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Abstract

This paper suggests a class of estimators for population mean of a study variable using
known population proportion of an auxiliary character (attribute) which is highly cor-
related with the study variable. The suggested class of estimators is more general and
includes the usual unbiased estimator (sample mean) and the estimators reported by
Singh et al. (2007). Expressions of bias and mean square error (MSE) for the proposed
class of estimators have been obtained under large sample approximation. Asymptotic
optimum estimator (AOE) has been identified along with its mean square error formula.
Regions of preferences have been investigated under which the proposed class of estima-
tors is more efficient than the usual unbiased, Naik and Gupta (1996) and Singh et al.
(2007) estimators. Two phase sampling version (i.e. population proportion is unknown)
of the proposed class of estimators has been given along with its properties under large
sample approximation. The theoretical results have been illustrated empirically by using
some population data sets in both phases.

Keywords: Bias · Mean square error · Proportion · Study variable · Two phase
sampling.

Mathematics Subject Classification: Primary 62D05.

1. Introduction

It is well known that the efficiencies of the estimators of population mean of a study variable
y have been increased by the use of information available on an auxiliary variable x which
is highly correlated with study variable y. Out of many ratio, product and regression
methods of estimation are good examples in this context; see Singh (2003). However in
many situations of practical importance, instead of an auxiliary variable x there exists an
auxiliary attribute (say φ), which is highly correlated with the study variable y, such as

(1) height of the person (y) and gender (φ),
(2) amount of milk produced (y) and a particular breed of the cow (φ),
(3) amount of yield of wheat crop (y) and a particular variety of wheat (φ),
(4) use of drugs (y) and gender (φ); see Jhajj et al. (2006) and Shabbir and Gupta

(2007).
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In all of these examples point biserial correlation, (see Kendall and Stuart, 1967) between
study variable y and the auxiliary attribute φ exists. In such situations, taking the advan-
tage of point biserial correlation between the study variable y and the auxiliary attribute
φ, the efficient estimators of parameters of study can be constructed by using prior knowl-
edge of the parameters of auxiliary attribute φ. So by taking in to consideration the point
biserial correlation between a study variable y and an attribute φ, some authors such as
Naik and Gupta (1996), Jhajj et al. (2006), Singh et al. (2007), Shabbir and Gupta (2007,
2010) and Abd-Elfattah et al. (2010) have paid their attention towards the improved esti-
mation of population mean when the prior information of population proportion of units
possessing the same attribute is available. This encourages authors to envisage a class of
estimators in simple random sampling for population mean of a study variable y which
is more general and efficient than other existing estimators by using information on an
auxiliary attribute φ which is highly correlated with the study variable y.

Consider a sample of size n drawn by simple random sampling without replacement
(SRSWOR) from a population of size N . Let yi and φi denote the observations on the study
variable y and attribute φ respectively for ith unit of the population, for i = 1, . . . , N .
Suppose there is a complete dichotomy in the population with respect to the presence
(φ = 1) or absence (φ = 0) of an attribute φ. We take the following notations which we
will be used along the paper.

The population mean of the study variable y is denoted by Ȳ = (1/N)
∑N

i=1 yi,

ȳ = (1/n)
∑n

i=1 yi denotes the sample mean of the study variable y, A =
∑N

i=1 φi is
the total number of units in the population possessing attribute φ, a =

∑n
i=1 φi is the

total number of units in the sample possessing attribute φ, p = (A/N) is the pro-
portion of units in the population possessing attribute φ, p̂ = (a/n) is the propor-

tion of units in the sample possessing attribute φ, S2
y = [1/ (N − 1)]

∑N
i=1

(
yi − Ȳ

)2
is the population mean square of y, S2

φ = [1/ (N − 1)]
∑N

i=1 (φi − p)2 is the popula-

tion mean square of φ, s2
φ = [1/ (n− 1)]

∑n
i=1 (φi − p̂)2 is the sample mean square of

φ, Syφ = [1/ (N − 1)]
(∑N

i=1 yiφi −NpȲ
)

is the population covariance between y and

φ, syφ = [1/ (n− 1)]
(∑n

i=1 yiφi − np̂Ȳ
)

is the sample covariance between y and φ,

C2
y =

(
S2
y/Ȳ

2
)

is the square of coefficient of variation of y, C2
p = (S2

φ/p
2) is the square of

coefficient of variation of φ, ρpb = [Syφ/(SySφ)] is the point biserial correlation coefficient
between y and φ, Kp = ρpb (Cy/Cp) and θ = [(1/n)− (1/N)].

When population proportion p is known, Naik and Gupta (1996) suggested the following
ratio and product estimators for population mean Ȳ of study variable y respectively as

t1 = ȳ

(
p

p̂

)
, (ratio estimator),

t2 = ȳ

(
p̂

p

)
, (product estimator).

Following Bahl and Tuteja (1991), Singh et al. (2007) suggested ratio and product expo-
nential estimators for population mean Ȳ of study variable y respectively as

t3 = ȳ exp

(
p− p̂
p+ p̂

)
, (ratio exponential estimator),

t4 = ȳ exp

(
p̂− p
p̂+ p

)
, (product exponential estimator).
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The goal of the paper is to envisaged an efficient class of estimators in the SRSWOR
for the population mean Ȳ of the study variable y which is more general and includes
as particular cases other estimators such as usual unbiased estimator ȳ, Singh et al.’s
(2007) ratio exponential estimators t3, and product exponential estimator t4 using the
known population proportion p of an attribute φ which is highly correlated with the study
variable y (see Section 2.1).

It is well known under SRSWOR that the variance of the usual unbiased estimator ȳ
(sample mean) is

Var [ȳ] = θS2
y = Ȳ 2θC2

y .

The remaining part of the paper has been organized as follows. In Section 2 we have
proposed a class of estimators for population mean along with its bias and MSE formulae
up to the first degree of approximation. We have also made bias and efficiency comparisons
of the proposed class of estimators with different estimators. The optimum choice of the
scalar involved in the proposed class of estimators has been obtained. An estimator based
on estimated optimum value is derived along with its mean square error formula. We have
carried out an empirical study to judge the merits of the proposed class of estimators over
other competitors. Section 3 described two phase sampling procedure and the description of
the estimators envisaged by earlier authors. In Section 4 we have considered the proposed
class of estimators in two phase sampling along with its properties. Finally Section 5
sketches some conclusions.

2. Estimation of Mean

2.1 The proposed class of estimators with known population proportion

We suggest the following class of estimators for population mean Ȳ as

t(α) = ȳ exp

(
α (p− p̂)
p+ p̂

)
, (1)

where α is a suitably chosen scalar. We note that

(1) for α = 0, t(α) = t(0) = ȳ, (usual unbiased estimator),

(2) for α = 1, t(α) = t(1) = ȳ exp
(

(p−p̂)
p+p̂

)
= t3, (Singh et al., 2007),

(3) for α = −1, t(α) = t(−1) = ȳ exp
(

(p̂−p)
p̂+p

)
= t4, (Singh et al., 2007).

Thus the proposed class of estimators tα is a generalized version of usual unbiased estimator
ȳ and Singh et al. (2007) estimators t3 and t4.

To obtain the bias and MSE of t(α), we define

ȳ = Ȳ (1 + e0) and p̂ = p (1 + e1) ,

such that

E (e0) = E (e1) = 0,E
(
e2

0

)
= θC2

y ,E
(
e2

1

)
= θC2

p and E (e0e1) = θKpC
2
p .
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Expressing the suggested class of estimators t(α) in Equation (1) in term of e’s we have

t(α) = Ȳ (1 + e0) exp

(
−αe1

2 + e1

)
= Ȳ (1 + e0) exp

(
−αe1

2

[
1 +

e1

2

]−1
)

= Ȳ

[
1 + e0 −

αe1

2
− αe0e1

2
+
α(α+ 2)

8
e2

1 −
αe3

1

48

(
α2 + 6α+ 6

)
+ · · ·

]
.

Neglecting terms of e’s having power greater than two of the above expression we have

t(α) u Ȳ

[
1 + e0 −

αe1

2
− αe0e1

2
+
α (α+ 2)

8
e2

1

]
,

or

(
t(α) − Ȳ

)
u Ȳ

[
e0 −

αe1

2
− αe0e1

2
+
α (α+ 2)

8
e2

1

]
. (2)

Taking expectation on both sides of Equation (2) we get the bias of t(α) to the first degree
of approximation as

B
(
t(α)

)
= E

(
t(α) − Ȳ

)
= Ȳ θ

(
αC2

p

8

)
(α− 4Kp + 2) . (3)

It is interesting to note that if we set α = 2, -2, 1 and -1 in Equation (3) we can easily get the
biases of the estimators t1, t2, t3 and t4 respectively to the first degree of approximation.

Squaring both sides of Equation (2) and neglecting terms of e’s having power greater
than two we have

(
t(α) − Ȳ

)2 u Ȳ 2

[
e0 +

α2e2
1

4
− αe0e1

]
.

Taking expectation on both sides of above expression, we get the MSE of t(α) up to first
degree of approximation as

MSE
(
t(α)

)
= E

(
t(α) − Ȳ

)2
= Ȳ 2E

[
e0 +

α2e2
1

4
− αe0e1

]

= Ȳ 2θ

[
C2
y +

(
αC2

p

4

)
(α− 4Kp)

]
. (4)

It is interesting to note that if we set α = 0, 2, −2, 1 and −1 in Equation (4) we get the
mean square errors (MSEs) of the estimators ȳ, t1, t2, t3 and t4 respectively to the first
degree of approximation.
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2.2 Bias comparisons

In this subsection we have obtained the conditions under which the proposed class of
estimators t(α) is less biased than Naik and Gupta’s (1996) estimators t1, t2 and Singh et
al.’s (2007) estimators t3, t4.

From Equation (3) we have

(1)
∣∣B (t(α)

)∣∣ < |B(t1)| if
∣∣α

8 (α− 4Kp + 2)
∣∣ < |(1−Kp)|.

(2)
∣∣B (t(α)

)∣∣ < |B (t2)| if
∣∣α

8 (α− 4Kp + 2)
∣∣ < |(Kp)|.

(3)
∣∣B (t(α)

)∣∣ < |B(t3)| if |α (α− 4Kp + 2)| < |(3− 4Kp)|.

(4)
∣∣B (t(α)

)∣∣ < |B (t4)| if |α (α− 4Kp + 2)| < |(4Kp − 1)|.

2.3 Efficiency comparisons

In this subsection we have derived the conditions under which the proposed class of esti-
mators t(α) is more efficient than the usual unbiased estimator ȳ, Naik and Gupta’s (1996)
estimators t1 and t2, and Singh et al.’s (2007) estimators t3 and t4.

From Equation (4) we have

(1) MSE
(
t(α)

)
< Var [ȳ] if min(0, 4Kp) < α < max (0, 4Kp).

(2) MSE
(
t(α)

)
< MSE (t1) if min (2, 2 (2Kp − 1)) < α < max (2, 2 (2Kp − 1)).

(3) MSE
(
t(α)

)
< MSE (t2) if min (−2, 2 (1 + 2Kp)) < α < max (−2, 2 (1 + 2Kp)).

(4) MSE
(
t(α)

)
< MSE (t3) if min (1, (4Kp − 1)) < α < max (1, (4Kp − 1)).

(5) MSE
(
t(α)

)
< MSE (t4) if min (−1, (4Kp + 1)) < α < max (−1, (4Kp + 1)).

2.4 Optimum choice of the scalar α

Differentiating MSE
(
t(α)

)
in Equation (4) with respect to α and equating it to zero, we

get the optimum value of α as

α = 2Kp = αo. (5)

Substituting Equation (5) in Equation (1) we get the optimum estimator for Ȳ as

t(αo) = ȳ exp

(
2Kp (p− p̂)

p+ p̂

)
. (6)

From Equations (3), (4) and (5) we get the bias and MSE of the optimum estimator t(αo)
to the first degree of approximation respectively as

B
(
t(αo)

)
= Ȳ θ

(
KpC

2
p

2

)
(1−Kp) ,

MSE
(
t(αo)

)
= θS2

y

(
1− ρ2

pb

)
. (7)

The expression in Equation (7) is equal to the variance of the linear regression estima-

tor ˆ̄ylr =
(
ȳ + b̂ (p− p̂)

)
, where b̂ (= syφ/s

2
φ) is the sample estimate of the population

regression coefficient β
(

= Syφ/S
2
φ

)
.
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It is observed from Equation (6) that the optimum estimator t(αo) depends on the pop-
ulation parameter Kp which is assumed to be known for the efficient use of the optimum
estimator t(αo). The value of the parameter Kp can be obtained either from the pilot sample
survey or from the past experience; for instance see Reddy (1973, 1974) and Srivenkatara-
mana and Tracy (1980). On the other hand if the value of the parameter Kp is not known
then it is worth advisable to estimate Kp from the sample data at hand. An estimate of
Kp (based on sample data) is given by

K̂p =

(
syφp

s2
φȳ

)
=

b̂

R̂
, (8)

where R̂ = (p/ȳ).

Replacing Kp by its estimate K̂p defined in Equation (8) we get an estimator of popu-
lation mean Ȳ (based on estimated optimum value) as

t(α̂0) = ȳ exp

(
2K̂p (p− p̂)

p+ p̂

)
.

It can be easily shown, to the first degree of approximation that

MSE (tα̂0
) = θS2

y

(
1− ρ2

pb

)
= MSE

(
t(αo)

)
.

From the above expression it is clear that the estimator t(α̂0) (based on estimated optimum
value) is as efficient as the optimum estimator t(αo).

2.5 Empirical study

In this subsection, we study the preceding theoretical results empirically on two different
population data sets. The description of population data sets are summarized in Table 1.
Using the conditions which we have obtained in Subsection 2.3 we calculated the ranges of
scalar α (see Table 2) in which proposed class of estimators t(α) is more efficient than the
usual unbiased estimator ȳ, Naik and Gupta’s ratio estimator (t1), and Singh et al.’s (2007)
ratio exponential estimator (t3), for the two population data sets described in Table 1. To
evaluate the performance of the proposed class of estimators t(α) over the other existing
estimators, we have computed the percent relative efficiencies (PREs) of t(α) with respect
to ȳ, t1 and t3 in certain range (-1.25, 2.25) of α for population data sets I and II using
the following formula

PRE
(
t(α), •

)
=

MSE (•)
MSE

(
t(α)

) × 100,

where (•) represent the estimators ȳ, t1 and t3.
In addition, to see the effect of scalar α on the bias of proposed class of estimators t(α)

we have calculated the following quantity

B(α) =

∣∣∣∣∣ B
(
t(α)

)(
1
8 Ȳ θC

2
p

)∣∣∣∣∣ = |α (α− 4Kp + 2)| ,

for the population data sets I and II in certain range (-1.25, 2.25) of α. The findings are
summarized in Table 3 and Figure 1.
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Table 1. Description of population data sets.

Population data sets (Source: Sukhatme and Sukhatme, 1970, p. 256)
I II

ȳ: Number of villages in the circles. Area (in acres) under wheat crop in the circles.
φ: A circle consisting more than five villages. A circle consisting more than five villages.
N 89 89
n 23 23
Ȳ 3.360 1102
ρpb 0.766 0.643
Cy 0.604 0.65405
Cp 2.19012 2.19012
Kp 0.21125 0.19202

Table 2. Ranges of α in which t(α) is more efficient than ȳ, t1 and t3 for population data sets I and II.

Range of α
Previous estimator I II
ȳ (usual unbiased) (0.00, 0.8450) (0.00, 0.7681)
t1 (-1.1550, 2.00) (-1.2319, 2.00)
t3 (Singh et al., 2007) (-0.1550, 1.00) (-0.2319, 1.00)

Table 2 exhibits that when α ∈(0.00, 0.8450)[0.00, 0.7681], α ∈(-1.1550, 2.00)[-1.2319,
2.00], α ∈(-0.1550, 1.00) [-0.2319, 1.00] the proposed class of estimators t(α) is more efficient
than the estimators ȳ, t1 and t3 in the data set I [II] respectively. The common range of
the scalar α is (0.00, 0.8450) [0.00, 0.7681] in which t(α) is to be superior than ȳ, t1 and t3
for data set I [II].

It is observed from Table 3 that the performance of proposed class of estimators t(α)

is better than the estimators ȳ, t1 and t3, if α lies between the corresponding range of
the previous estimators which we have calculated in Table 2 for both the population data
set I and II. Further it is observed from Table 3 that there is larger gain in efficiency
by using the proposed class of estimators t(α) over usual unbiased estimator ȳ, Naik and
Gupta’s (1996) ratio estimator t1 and Singh et al.’s (2007) ratio exponential estimator
t3 in certain range of α. The maximum gain in efficiency is seen at the optimum value
αo=0.4225 (for population data set I) and αo=0.3840 (for population data set II) of scalar
α. The proposed class of estimators t(α) is more efficient than Naik and Gupta’s (1996)
ratio estimator t1 for wider range of α as compared to the usual unbiased estimator ȳ
and Singh et al.’s (2007) ratio exponential estimator t3 in both the population data sets
I and II. Further it is observed from Table 3 and Figure 1 that the magnitude of the
quantity B(α) is very low for negative values of α [-1.25≤ α ≤-0.1550] and it is zero when
α assumes the values -1.1550 and 0, for data set I, and -1.2319 and 0, for data set II. The
magnitude of the quantity B(α) increases as α increases from zero. There is slow increase
in magnitude of B(α) when α ∈ (0.00, 0.8450) while it increases in speedy manner when α
goes beyond 0.8450. Thus we conclude that the proposed class of estimators is less biased
or almost unbiased if α lies between -1.25 and 0.00, for both the population data sets. So
if the primary concern of the study is not to obtain less biased estimators one should not
pick such values of α. However this conclusion should not be extrapolated due to limited
empirical study.

3. Two Phase Sampling

When the value of population proportion p is unknown, we usually apply two-phase (or
double) sampling design to obtain a better estimator of the population mean Ȳ of the
study variable y. Let p̂′ denote the proportion of units possessing attribute φ in the first
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Table 3. PRE of t(α) with respect to ȳ, t1 and t3 for different value of α in population data sets I and II.

PRE
(
t(α), ȳ

)
PRE

(
t(α), t1

)
PRE

(
t(α), t3

)
B(α)

α I II I II I II I II
-1.25 10.41 12.39 89.44 97.96 15.71 20.44 0.12 0.02
-1.2319 10.63 12.65 91.32 100.00 16.04 20.87 0.09 0.00
-1.1550 11.64 13.84 100.00 109.41 17.57 22.83 0.00 0.09
-1.00 14.16 16.79 121.64 132.74 21.37 27.70 0.15 0.23
-0.75 20.28 23.86 174.23 188.63 30.61 39.37 0.30 0.36
-0.50 31.15 36.01 267.65 284.68 47.02 59.41 0.33 0.37
-0.25 52.64 58.36 452.31 461.43 79.45 96.30 0.23 0.25
-0.2319 54.92 60.60 471.91 479.17 82.90 100.00 0.21 0.23
-0.1550 66.25 71.37 569.27 564.32 100.00 117.77 0.15 0.17
0.00 100.00 100.00 859.30 790.66 150.95 165.01 0.00 0.00
0.25 195.67 157.01 1681.42 1241.37 295.37 259.07 0.35 0.37
0.3840 239.17 170.49 2055.17 1347.97 361.02 281.32 0.59 0.62
0.4225 241.99 169.29 2079.40 1338.47 365.28 279.33 0.67 0.70
0.50 230.95 160.19 1984.59 1266.59 348.62 264.33 0.83 0.87
0.75 130.58 103.95 1122.10 821.92 197.11 171.53 1.43 1.49
0.7681 124.09 100.00 1066.34 790.64 187.32 165.01 1.48 1.54
0.8450 100.00 84.59 859.30 668.82 150.95 139.58 1.69 1.75
1.00 66.25 60.60 569.27 479.16 100.00 100.00 2.15 2.23
1.25 37.54 37.19 322.55 294.08 56.66 61.37 3.01 3.10
1.50 23.64 24.52 203.17 193.91 35.69 40.47 3.98 4.10
1.75 16.11 17.19 138.47 135.93 24.32 28.37 5.08 5.22
2.00 11.64 12.65 100.00 100.00 17.57 20.87 6.31 6.46
2.25 8.78 9.66 75.44 76.42 13.25 15.95 7.66 7.83

Figure 1. Effect of scalar α on the quantity B(α) in population data sets I and II.

phase sample of size n′, p̂ denote the proportion of units possessing attribute φ in the
second phase sample of size n < n′ and ȳ denote the mean of the study variable y in the
second phase sample, under two phase sampling design. In practice, the information of p̂′

can be obtained with a little additional cost.
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Thus, when the population proportion p is unknown, the usual double sampling ratio
and product estimators for population mean Ȳ are respectively defined by

td1 = ȳ

(
p̂′

p̂

)
,

td2 = ȳ

(
p̂

p̂′

)
.

Singh et al. (2007) suggested the ratio and product type exponential estimators in two
phase for Ȳ respectively as

td3 = ȳ exp

(
p̂′ − p̂
p̂′ + p̂

)
,

td4 = ȳ exp

(
p̂− p̂′

p̂+ p̂′

)
.

In the following section we have suggested a class of estimators in two phase sampling (i.e.
two phase sampling version of the estimator t(α)) for estimating population mean Ȳ of the
study variable y with its properties under large sample approximation. The following new
notations will be used in remaining sections of the paper:

θ′ =

(
1

n′
− 1

N

)
, θ∗ =

(
1

n
− 1

n′

)
and θ• =

(
1

n
+

1

n′
− 2

N

)
.

4. Estimation of Mean in Two Phase Sampling

4.1 The suggested class of estimators when population proportion is
unknown

We suggest a double sampling version of the proposed class of estimators t(α) in Equation
(1) as

td(α)
= ȳ exp

(
α (p̂′ − p̂)
p̂′ + p̂

)
. (9)

It is to be mentioned that

(1) for α = 0, td(α)
= td(0) = ȳ, (usual unbiased estimator),

(2) for α = 1, td(α)
= td(1) = td3 = ȳ exp

(
p̂′−p̂
p̂′+p̂

)
, (Singh et al., 2007),

(3) for α = −1, td(α)
= td(−1)

= td4 = ȳ exp
(
p̂−p̂′
p̂+p̂′

)
, (Singh et al., 2007).

To obtain the bias and MSE of td(α)
we define

ȳ = Ȳ (1 + e0) , p̂ = p (1 + e1) , p̂′ = p
(

1 + e
′

1

)
,

such that

E [e0] = E [e1] = E
[
e
′

1

]
= 0,
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and

E
[
e2

0

]
= θC2

y , E
[
e2

1

]
= θC2

p , E
[
e
′2
1

]
= θ′C2

p ,

E [e0e1] = θρpbCyCp, E
[
e0e

′

1

]
= θρpbCyCp and E

[
e1e

′

1

]
= θ′C2

p .

Now expressing td(α)
in Equation (9) in terms of e’s we have

td(α)
= Ȳ (1 + e0) exp

(
α

(
e
′

1 − e1

)(
2 + e

′

1 + e1

))

= Ȳ (1 + e0) exp

(
α

2

(
e
′

1 − e1

){
1 +

(
e1 + e

′

1

2

)}−1
)

= Ȳ

[
1 + e0 −

α

2

(
e1 − e

′

1

)
− α

2

(
e0e1 − e0e

′

1

)
+
α

4

(
e2

1 − e
′2
1

)
+
α2

8

(
e1 − e

′

1

)2
− · · ·

]
.

Neglecting terms of e’s having power greater than two, we have from the above expression
that

td(α)
u Ȳ

[
1 + e0 −

α

2

(
e1 − e

′

1

)
− α

2

(
e0e1 − e0e

′

1

)
+
α

4

(
e2

1 − e
′2
1

)
+
α2

8

(
e1 − e

′

1

)2
]
,

or

(
td(α)
− Ȳ

)
= Ȳ

[
e0 −

α

2

(
e1 − e

′

1

)
− α

2

(
e0e1 − e0e

′

1

)
+
α

4

(
e2

1 − e
′2
1

)
+
α2

8

(
e1 − e

′

1

)2
]
.

(10)
Taking the expectation of both sides of Equation (10), we get the bias of td(α)

to the first
degree of approximation as

B
(
td(α)

)
= Ȳ θ∗

(
αC2

p

8

)
(α− 4Kp + 2) . (11)

It is to be mentioned that the biases of estimators td1 , td2 , td3 and td4 can be easily obtained
from Equation (11) just by taking α = 2, -2, 1 and -1 respectively.

Squaring both sides of Equation (10) and neglecting terms of e’s having power greater
than two we have

(
td(α)
− Ȳ

)2 u Ȳ 2

[
e2

0 +
α2

4

(
e1 − e

′

1

)2
− α

(
e0e1 − e0e

′

1

)]
. (12)

Taking the expectation of both sides of Equation (12), we get the MSE of td(α)
to the first

degree of approximation as

MSE
(
td(α)

)
= Ȳ 2

[
θC2

y + θ∗
αC2

p

4
(α− 4Kp)

]
. (13)

It is to be mentioned that the MSEs of the estimators ȳ, td1 , td2 , td3 and td4 can be easily
obtained from Equation (13) just by taking α= 0, 2, -2, 1 and -1 respectively.
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4.2 Bias comparisons

In this subsection, we have established the conditions under which the suggested class of
estimators td(α)

is less biased than the estimators td1 , td2 , td3 and td4 . From Equation (11)
we have

(1)
∣∣B (td(α)

)∣∣ < |B (td1)| if
∣∣α

8 (α− 4Kp + 2)
∣∣ < |(1−Kp)|.

(2)
∣∣B (td(α)

)∣∣ < |B (td2)| if
∣∣α

8 (α− 4Kp + 2)
∣∣ < |Kp|.

(3)
∣∣B (td(α)

)∣∣ < |B (td3)| if |α (α− 4Kp + 2)| < |(3− 4Kp)|.
(4)

∣∣B (td(α)

)∣∣ < |B (td4)| if |α (α− 4Kp + 2)| < |(4Kp − 1)|.

4.3 Efficiency comparisons

Once again in this subsection we have obtained the conditions under which the suggested
class of estimators td(α)

is more efficient than the estimators ȳ, td1 , td2 , td3 and td4 . From
Equation (13) we have

(1) MSE
(
td(α)

)
< Var [ȳ] if min (0, 4Kp) < α < max (0, 4Kp).

(2) MSE
(
td(α)

)
< MSE (td1) if min (2, 2 (2Kp − 1)) < α < max (2, 2 (2Kp − 1)).

(3) MSE
(
td(α)

)
< MSE (td2) if min (−2, 2 (1 + 2Kp)) < α < max (−2, 2 (1 + 2Kp)).

(4) MSE
(
td(α)

)
< MSE (td3) if min (1, (4Kp − 1)) < α < max (1, (4Kp − 1)).

(5) MSE
(
td(α)

)
< MSE (td4) if min (−1, (4Kp + 1)) < α < max (−1, (4Kp + 1)).

4.4 Optimum choice of the scalar α

The MSE of td(α)
is minimized if we assume

α = 2Kp = αo. (14)

Thus the resulting minimum MSE of td(α)
is given by

MSEmin

(
td(α)

)
=
(
θ − θ∗ρ2

pb

)
S2
y = θ

(
1− ρ2

pb

)
S2
y + θ

′
ρ2
pbS

2
y . (15)

Substitution of Equation (14) in Equation (9), yields the optimum estimator (OE) in the
class of estimators td(α)

as

td(αo) = ȳ exp

(
αo
(
p̂
′ − p̂

)
p̂′ + p̂

)
,

with MSE

MSE
(
td(αo)

)
= MSEmin

(
td(α)

)
= θ

(
1− ρ2

pb

)
S2
y + θ

′
ρ2
pbS

2
y .

The value Kp can be made known in practice from the past data or experience gathered in
due course of time. If Kp can not be made known then it is worth advisable to replace it by

its estimate K̂p as given in Equation (8). Thus the resulting estimator based on estimated

optimum value K̂p is given by

td(α̂o) = ȳ exp

(
α̂o
(
p̂
′ − p̂

)
p̂′ + p̂

)
= ȳ exp

(
2K̂p

(
p̂
′ − p̂

)
p̂′ + p̂

)
.
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To the first degree of approximation, it can be shown that

MSE
(
td(α̂o)

)
= MSEmin

(
td(α)

)
= MSE

(
td(αo)

)
.

If the second phase sample is independent of the first phase sample then the bias and mean
square error of the proposed class of estimators td(α)

are, respectively, given by

B∗
(
td(α)

)
=

(
Ȳ α

8

)
C2
p [2θ∗ − 4θKp + αθ•] ,

MSE∗
(
td(α)

)
=

[
θC2

y +

(
αC2

p

4

)
(αθ• − 4θKp)

]
. (16)

The MSE∗ of td(α)
in Equation (16) is minimized for

α =
2n
′
(N − n)Kp

(Nn′ + nN − 2nn′)
=

2θKp

θ•
= α∗o. (17)

Thus the resulting minimum MSE of td(α)
in Equation (16) is given by

MSE∗min

(
td(α)

)
= θS2

y

[
1− θ

θ•
ρ2
pb

]
.

If the value of Kp is not known and also the close prior is not available then it is worth

advisable to replace it by its estimate K̂p. Thus the estimate of the optimum value α at
Equation (17) is

α̂∗o =
2θK̂p

θ•
.

Substitution of α̂∗o in place of α in the class of estimators td(α)
given in Equation (9), yields

the estimator based on estimated optimum value α̂∗o as

td(α̂∗o)
= ȳ exp

(
2θK̂p

θ•

(
p̂
′ − p̂

)
(p̂′ + p̂)

)
.

It can be shown to the first degree of approximation that

MSE∗
(
td(α̂∗o)

)
= θS2

y

[
1− θ

θ•
ρ2
pb

]
= MSE∗min

(
td(α)

)
. (18)

From Equations (15) and (18) we have

MSE
(
td(α̂o)

)
−MSE∗

(
td(α̂∗o)

)
= S2

yρ
2
pb

θ
′2

θ•
≥ 0. (19)

It is follows from Equation (19) that the proposed estimator td(α̂∗o)
, which is based on

independent sample, is more efficient than the estimator td(α̂o) , where the second phase
sample is a subsample of the first phase sample.
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4.5 Empirical study

To judge the merits of the proposed estimator td(α)
, we have computed the PREs of td(α)

with respect to ȳ, td1 and td3 for the two population data sets which is summarized in
Table 4.

We have also calculated the ranges of α in which proposed class of estimators td(α)
is more

efficient than the estimators ȳ, td1 and td3 using the conditions which we have obtained in
Subsection 4.3. The findings are summarized in Tables 5 and 6.

Table 4. Description of population data sets.

Population data sets (Source: Sukhatme and Sukhatme, 1970, p. 256)
I II

ȳ: Number of villages in the circles. Area (in acres) under wheat crop in the circles.
φ: A circle consisting more than five villages. A circle consisting more than five villages.
N 89 89
n 23 23

n
′

45 45
Ȳ 3.360 1102
ρpb 0.766 0.643
Cy 0.604 0.65405
Cp 2.19012 2.19012
Kp 0.21125 0.19202

Table 5. Ranges of α in which td(α)
is more efficient than ȳ, td1 and td3 for population data sets I and II.

Range of α
Previous estimator I II
ȳ (usual unbiased) (0.00, 0.8450) (0.00, 0.7681)
td1 (-1.1550, 2.00) (-1.2319, 2.00)
td3 (Singh et al., 2007) (-0.1550, 1.00) (-0.2319, 1.00)

Table 5 demonstrates that when α ∈(0.00, 0.8450) [0.00, 0.7681], α ∈(-1.1550, 2.00)
[-1.2319, 2.00], α ∈(-0.1550, 1.00) [-0.2319, 1.00] proposed class of estimators td(α)

is per-
forming well if compared to the estimators ȳ, td1 and td3 in the data set I [II] respectively.
The common range of the scalar α is (0.00, 0.8450) [0.00, 0.7681] in which td(α)

is superior
than ȳ, td1 and td3 for data set I [II].

It is observed from Table 6 that the performance of the proposed class of estimators
td(α)

is better than that of estimators ȳ, td1 and td3 if α follows corresponding range of
inferior estimator which we have calculated in Table 5 for both data sets I and II. Further
it is observed from Table 6 that there is larger gain in efficiency by using the proposed
class of estimators td(α)

over usual unbiased estimator ȳ, ratio estimator td1 and Singh
et al.’s (2007) ratio exponential estimator td3 in appreciable range of α. The maximum
gain in efficiency is seen on the optimum value αo=0.4225 (for population data set I) and
αo=0.3840 (for population data set II) of scalar α. The proposed class of estimators td(α)

is more efficient than the ratio estimator td1 for a wider range of α as compared to the
usual unbiased estimator ȳ and Singh et al.’s (2007) ratio exponential estimator td3 in
both the population data sets I and II. Thus we have concluded that the proposed class of
estimators t(α)

[
td(α)

]
is performing consistently in single phase as well as in double phase

sampling for these specific data sets.
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Table 6. PRE of td(α)
with respect to ȳ, td1 and td3 for different value of α in population data sets I and II.

PRE
(
td(α)

, ȳ
)

PRE
(
td(α)

, td1
)

PRE
(
td(α)

, td3
)

α I II I II I II
-1.25 14.98 17.66 89.98 98.08 20.01 25.23
-1.2319 15.28 18.01 91.77 100.00 20.41 25.73
-1.1550 16.65 19.59 100.00 108.78 22.24 27.98
-1.00 20.01 23.43 120.16 130.13 26.73 33.48
-0.75 27.84 32.22 167.19 178.90 37.19 46.02
-0.50 40.69 46.05 244.40 255.70 54.36 65.78
-0.25 62.77 68.01 376.96 377.68 83.85 97.16
-0.2319 64.89 70.00 389.69 388.73 86.68 100.00
-0.1550 74.86 79.09 449.57 439.19 100.00 112.98
0.00 100.00 100.00 600.58 555.32 133.59 142.86
0.25 147.57 131.47 886.25 730.07 197.13 187.81
0.3840 162.24 137.47 974.35 763.40 216.73 196.39
0.4225 163.09 136.95 979.45 760.53 217.86 195.65
0.50 159.70 132.93 959.09 738.19 213.33 189.90
0.75 118.26 102.57 710.24 569.61 157.98 146.53
0.7681 114.68 100.00 688.73 555.32 153.20 142.86
0.8450 100.00 89.28 600.58 495.78 133.59 127.54
1.00 74.86 70.00 449.57 388.72 100.00 100.00
1.25 47.69 47.32 286.39 262.78 63.70 67.60
1.50 31.96 33.02 191.93 183.34 42.69 47.16
1.75 22.56 23.95 135.51 132.99 30.14 34.21
2.00 16.65 18.01 100.00 100.00 22.24 25.73
2.25 12.74 13.96 76.50 77.54 17.02 19.95

5. Conclusion

In this article we have considered the problem of estimating the population mean Ȳ of the
study variable y when the population proportion of an auxiliary character is known and
unknown in SRSWOR. The bias and mean square error expressions of the proposed class
of estimators have been obtained under large sample approximation in single phase as well
as in double phase sampling. The bias and MSE expressions of usual unbiased estimator,
the usual ratio estimator, the usual product estimator and Singh et al. (2007) estimators
can be obtained from that of the proposed class of estimators just by putting the suitable
values of the scalar. Thus the proposed class of estimators unifies several others previously
defined. The realistic conditions under which the proposed class of estimators is better
than the usual unbiased, ordinary ratio and product and Singh et al. (2007) estimators
have been obtained in both the phases. The estimators based on estimated optimum values
of the scalar have been obtained along with its approximate MSE formulae in both the
phases. Numerical illustrations are given to through light on the merits of the proposed
study.
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