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Abstract

We investigate several procedures for goodness-of-fit of the extreme value distribution.
The procedures make use of recent available accurate approximations of the means
and variances of order statistics from the standardized extreme value distribution, and
are either modifications in estimation techniques of earlier proposed test statistics or
are newly introduced test statistics based on the regression of the order statistics on
their means. Properties in terms of critical values of the tests are investigated and the
improved power of the tests are evaluated for a vast range of alternative distributions.
Finally, we illustrate the different tests by a real data set.

Keywords: Extreme value distribution · Generalized least squares · Goodness-of-fit
test · Means, variances and covariances of order statistics.
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1. Introduction

The extreme value distribution is widely used in the study of size effects on material
strengths, the reliability of systems made up of a large number of components, in assessing
the level of air pollution and in flood frequency analysis. The distribution has also an
important role in modelling lifetime data. Considerable efforts have been dedicated to
testing the hypothesis that data originates from an extreme value distribution. For reviews
of the subject the reader is referred to D’Agostino and Stephens (1986) and Balakrishnan
and Rao (1998).
Let Z have an extreme value distribution with cumulative distribution function

F (y) = 1− exp (− exp ((y − µ)/θ)) , −∞ < y < ∞, (1)

where the parameters θ > 0 and −∞ < µ < ∞. The mean and variance of this distribution,
which sometimes is referred to as the Gumbel distribution, are respectively, E[Z] = µ−γθ
and Var[Z] = θ2π2/6, where γ ≈ 0.57721 is Euler’s constant.
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The many different test statistics that exist for testing for a specific location-scale family
of distributions, such as the one in Equation (1), are basically based on properties of one
particular distribution in that family - the standard or ‘standardized’ distribution - and of
estimates of the best-fitting location/scale within this family. It is our belief that if both
these parts are given proper attention, considerable improvements of the test procedures,
in terms of power of these tests, can be achieved.
In this paper, we consider goodness-of-fit tests based either on regression, the empirical

distribution function (EDF) or the stabilized probability plot. A goodness-of-fit test is a
test of H0: ‘a random sample of Z-values comes from an extreme value distribution’ with
some unknown parameters µ and θ. In Section 2, we discuss the different test statistics for
testing random samples from an extreme value distribution. We suggest modifications in
the estimation procedure in the existing test statistics and also introduce new statistics for
this testing purpose. In Section 3, we describe the Monte Carlo study set up to investigate
the properties of these tests. The results of the power comparisons and tables of significance
points are given in Section 4. In Section 5, we consider modifications needed when applied
to censored data. In Section 6, we try an example with data. Finally, in Section 7, we
provide some conclusions of this work.

2. Test Statistics

2.1 Estimation of location and scale parameters

Goodness-of-fit tests mostly require estimation of location and scale parameters in the
tested distribution F (y) which is the cumulative distribution function given in Equation
(1).
Let X(1) < · · · < X(n) denote an ordered random sample of size n from the distribution

given in Equation (1) with µ = 0 and θ = 1 (i.e., the standard extreme value distribution),
and let

mi = E[X(i)] (i = 1, . . . , n) and σij = Cov(X(i),X(j)) (i, j = 1, . . . , n) .

Much effort have been assigned to the description of these means and covariances. Lieblein
and Zelen (1956) presented the expected values, variances and covariances of the order
statistics from the standard extreme value distribution for n = 1(1)6. Lieblein and Salzer
(1957) presented a table of expected values of order statistics for n = 1(1)10(5)25 and
the first 26 largest values for n = 30(5)60(10)100. White (1967, 1969), tabulated means
and variances of order statistics for n = 1(1)50(5)100. For sample sizes n = 1(1)15(5)30,
Balakrishnan and Chan (1992) presented tables of means, variances and covariances of
the order statistics. They also in an unpublished report in 1992 at McMaster University,
Hamilton, presented tables for all sample sizes up to 30.
Recently, accurate approximate expressions of the means of order statistics, were sug-

gested by Pirouzi Fard and Holmquist (2007a)

mi ≈

{

− log(n)− γ, for i = 1;

log
(

− log
(

1−
[

i−0.4866
n+0.1840

]))

, for i = 2, . . . , n .
(2)

Also approximate expressions of the variances and covariances of the order statistics were
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given by Pirouzi Fard and Holmquist (2008) as

σij ≈

{

π2/6, for i = j = 1;
[i−0.469]([n+0.831−i][n+0.073])−1

log(n+0.831−i

n+0.356
) log(n+0.779−j

n+0.356
)

, for 1 ≤ i ≤ j ≤ n, (3)

where σji = σij is the covariance of the ith and jth order statistics of standard extreme
value distribution.
Define m to be the (n × 1) vector of the expected values mi, Σ the (n × n) matrix of

variances and covariances σij.
If we let ζ be a vector of ordered random observations from Equation (1) for general µ

and θ, then the elements Z(i) of ζ may be expressed as Z(i) = µ + θX(i), for i = 1, . . . , n.
Hence, E[Z(i)] = µ+θmi, in terms of the order statistics means from the standard extreme
value distribution. By defining εi from Z(i) = E[Z(i)]+εi, we thus have that in a regression
model

Z(i) = µ+ θmi + εi, i = 1, . . . , n, (4)

the points of the n pairs (mi, Z(i)) should be approximately on a straight line with intercept
µ on the vertical axis and slope θ. The parameters in Equation (4) can be estimated by a
suitable method.
The observed values in Equation (4) are order statistics with Var[Z(i)] = θ2Var[X(i)] and

Cov(Z(i), Z(j)) = θ2Cov(X(i),X(j)). Here Var[X(i)] depends on i and also Cov(X(i),X(j))
depends on i and j. Thus, ordinary least squares (OLS) estimators of µ and θ are not
minimum variance estimators.
The best linear unbiased estimators of µ and θ can be obtained from the generalized

least-squares (GLS) regression of the order statistic (Aitken, 1935; Lloyd, 1952) and are
given by

µ̂ =
mTΣ−1[m1T − 1mT]Σ−1ζ

1TΣ−11mTΣ−1m− (1TΣ−1m)2
(5)

and

θ̂ =
1TΣ−1[1mT −m1T]Σ−1ζ

1TΣ−11mTΣ−1m− (1TΣ−1m)2
, (6)

where 1 is a n-dimensional vector of ones.

2.2 Regression tests based on coherence with linearity

Let z(1), . . . , z(n) be the ordered sample of size n from the distribution function F (y). The
ith fitted value ẑi is given by the equation

ẑi = µ̂+ θ̂mi, i = 1, . . . , n, (7)

where µ̂ and θ̂ are obtained from Equations (5) and (6).
We are interested in using residuals to test how well the data fit {ẑi}. The residuals can

be expressed as z(i) − ẑi i.e., the differences between the observed values and the values
given by the model.
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We examine linearity of data from the error (or unexplained) sum of squares (ESS)
divided by the total sum of squares (TSS) given by

T1 =
ESS

TSS
=

(ζ − ζ̂)T(ζ − ζ̂)

(ζ − z̄1)T(ζ − z̄1)
=

∑n
i=1(z(i) − µ̂− θ̂mi)

2

∑n
i=1(z(i) − z̄)2

,

where ζ̂ is the estimated values (by using the GLS regression) with elements given in
Equation (7) and z̄ = 1Tζ/1T1. Large values of T1 indicate deviations from the extreme
value distribution. If OLS estimates would have been used, the corresponding test statistic
T1 would have been related to that based on the squared correlation coefficient between
{z(i)} and {mi}. That statistic was studied by Kinnison (1989) using rank percentiles in
the inverse of the extreme value distribution function as approximations of the expected
values. Here we use the approximations given in Equations (2) and (3) in Equations (5)
and (6) to estimate location and scale parameters.

Another possibility comes from defining yi = [z(i)−µ̂]/θ̂ for i = 1, . . . , n. Since E[yi] ≈ mi

we let the regression estimate

Bn =

∑n
i=1 yimi

∑n
i=1m

2
i

=

∑n
i=1(z(i) − µ̂)(ẑi − µ̂)
∑n

i=1(ẑi − µ̂)2
,

be a test statistic with deviations from one indicating deviations from the extreme value
distribution.

2.3 Goodness-of-fit tests based on the EDF

The empirical distribution function of the sample is given by Fn(y) = k/n, z(k) < y <
z(k+1), which is a step function with step size 1/n at the order statistics. The distance

between the EDF and the hypothesized distribution, F (y) = F̂ (y) can be considered as
a way of testing for H0. Large values of the test statistics indicate that H0 should be
rejected. In our case, the F̂ (y) is given by

F̂ (y) = 1− exp
(

− exp((y − µ̂)/θ̂)
)

,

i.e., the estimated cumulative distribution function of the extreme value distribution where
the parameters are estimated by GLS according to Equations (5) and (6).
One EDF test is based on the Anderson-Darling statistic, A2

n:

A2
n = n

∫

∞

−∞

(Fn(y)− F̂ (y))2

F̂ (y)(1 − F̂ (y))
dF̂ (y) .

This test statistic can be calculated by the formula

A2
n = −n−

n
∑

i=1

2i− 1

n
[log(F̂ (z(i))) + log(1− F̂ (z(n+1−i)))],

in terms of the ordered sample. This test is known to have good properties. The test has
been studied for the extreme value distribution by Littel et al. (1979), in which case the
maximum likelihood estimates were used in substitution for µ and θ. The difference here
compared to standard procedure is the way the parameters are estimated. Another test
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statistic is

Ln = n−1/2
n
∑

i=1

max
{

i
n − F̂ (z(i)), F̂ (z(i))−

i−1
n

}

(F̂ (z(i))(1 − F̂ (z(i))))1/2
,

introduced by Liao and Shimokawa (1999), which combines the characteristics of the
Kolmogorov-Smirnov, the Cramér-von Mises and the Anderson-Darling statistics and were
shown to have good properties. A graphical plotting technique was used to estimate the
parameters in F giving F̂ ; see Liao and Shimokawa (1999, p. 29).
We here use the approximations given in Equation (2) of the means of the order statistics

as the basis for replacing the plotting positions pi = [i−0.5]/n used in Ln. This modification
of the test statistic is denoted L+

n .

2.4 Goodness-of-fit test based on stabilized probability plot

Let z(1), . . . , z(n) be the ordered observations in a random sample of size n from the distri-
bution of the form F (y) = F0([y − µ]/θ), where µ is a location parameter and θ is a scale
parameter. A probability plot is a scatter of the z(i)’s versus a corresponding theoretical

quantities ui = F−1
0 (di), where di is an estimate of F0([z(i)−µ]/θ). In such plots the points

should lie fairly near the line z(i) = µ+ θui, indicating that the hypothesized distribution
is a reasonable model for the data.
The interpretation of the plot can be complicated due to the existence of outliers and the

non-equal variances of the plotted points. The stabilized probability plot was introduced
by Michael (1983) to handle the problem, and is formed by plotting

si = [2/π]sin−1

(

√

F0

(

[z(i) − µ]/θ
)

)

against ri = [2/π]sin−1
(

√

[i− 0.5]/n
)

, (8)

where, according to Michael (1983), s follows the sine distribution and all its order statistics
have the same asymptotic variance. Hence by this transformation, the variance of the
plotted points are approximately equal over the range of probability values.
A goodness-of-fit statistic based on the stabilized probability plot was also suggested by

Michael (1983) asDsp = max |ri−si|. Kimber (1985) used the statistic Dsp for testing of the
extreme value distribution of maxima and applied Downton’s (1966) estimates of µ and θ to
obtain the critical values. Coles (1989) investigated the statistic Dsp for testing the extreme
value distribution of minima and denoted it by D∗

sp. He estimated the parameters µ and θ
in Equation (1), by using Blom’s procedure (1958) and showed that due to the improved
estimation procedure, the test statistic D∗

sp had higher power than Kimber’s proposed test
statistic. Also, in this test, we consider the estimates obtained by using Equations (5) and
(6) in Equation (8), giving ŝi. The test statistic is then denoted D+

sp = max |ri − ŝi|.

3. The Monte Carlo Study

A simulation study was set up in order to investigate the properties of the different tests
for testing extreme value distribution and in particular to investigate the power of the dif-
ferent test statistics for a large range of different alternative distributions. We have chosen
distributions, such as Weibull, log-normal and normal that are linked to the strength data
of metallic and composite materials. We also have chosen distributions such as Cauchy,
logistic, Laplace, Student-t, beta and chi-square distributions that are often used in eval-
uating the power of test statistics for the extreme value distribution.
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The critical values for all test statistics (except for Ln which were taken from Liao
and Shimokawa (1999)) were for n = 10, 20, 50 and 100, obtained from 106 replicates of
independent samples of size n from the standard extreme value distribution. These critical
values were also verified to be invariant for other choices of the parameter values in the
extreme value distribution, and thus the procedure was repeated with different sets of
parameter values in order to make sure that the distributions obtained were independent
of these parameter values. The critical values obtained in this manner for the different
tests and for different levels and sample sizes are given in Table 3 through Table 9.
The results from the simulation study are based on 200, 000 replicates in order to get

three significant decimal digits in the obtained results. The results for a selection of com-
bination of sample size and significance levels, are reported in Tables 3-9 as the fraction
of rejected cases for each sample size and significance level. A more complete set of tables
can be accessed from the authors upon request.

4. Power Results of the Monte Carlo Study and Percentage Points

The results of the power study show that the power of the different tests have almost the
same pattern for different sample sizes. These results indicate that:

• Bn has higher power than the other tests for Weibull, log-normal and normal distribu-
tions.

• For tests on the level α = 0.01 and sample sizes less than 30 the test statistic L+
n

improves the power compared to Ln. For larger sample sizes this effect diminish. For
tests on the level α = 0.05 this effect can also be seen for sample size less than 20.

• A2
n is slightly more powerful than the other test for Cauchy and log-chi-square alternative

distributions.

The power of the Anderson-Darling test, with the parameter estimates proposed here
(Equations (5) and (6)) is generally of the same order as when the maximum likelihood
estimates were used in substitution for µ and θ (not shown in the tables). The procedure
for parameter estimation used here is simple to implement which is an advantage when
used in the test statistics. Generally, D+

sp was more powerful than D∗

sp (not shown) for

the different alternative distributions. The high performance of this improved test D+
sp

and also of the T1 test, in many occasions dominates the performance of the A2
n test. The

quantiles of the test statistic Bn based on 106 replicates for n = 3(1)20(5)60(10)100 are
given in Table 1. Similar quantiles for the statistic T1 has been given previously (Pirouzi
Fard and Holmquist, 2007b).

5. Censored Data

A nice feature of the estimation technique applied in the proposed tests is that they can
easily be adapted to situations with censored samples, including both upper and lower
censoring; see Castro-Kuriss (2011).
Suppose we have a sample of size n of which the k smallest and l largest observations

are censored. We are thus given observations z(k+1) < z(k+2) < · · · < z(n−l) and that k
observations are less than z(k+1) and l observations are larger than z(n−l). Here of course
either k or l (or both) may be 0. We may still perform the estimation of the parameters µ
and θ using Equations (5) and (6) based of the standard order means mi, i = k+1, . . . , n−l
arranged inm of size n−l−k, variance/covariances σij, i = k+1, . . . , n−l, j = k+1, . . . , n−l
arranged in Σ of size (n − l − k) × (n − l − k) and z(k+1), . . . , z(n−l) arranged in ζ of size
n− l − k.
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Table 1. Quantiles of the test statistic Bn based on 106 replicates.

Lower quantiles

n 0.01 0.025 0.05 0.10 0.15 0.20 0.25

3 0.811 0.817 0.827 0.874 0.867 0.886 0.904
4 0.713 0.741 0.771 0.813 0.845 0.873 0.896
5 0.691 0.728 0.764 0.809 0.840 0.866 0.890
6 0.690 0.729 0.765 0.809 0.841 0.867 0.889
7 0.695 0.733 0.768 0.812 0.844 0.869 0.891
8 0.701 0.739 0.774 0.817 0.847 0.872 0.894
9 0.708 0.745 0.779 0.821 0.850 0.874 0.896
10 0.714 0.751 0.784 0.825 0.854 0.877 0.899
11 0.720 0.757 0.790 0.829 0.858 0.881 0.901
12 0.727 0.763 0.795 0.833 0.861 0.883 0.903
13 0.733 0.767 0.799 0.837 0.864 0.886 0.905
14 0.738 0.773 0.803 0.840 0.867 0.889 0.908
15 0.744 0.777 0.808 0.844 0.870 0.891 0.910
16 0.749 0.781 0.811 0.847 0.872 0.893 0.911
17 0.753 0.786 0.815 0.850 0.875 0.895 0.913
18 0.758 0.789 0.819 0.853 0.877 0.897 0.915
19 0.761 0.793 0.822 0.855 0.879 0.899 0.916
20 0.766 0.796 0.825 0.858 0.881 0.901 0.918
25 0.782 0.811 0.838 0.869 0.891 0.908 0.924
30 0.796 0.823 0.848 0.877 0.898 0.915 0.930
35 0.807 0.833 0.856 0.884 0.904 0.920 0.934
40 0.817 0.841 0.864 0.890 0.909 0.924 0.937
45 0.825 0.848 0.870 0.895 0.913 0.928 0.940
50 0.831 0.854 0.875 0.900 0.917 0.931 0.943
55 0.837 0.860 0.880 0.904 0.920 0.933 0.945
60 0.843 0.865 0.884 0.907 0.923 0.936 0.947
70 0.852 0.873 0.891 0.913 0.928 0.940 0.951
80 0.861 0.880 0.897 0.917 0.932 0.944 0.954
90 0.867 0.886 0.902 0.922 0.935 0.946 0.956
100 0.873 0.890 0.907 0.925 0.938 0.949 0.958

All the test statistics can then be calculated, noting that in any summation or maxi-
mization the index set should be {k+1, . . . , n− l} instead of {1, . . . , n}. The critical values
for any test statistic, should, however, be chosen based on the uncensored size n− l − k.

6. An Example

The following data are the logarithms of the number of million revolutions before fail-
ure for each of the 23 ball bearing in life tests: 2.884, 3.365, 3.497, 3.726, 3.741, 3.820,
3.881, 3.948, 3.950, 3.991,4.017, 4.217, 4.229, 4.229, 4.232, 4.432, 4.534, 4.591, 4.655,
4.662, 4.851, 4.852, 5.156. These data were treated by Lieblein and Zelen (1956), who
assumed that the original data come from a Weibull distribution. Lawless (1982) showed
that the significance level for rejecting the hypothesis that the log failure times have an
extreme value distribution is over 0.25. Also, Lawless (1982) determined in this example
the maximum likelihood estimates of the extreme value location and scale parameters
to be µ̂ = 4.405; θ̂ = 0.476. With aid of Equations (5) and (6) we estimated µ and
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θ, used in Equation (1), for test statistics T1, A
2
n,D

+
ps and Bn and found µ̂ = 4.4135;

θ̂ = 0.4964. The estimates for µ and θ, using graphical plotting techniques based on
plotting position pi = [i − 0.5]/n for Ln, are µ̂ = 4.3880; θ̂ = 0.4205. Similarly, we

found the estimates for L+
n statistic as µ̂ = 4.3966; θ̂ = 0.4285 based on approximation

given in Equation (2). The obtained values from test statistics T1, A
2
n, D

+
sp, Ln, L

+
n , Bn

are respectively 0.0590, 0.3401, 0.0838, 0.9326, 0.8796, 0.8743. Significance levels with these
statistics for n = 23 are tabulated in Table 2, which are obtained by 106 repetitions us-
ing Monte Carlo simulation. The significance level from Bn is about 0.15 and those from
T1, A

2
n,D

+
ps, Ln, L

+
n are all greater than 0.20. There is consequently no evidence against

the hypothesized extreme value distribution from any of these tests.

Table 2. Critical values of test statistics for n = 23 at levels α = 0.01, 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30.

α T1 A2
n D+

sp Ln L+
n Bn

0.30 0.070 0.424 0.088 0.918 0.890 0.937
0.25 0.079 0.455 0.091 0.958 0.927 0.922
0.20 0.090 0.495 0.095 1.008 0.972 0.906
0.15 0.103 0.544 0.100 1.077 1.033 0.887
0.10 0.123 0.613 0.107 1.184 1.126 0.865
0.05 0.161 0.735 0.117 1.428 1.326 0.833
0.01 0.248 1.014 0.138 3.072 2.478 0.777

7. Conclusions

We have investigated several procedures for goodness-of-fit tests in connection with the
extreme value distribution. We have shown that the suggested modifications of the estima-
tion procedure of unknown parameters in existing, previously proposed, test statistics can
improve the power of these tests. In addition, we have shown that the new test statistics
introduced here, based on regression of order statistics on their hypothetical expected val-
ues, gives, in comparison, very powerful tests for a wide range of alternative distributions.
The relative simplicity of the estimation technique has also been shown to make the tests
statistics applicable in situations with censored data.

Appendix

In this section, tables of power and critical values of the different test statistics for various
levels of the tests are presented. Weib(a, b) is the Weibull distribution with location pa-
rameter a and scale parameter b. The LN(a, b) is the lognormal distribution, for which the
logarithms are normal with mean a and variance b, N(a, b). The symbol Lχ2(f) stands for
the distribution for which the anti-log is chi-square with f degrees of freedom, χ2(f). The
t(f) is the t-distribution with f degrees of freedom, U(0, 1) is the uniform distribution on
the unit interval, Ca(a, b) is the Cauchy distribution centred in a and scale b.
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Table 3. Power comparison for sample size n = 10 at significance level α = 0.01.

Alternative T1 A2
n D+

sp Ln L+
n Bn

Distribution

Weib(5,42) 0.011 0.009 0.010 0.012 0.012 0.011
Weib(20,25) 0.012 0.009 0.010 0.013 0.013 0.013
Weib(2,12) 0.015 0.009 0.012 0.017 0.017 0.017
Weib(2,4) 0.043 0.018 0.025 0.047 0.048 0.047

LN(0.4,0.03) 0.070 0.030 0.040 0.078 0.078 0.077
LN(0.69,0.05) 0.077 0.034 0.043 0.086 0.087 0.084
LN(2,0.1) 0.100 0.045 0.057 0.110 0.111 0.109
LN(0.65,0.27) 0.208 0.107 0.127 0.212 0.214 0.220

Lχ2(1) 0.007 0.016 0.012 0.005 0.005 0.005
Lχ2(4) 0.016 0.009 0.012 0.018 0.018 0.017

t(2) 0.227 0.201 0.198 0.232 0.234 0.219
t(6) 0.101 0.059 0.066 0.116 0.118 0.110

N(0,1) 0.060 0.026 0.035 0.068 0.069 0.066

Logistic(0,1) 0.089 0.048 0.056 0.104 0.106 0.100

U(0,1) 0.040 0.021 0.026 0.027 0.027 0.037

Ca(5,1) 0.429 0.472 0.457 0.357 0.359 0.338

Laplace(1,4) 0.141 0.099 0.105 0.162 0.165 0.150

χ2(1) 0.804 0.609 0.763 0.698 0.707 0.779

Beta(2,6) 0.198 0.086 0.115 0.185 0.188 0.206

Gamma(4,2) 0.254 0.130 0.157 0.247 0.250 0.264

Critical values: 0.408 0.970 0.172 6.234 3.923 0.714

Table 4. Power comparison for sample size n = 10 at significance level α = 0.05.

Alternative T1 A2
n D+

sp Ln L+
n Bn

Distribution

Weib(5,42) 0.053 0.048 0.050 0.057 0.057 0.057
Weib(20,25) 0.054 0.047 0.051 0.061 0.061 0.062
Weib(2,12) 0.064 0.049 0.057 0.078 0.078 0.078
Weib(2,4) 0.135 0.081 0.099 0.170 0.169 0.171

LN(0.04,0.03) 0.189 0.114 0.136 0.232 0.232 0.234
LN(0.69,0.05) 0.204 0.125 0.147 0.249 0.248 0.250
LN(2,0.1) 0.244 0.152 0.175 0.291 0.291 0.294
LN(0.65,0.27) 0.403 0.266 0.299 0.447 0.447 0.455

Lχ2(1) 0.048 0.067 0.053 0.026 0.027 0.027
Lχ2(4) 0.065 0.050 0.057 0.079 0.079 0.079

t(2) 0.363 0.334 0.333 0.368 0.374 0.349
t(6) 0.219 0.157 0.173 0.264 0.262 0.259

N(0,1) 0.171 0.104 0.123 0.212 0.211 0.212

Logistic(0,1) 0.207 0.142 0.160 0.253 0.252 0.249

U(0,1) 0.145 0.105 0.116 0.146 0.154 0.150

Ca(5,1) 0.578 0.607 0.592 0.492 0.530 0.427

Laplace(1,4) 0.268 0.228 0.236 0.320 0.320 0.304

χ2(1) 0.927 0.818 0.898 0.914 0.918 0.918

Beta(2,6) 0.417 0.253 0.305 0.450 0.452 0.466

Gamma(4,2) 0.469 0.312 0.354 0.506 0.507 0.518

Critical values: 0.262 0.697 0.146 1.794 1.546 0.784



64 M.N. Pirouzi Fard and B. Holmquist

Table 5. Power comparison for sample size n = 10 at significance level α = 0.10.

Alternative T1 A2
n D+

sp Ln L+
n Bn

Distribution

Weib(5,42) 0.102 0.098 0.100 0.110 0.109 0.111
Weib(20,25) 0.103 0.096 0.102 0.118 0.116 0.119
Weib(2,12) 0.117 0.100 0.111 0.145 0.141 0.147
Weib(2,4) 0.214 0.151 0.174 0.277 0.269 0.285

LN(0.4,0.03) 0.282 0.197 0.224 0.352 0.343 0.362
LN(0.69,0.05) 0.298 0.210 0.238 0.371 0.363 0.381
LN(2,0.1) 0.345 0.244 0.271 0.419 0.409 0.430
LN(0.65,0.27) 0.515 0.380 0.414 0.585 0.575 0.596

Lχ2(1) 0.100 0.123 0.104 0.062 0.068 0.058
Lχ2(4) 0.119 0.101 0.112 0.146 0.143 0.149

t(2) 0.446 0.420 0.420 0.459 0.467 0.428
t(6) 0.304 0.239 0.259 0.364 0.358 0.370

N(0,1) 0.257 0.181 0.207 0.327 0.318 0.335

Logistic(0,1) 0.291 0.225 0.247 0.356 0.349 0.362

U(0,1) 0.242 0.198 0.208 0.294 0.290 0.264

Ca(5,1) 0.656 0.676 0.664 0.618 0.647 0.477

Laplace(1,4) 0.353 0.319 0.330 0.412 0.410 0.406

χ2(1) 0.961 0.891 0.940 0.965 0.963 0.958

Beta(2,6) 0.545 0.377 0.432 0.609 0.598 0.618

Gamma(4,2) 0.585 0.434 0.477 0.646 0.637 0.657

Critical values: 0.203 0.582 0.132 1.377 1.254 0.825

Table 6. Power comparison for sample size n = 20 at significance level α = 0.01.

Alternative T1 A2
n D+

sp Ln L+
n Bn

Distribution

Weib(5,42) 0.010 0.009 0.011 0.013 0.013 0.013
Weib(20,25) 0.011 0.010 0.013 0.016 0.016 0.016
Weib(2,12) 0.016 0.011 0.018 0.025 0.025 0.025
Weib(2,4) 0.086 0.047 0.075 0.120 0.123 0.125

LN(0.4,0.03) 0.168 0.100 0.138 0.216 0.220 0.225
LN(0.69,0.05) 0.191 0.115 0.155 0.239 0.243 0.252
LN(2,0.1) 0.258 0.161 0.211 0.305 0.310 0.328
LN(0.65,0.27) 0.529 0.369 0.465 0.535 0.544 0.596

Lχ2(1) 0.015 0.023 0.010 0.002 0.002 0.002
Lχ2(4) 0.018 0.012 0.019 0.027 0.028 0.026

t(2) 0.434 0.470 0.415 0.456 0.461 0.405
t(6) 0.220 0.182 0.182 0.295 0.298 0.274

N(0,1) 0.136 0.081 0.113 0.183 0.186 0.188

Logistic(0,1) 0.199 0.157 0.163 0.274 0.277 0.257

U(0,1) 0.087 0.071 0.133 0.031 0.037 0.078

Ca(5,1) 0.722 0.813 0.756 0.556 0.596 0.488

Laplace(1,4) 0.281 0.302 0.253 0.378 0.383 0.334

χ2(1) 0.996 0.976 0.999 0.979 0.983 0.994

Beta(2,6) 0.556 0.332 0.547 0.503 0.517 0.609

Gamma(4,2) 0.632 0.444 0.590 0.605 0.616 0.685

Critical values: 0.271 1.010 0.144 3.618 2.760 0.766
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Table 7. Power comparison for sample size n = 20 at significance level α = 0.10.

Alternative T1 A2
n D+

sp Ln L+
n Bn

Distribution

Weib(5,42) 0.101 0.099 0.105 0.117 0.114 0.121
Weib(20,25) 0.102 0.098 0.108 0.128 0.124 0.135
Weib(2,12) 0.123 0.110 0.129 0.175 0.168 0.186
Weib(2,4) 0.353 0.252 0.307 0.458 0.443 0.491

LN(0.4,0.03) 0.483 0.370 0.420 0.586 0.572 0.617
LN(0.69,0.05) 0.518 0.397 0.449 0.619 0.605 0.650
LN(2,0.1) 0.601 0.468 0.527 0.693 0.679 0.723
LN(0.65,0.27) 0.830 0.705 0.769 0.877 0.869 0.891

Lχ2(1) 0.119 0.142 0.104 0.057 0.067 0.037
Lχ2(4) 0.132 0.115 0.134 0.180 0.174 0.193

t(2) 0.663 0.686 0.657 0.696 0.706 0.588
t(6) 0.483 0.436 0.449 0.576 0.568 0.585

N(0,1) 0.432 0.327 0.376 0.538 0.524 0.568

Logistic(0,1) 0.467 0.415 0.430 0.568 0.559 0.583

U(0,1) 0.455 0.381 0.469 0.550 0.534 0.426

Ca(5,1) 0.879 0.916 0.893 0.885 0.898 0.579

Laplace(1,4) 0.538 0.570 0.542 0.635 0.633 0.611

χ2(1) 1.000 0.998 1.000 1.000 1.000 1.000

Beta(2,6) 0.883 0.721 0.850 0.912 0.904 0.918

Gamma(4,2) 0.897 0.775 0.856 0.925 0.919 0.933

Critical values: 0.135 0.611 0.111 1.226 1.149 0.858

Table 8. Power comparison for sample size n = 50 at significance level α = 0.10.

Alternative T1 A2
n D+

sp Ln L+
n Bn

Distribution

Weib(5,42) 0.097 0.101 0.112 0.122 0.118 0.140
Weib(20,25) 0.104 0.106 0.124 0.144 0.139 0.173
Weib(2,12) 0.157 0.144 0.181 0.235 0.225 0.290
Weib(2,4) 0.710 0.535 0.664 0.789 0.775 0.855

LN(0.4,0.03) 0.850 0.742 0.806 0.901 0.894 0.938
LN(0.69,0.05) 0.882 0.781 0.842 0.924 0.918 0.954
LN(2,0.1) 0.940 0.862 0.913 0.963 0.959 0.979
LN(0.65,0.27) 0.997 0.983 0.995 0.998 0.998 0.999

Lχ2(1) 0.178 0.201 0.139 0.100 0.114 0.015
Lχ2(4) 0.168 0.155 0.187 0.243 0.234 0.294

t(2) 0.917 0.954 0.921 0.947 0.951 0.764
t(6) 0.779 0.785 0.760 0.850 0.847 0.865

N(0,1) 0.789 0.673 0.743 0.856 0.847 0.905

Logistic(0,1) 0.775 0.771 0.750 0.854 0.849 0.884

U(0,1) 0.942 0.852 0.971 0.966 0.958 0.784

Ca(5,1) 0.995 0.999 0.996 0.998 0.998 0.672

Laplace(1,4) 0.823 0.906 0.843 0.905 0.906 0.874

χ2(1) 1.000 1.000 1.000 1.000 1.000 1.000

Beta(2,6) 1.000 0.992 1.000 1.000 1.000 1.000

Gamma(4,2) 1.000 0.995 1.000 1.000 1.000 1.000

Critical values: 0.073 0.627 0.082 1.044 1.017 0.900
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Table 9. Power comparison for sample size n = 100 at significance level α = 0.05.

Alternative T1 A2
n D+

sp Ln L+
n Bn

Distribution

Weib(5,42) 0.045 0.053 0.066 0.072 0.069 0.088
Weib(20,25) 0.053 0.062 0.084 0.097 0.093 0.126
Weib(2,12) 0.123 0.118 0.169 0.218 0.209 0.287
Weib(2,4) 0.898 0.739 0.888 0.936 0.930 0.969

LN(0.4,0.03) 0.969 0.925 0.956 0.985 0.983 0.994
LN(0.69,0.05) 0.982 0.949 0.973 0.991 0.991 0.997
LN(2,0.1) 0.996 0.982 0.993 0.998 0.998 0.999
LN(0.65,0.27) 1.000 1.000 1.000 1.000 1.000 1.000

Lχ2(1) 0.163 0.202 0.118 0.098 0.110 0.002
Lχ2(4) 0.127 0.133 0.169 0.218 0.210 0.283

t(2) 0.984 0.997 0.987 0.995 0.996 0.838
t(6) 0.909 0.942 0.898 0.956 0.956 0.957

N(0,1) 0.937 0.876 0.917 0.967 0.964 0.985

Logistic(0,1) 0.911 0.934 0.894 0.959 0.960 0.971

U(0,1) 0.999 0.991 1.000 1.000 1.000 0.926

Ca(5,1) 1.000 1.000 1.000 1.000 1.000 0.717

Laplace(1,4) 0.939 0.990 0.952 0.984 0.984 0.965

χ2(1) 1.000 1.000 1.000 1.000 1.000 1.000

Beta(2,6) 1.000 1.000 1.000 1.000 1.000 1.000

Gamma(4,2) 1.000 1.000 1.000 1.000 1.000 1.000

Critical values: 0.057 0.753 0.070 1.079 1.061 0.907
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