1) + th0[j] * (u == 0)

f0 = f1 * (u == 1) + f0 * (u == 0)
vth[i, j] = th0[j]
arate[j] = arate[j] + u

}
}

}
arate = arate/(R-burn+1)

saida = list(par = exp(vth), accept = arate)
}

################################################################

## Example ###
## t: data vector ###
################################################################

n=length(t)
vpar=c(1,1/mean(t)) # start values

saida1=GM_H(vpar, log_posteriori,R=15000, burn=5000)
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