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Abstract

The extended skew-normal family of distributions is a slight extension of the skew-
normal one, which achieves closure under conditioning. In this paper, we discuss its
application in conditional independence graphs selection. First, we derive a test for a
single edge exclusion/inclusion based on a Wald-type statistic. Then, we show how the
asymptotic null distribution of the Wald test changes when some regularity conditions
of the parameter space fail to hold. Finally, we propose an alternative test and carry out
numerical experiments to assess the performances, in finite samples, of the two methods.
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1. Introduction

Graphical models (see Lauritzen, 1996; Whittaker, 1990) are a family of probability distri-
butions for a d-dimensional multivariate random variable Y whose independence structure
is characterised by a conditional independence graph G = (V,E). Here, each variable of Y
is identified with a vertex V = {1, . . . , d} and the absence of an edge between two vertices
represents conditional independence.

When Y ∼ Nd(µ,Σ), we have a Gaussian graphical model or a covariance-selection
model; see Dempster (1972). In this context, the covariance matrix Σ is restricted by its
Markov properties and the variables Yi and Yj are conditionally independent given the
others, Yi⊥⊥Yj|rest, if and only if, Σij = 0, where Σij indicates the (i, j)th entry of the
concentration matrix Σ−1. Moreover, Σ−1 satisfies also the linear restriction

eij = 0 ⇒ Σij = 0, (1)

where eij represents the (i, j) link in the edge set E.
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An interesting application of the graphical models is the possibility of selecting, through
an appropriate procedure, the graph underlying the data. The standard approach to model
selection, the backward stepwise method (see Edwards, 2000) poses an implicit problem
in multiple hypothesis testing, because it considers the exclusion of a single edge at time
from the complete graph. More precisely, for each of the possible couples of vertices {i, j},
a test for conditional independency is performed and the procedure is repeated until no
further edge is removed.

As in the normal context the relation given in Equation (1) implies also that the corre-
sponding partial correlation coefficient, ρij|rest, is equal to zero, the edge deletion can be
verified by testing

H0: ρij|rest = 0 versus H1: ρij|rest 6= 0.

When carrying out a statistical analysis of data, departures from normality may be en-
countered, for example due to lack of symmetry. In this case, the previous model selection
procedure is not feasible because ‘out of the Gaussian context’ non-correlation does not
imply independence.

In this paper, we propose the adoption of the extended skew-normal (ESN) distribution
introduced by Azzalini (1985) and studied by Capitanio et al. (2003) to cope with skewness
in the data. Within this context, we present a test for a single edge inclusion/exclusion
in conditional independence graphs. The properties of the ESN distribution are briefly
reviewed in Section 2. Section 3 extends the model selection procedure based on the Wald
test methodology and described in Capitanio and Pacillo (2008), by providing additional
aspects about the study of the derivative of the scoring function. Section 4 shows some
problems which may arise when some regularity conditions of the parameter space fail
to hold and proposes an alternative method to deal with this specific circumstance. Re-
sults from numerical simulations in finite samples are presented in Section 5. Section 6
offers some conclusions and the Appendix provides some results for the ESN log-likelihood
function.

2. Skew Normal Conditional Independence Graphs

When departures from normality are due to a lack of symmetry, the class of skew-normal
(SN) distributions defined by Azzalini and Dalla Valle (1996) provides a useful model
to represent the data. This family extends the Gaussian distribution by adding a vector
parameter α which regulates the skewness: the normal model is obtained as a special case
when α = 0. The SN distribution allows us to carry out inference based on the likelihood
function, while dealing with skewness, and enjoys many nice properties of the normal one,
such as closure under marginalization and linear transformations, but unfortunately not
under conditioning.

The ESN model is a slight extension of the SN distribution, which achieves also closure
under conditioning, and hence it is suitable for the analysis of conditional independence
relationships in the context of graphical models. The density of a d-dimensional ESN
random variable is

f(y) =
1

Φ(τ)
φd(y − ξ; Ω)Φ

(

τ(1 + α⊤Ωα)1/2 + α⊤ω−1(y − ξ)
)

, (2)

where φd(y; Ω) is the density of a d-dimensional Nd(0,Ω) random variable, Φ(·) is the
N(0, 1) distribution function, Ω is a full rank covariance matrix, ω is a diagonal matrix such
that Ω = ω−1Ωω−1 is the corresponding correlation matrix, α is the parameter regulating
skewness, ξ is the location parameter, and τ ∈ ℜ is an additional shape parameter. When
τ = 0, the SN density is recovered.
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The mean vector and the covariance matrix of Y are

E[Y ] = ξ + ζ1(τ)ωδ and Var[Y ] = Ω + ζ2(τ)ωδδ⊤ω,

where ζm(·) is the mth derivative of log (2Φ(·)) and δ = (1 + α⊤Ωα)−1/2Ωα.
A density having form given in Equation (2) arises in Azzalini and Capitanio (1999)

(Section 4, Equation 13) from a conditioning operation on a SN random variable. These
authors stated the conditions for independence among blocks of linear transformations
of skew-normal random variables (see their Proposition 6), and show (see Section 6.3)
how they can be extended to the case of the conditional SN density. Arnold and Beaver
(2000) also examined densities of the type given in Equation (2) and remarked the closure
under conditioning. Capitanio et al. (2003) investigated the relationships of conditional
independence among the components of an ESN random variable, as well as other issues
related to the use of this distribution in the context of graphical models. Actually, if
Y = (Y1, . . . , Yd) has density as given in Equation (2), pairwise conditional independence
between Yi and Yj occurs if and only if the following two conditions hold simultaneously

Ωij = 0, (3)

αiαj = 0, (4)

where Ωij denotes the (i, j)th entry of Ω−1 and αi is the ith component of α.
Condition given in Equation (3) shows that, for an ESN random variable, the matrix

Ω−1 plays the same role as the concentration matrix Σ−1 used in the normal context.
Nevertheless, a further condition, given by Equation (4), on the elements of the shape
parameter α is required as well. Some algebra yields the inverse of the covariance matrix
of Y , which is

Ω−1 − ζ2(τ)
ω−1αα⊤ω−1

(1 + ζ2(τ)α⊤Ωα + α⊤Ωα)
. (5)

It is evident that if Yi and Yj fulfill both conditions in Equations (3) and (4) then the
(i, j)th entry of expression given in (5) is equal to zero, whilst the fact that (5) has a zero
entry does not imply that a pairwise conditional independence relationship occurs between
the corresponding components of Y . Consequently the approach described in Section 1 for
testing conditional independence in the Gaussian context needs to be adapted by taking
into account the conditions stated in Equations (3) and (4).

The conditional independence graph G = (V,E) used to specify the association structure
among the components of Y is obtained by connecting two vertices {i} and {j} if Ωij and/or
the product αiαj are different from zero. On the contrary, there is a missing edge between
the vertices {i} and {j} if conditions given in Equations (3) and (4) hold simultaneously.

Suppose that, for example, the three–dimensional random variable Y has an ESN dis-
tribution with scale and skewness parameters given by

Ω−1 =





Ω11 Ω12 0
Ω21 Ω22 Ω23

0 Ω32 Ω33



 , and α =





0
α2

α3



 .

Since Ω13 = 0 and α1α3 = 0, Y1 and Y3 are independent conditionally on Y2, and the
edge that connects vertices {1} and {3} is missing. Furthermore, since Ω12 and Ω23 are
different from zero, there are two edges which connect vertices {1} and {2}, and {2} and
{3}, respectively. The resulting conditional independence graph is shown in Figure 1.
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Figure 1. Conditional independence graph for the ESN3.

3. The Wald Test’s Methodology

We present the test used for model selection in conditional independence graphs when
the random variables have an ESN distribution. By exploiting the pairwise conditional
independence proposition given in Equations (3) and (4), the model selection procedure
can be based on a test for a single edge exclusion/inclusion whose null hypothesis is

Hw
0 : g(θ) =

(

Ωij

αiαj

)

=

(

0

0

)

. (6)

Let y1, . . . , yn be an observed random sample drawn from the ESN distribution. The log-
likelihood function for θ = (ξ,Ω−1, α, τ) is l(θ) =

∑n
i=1 ℓi(θ), where

ℓi(θ) = −d

2
log(2π) +

1

2
log

(∣

∣Ω−1
∣

∣

)

− 1

2
(yi − ξ)⊤Ω−1(yi − ξ)

+ log
(

Φ
(

τ(1 + α⊤Ωα)1/2 + α⊤ω−1(yi − ξ)
))

− log (Φ(τ)) .

Let S(y) = {Sξ(y), SΩ−1(y), Sα(y), Sτ (y)} be the score function of the ESN model based
on a single observation y and thus Sξ(y) = ∂ (ℓ(θ)) /∂ξ, and so forth.

The components of the score vector can be computed by considering the reparameteri-
zation Λ = Ω−1 and η = ω−1α, which simplifies the derivatives of the four terms of S(y).
Consequently, the score functions become

Sξ(y) = Λ(yi − ξ) − r(γ)η,

SΛ(y) =
1

2
D⊤vec

(

Λ−1 − (yi − ξ)(yi − ξ)⊤ − τ∗r(γ)Λ−1ηη⊤Λ−1
)

,

Sα(y) = r(γ)
{

τ∗ω
−1Λ−1η + ω−1(yi − ξ)

}

,

Sτ (y) = r(γ)
√

1 + η⊤Λ−1η − φ(τ)

Φ(τ)
,

(7)

where r(γ) = φ(γ)/Φ(γ), γ = τ(1 + η⊤Λ−1η)1/2 + η⊤(yi − ξ), τ∗ = τ/
√

1 + η⊤Λ−1η, and
D is the duplication matrix of dimension d2 × [d(d + 1)/2]; see the Appendix for details
on the derivation of Equation (7).

A natural way to approach the test of hypothesis given in (6) is to implement the
likelihood-ratio test. Unfortunately, constrained optimization is quite hard to deal under
the computational viewpoint, because of the additional parameter τ and the numerical
instability of the procedure, which arise when one or more elements of the α vector take
large values. To get a deeper insight into the problem, we focus on the asymptotic behaviour
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of the score function of α in the one-dimensional case given by

Sα(y) = r(γ)

{

τα

(1 + α2)1/2
+ ω−1 (yi − ξ)

}

,

where

γ = τ(1 + α2)1/2 + αzi and zi = ω−1 (yi − ξ) .

Whatever the sign of τ , since the argument in curly brackets is O(1) with respect to α, as
α → ±∞, the behaviour of the score function Sα(y) depends only on the quantity r(γ).

As α → ∞ and z > 0, or as α → −∞ and z < 0, r(γ) tends to zero. When α and z have
a different sign the limit gives an indeterminate form. Consequently, if r(γ) is considerably
larger than the other term, the score function of α does not change with the observations
and becomes constant. Moreover, when α diverges, the probability of z having different
sign converges to zero.

The problem related to the occurrence of infinite estimates of α, even though α is finite,
has been pointed out and investigated by several authors; see, e.g., Azzalini and Capitanio
(1999), Rotnitzky et al. (2000), Canale (2011), and references therein.

The aspects just mentioned make the constrained estimates almost impossible to obtain
numerically, so that the likelihood ratio test become unfeasible. Consequently a Wald
approach is a necessary remedy.

Let θ̂ be the maximum likelihood estimator (MLE) of θ and g(θ̂) the estimator of g(θ).

Furthermore, let Σg(θ) be the covariance matrix of g(θ̂). A Taylor expansion of g(θ̂) around
the value θ0 yields

√
n

{

g(θ̂) − g(θ0)
}

= g′(θ0)
√

n(θ̂ − θ0) + Op

(

1

n

)

.

By applying the delta method, the asymptotic variance of g(θ̂) turns out to be

Σg(θ) = Var
[

g(θ0) + g′(θ0)(θ̂ − θ0)
]

= Var
[

g′(θ0)θ̂
]

= g′(θ0)Var[θ̂]g′(θ0)
⊤ = g′(θ0)I

−1(θ)g′(θ0)
⊤.

Since the MLE are asymptotically normal, we have
√

n
{

g(θ̂) − g(θ0)
}

d→ Z, where Z is a

bivariate N
(

0, g′(θ0)I
−1(θ)g′(θ0)

⊤
)

random variable. Here, I(θ) is the information matrix

of θ̂ and g′(·) denotes the matrix of the first derivatives of g with respect to θ0. In obvious
notation, we have

Σg(θ) =

[

Var[Ω̂ij ] Cov(Ω̂ij, α̂iα̂j)

Cov(α̂iα̂j, Ω̂
ij) Var[α̂jα̂i]

]

,

where, up to first order,

Cov(Ω̂ij , α̂iα̂j) = αjCov(Ω̂ij, α̂i) + αiCov(Ω̂ij , α̂j), (8)

and

Var[α̂jα̂i] = α2
i Var[α̂j ] + α2

jVar[α̂i] + 2αiαjCov(α̂iα̂j).
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The elements of Σg(θ) can be estimated by replacing the parameters by their estimates and
by replacing the variances and covariances by the corresponding elements of the inverse
observed information matrix. We indicate the sample version of Σg(θ) by Σ̂g. Consequently,
the test concerning the null hypothesis given in (6) can be based on the Wald–type statistic

Wn(Y ) =
(

g(θ̂) − g(θ)
)⊤

Σ̂−1
g

(

g(θ̂) − g(θ)
)

. (9)

Under the null hypothesis, which implies that variables Yi and Yj are conditionally in-
dependent given the remaining ones, the statistic Wn(Y ) has an asymptotic chi-square
distribution with two degrees of freedom, denoted by χ2(2).

4. Statement and Background for the Alternative Proposal

The approach proposed in Section 3 can be applied to test the null hypothesis given in
(6) only when the regularity conditions of the parameter space hold under H0. Actually,
irregularities may arise with respect to the second statement of the testing problem given
in (6). The parameter space of H0: αiαj = 0 is the union of two manifolds given by
{αi = 0, αj ∈ R} and {αi ∈ R,αj = 0}. When their intersection provides the single point
{αi = 0, αj = 0}, the parameter space lacks its regularity.

Suppose that (6) needs to be tested and αi = αj = 0. Such situation affects the asymp-
totic behaviour of the Wald statistic since, under this specific circumstance, its asymptotic
null distribution fails to be a χ2(2) distribution; see Glonek (1993). Here, we modify the
procedure for testing conditional independence to deal with the case αi = αj = 0 and pro-
pose an alternative formulation of the test statistic. To this purpose, we initially introduce
the limiting distribution of (α̂iα̂j , Ω̂

ij)⊤. Recall that the asymptotic distribution of the vec-

tor (α̂i, α̂j , Ω̂
ij)⊤ is normal and therefore the statistic (α̂iα̂j , Ω̂

ij)⊤ is also asymptotically
normal (see Serfling, 1980, Section 3.3, pp. 122–125), that is,

(

α̂iα̂j

Ω̂ij

)

d−→ N2

[

(

0
0

)

,

(

Var[α̂iα̂j ] 0

0 Var[Ω̂ij]

)

]

.

The covariance matrix is diagonal since Equation (8) takes value zero when αi = αj = 0.
Hence, the test for a single edge inclusion/exclusion can be carried out by testing separately
the two hypotheses reported below.

The first one refers to the components of the α vector

Hα
0 : αi = αj = 0, (10)

and the test statistic is

Tα =
α̂iα̂j

√

V̂ar[α̂iα̂j ]
.

The second one considers the elements of Ω−1

HΩ−1

0 : Ωij = 0, (11)
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and the test statistic is

TΩ−1 =
Ω̂ij

√

V̂ar[Ω̂ij ]
.

When αi = αj = 0, it is possible, under mild conditions about f = αiαj, to prove that
Var[α̂iα̂j ] 6= 0; see Glonek (1993, Section 2, p. 752). Furthermore, as pointed out within the
general framework of Glonek (1993), one can check that Tα is asymptotically distributed
as (1/2)Z, where Z ∼ N(0, 1). Consequently, we have

2Tα = 2
α̂iα̂j

√

V̂ar[α̂iα̂j ]

d→ Z.

Instead, according to the standard theory, the test statistic TΩ−1 has an asymptotically
N(0, 1) distribution. Moreover the two test statistics are also asymptotically independent,

Tα

as
⊥⊥ TΩ−1 . Therefore, the overall significance level of the joint test is given by

υ1 = P [(Tα ∈ Rα) ∪ (TΩ−1 ∈ RΩ−1)] = 1 − P (Tα /∈ Rα) P (TΩ−1 /∈ RΩ−1)

= 1 − (1 − υα)(1 − υΩ−1),

where Rα and RΩ−1 are the rejection regions for Hα
0 and HΩ−1

0 , respectively, υα =
P(Tα ∈ Rα) and υΩ−1 = P(TΩ−1 ∈ RΩ−1).

To carry out the single edge selection, we consider the following procedure. We initially
test the null hypothesis given in (10) on each couples of vertices {i, j} of the graph G. If
the hypothesis αi = αj = 0 is rejected, we apply the approach proposed in Section 3 and
carry out test given in (6). Otherwise, if (10) is not rejected, the null hypothesis given in
(11) is tested. The overall significance level of the test is given by

υ2 = P [(Tα ∈ Rα ∩ Wn ∈ Rw) ∪ (Tα /∈ Rα ∩ TΩ−1 ∈ RΩ−1)]

= P (Tα ∈ Rα ∩ Wn ∈ Rw) + P (Tα /∈ Rα)P(TΩ−1 ∈ RΩ−1)

= P (Tα ∈ Rα)P(Wn ∈ Rw|Tα ∈ Rα) + P (Tα /∈ Rα)P(TΩ−1 ∈ RΩ−1) ,

where Wn is the Wald statistic Wn(Y ) used in Equation (9) and Rw is the rejection
region for Hw

0 . The conditional probability P (Wn ∈ Rw|Tα ∈ Rα) is unknown. However
numerical evidence reported in Section 5, shows that it is pretty close to P (Wn ∈ Rw) =
P

(

Wn > χ2(2, η)
)

where χ2(2, η) is the ηth quantile of a χ2(2, η) random variable.
Consequently, the overall significance level υ2 can be approximated as follows

υ2
∼= P(Tα ∈ Rα)P(Wn ∈ Rw) + P (Tα /∈ Rα)P(TΩ−1 ∈ RΩ−1) ∼= υα υw + (1 − υα) υΩ−1 ,

where υw = P(Wn ∈ Rw).

5. Simulation Study

Here, we explore the finite sample performance of the tests proposed in Sections 3 and
4 via Monte Carlo experiments. The study is divided in two parts and in each one we
investigate the properties of the corresponding tests. To this purpose, we carry out two
experiments organized as follows.
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We generate 10,000 random samples of size n = 100, 200 and 500 from each of two
three–dimensional ESN random variables with parameters

(1)Ω
−1 =(2)Ω

−1 =





2.0760 −0.7920 0
−0.7920 1.7424 0.6633

0 0.6633 1.2636



 ,

(1)α =





0
−3
3.5



 , (2)α =





0
−3
0



 , (1)ξ = (2)ξ =





0
0
0



 , and (1)τ = (2)τ = 0.4,

where the subscript on the left hand side indicates the experiment in which they are used.
Note that the parameters values are such that in both the experiments the conditional
independence relationship Y1 ⊥ Y3|Y2 holds, so that the corresponding graph is the one
shown in Figure 1, where the edge set is E = {(1, 2), (2, 3)}.
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Figure 2. Asymptotic distributions of Tα and T
Ω−1 .

In both parts of this study, the parameters estimates have been obtained using the
reparameterization described in Capitanio et al. (2003), whereas the observed information

matrix I(θ̂) has been evaluated numerically. The null hypothesis is always true for the
edge connecting vertices {1} and {3} so that the corresponding entries in Tables 1, 2 and
3 approximate the actual level. On the contrary, the null hypothesis is false for the edges
connecting vertices {1} and {2}, and {2} and {3} respectively. Hence, the corresponding
entries are to be interpreted as approximations to the power of the test.

In the first experiment, we compute the percentage of rejections of the null hypothesis
given in (6) on each edge, when the nominal level of the test is 0.10 and 0.05, respectively.
The results are displayed in Table 1. In this study, the Wald test seems to be slightly
conservative. However, when n increases, the actual level becomes closer to the nominal
one and the power is remarkably satisfactory; see Capitanio and Pacillo (2008).
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Table 1. Experiment 1: percentage of rejections of the null hypothesis given in Equation (6) for two nominal levels,
0.10 and 0.05.

Nominal level 0.10 0.05
Edges Edges

n {1, 2} {1, 3} {2, 3} {1, 2} {1, 3} {2, 3}
100 85.92% 2.87% 73.45% 77.01% 1.09% 64.28%
200 99.68% 3.85% 97.14% 99.41% 1.70% 95.97%
500 100.00% 5.30% 99.95% 100.00% 2.40% 99.94%

In the second experiment, we investigate the asymptotic behaviour of the testing proce-
dure proposed in Section 4. Figure 2 highlights, for the sample size n = 100, the accuracy
of the approximation to the distribution of the two test statistics, Tα and TΩ−1 , provided
by the asymptotic N(0, 1) distribution. The two graphs in this figure show that their lim-
iting distributions are very close to the normal one even for such a pretty small sample
size in the context of graphical models. Moreover, the two scatter plots of Figure 3 point
out that the independence assumption for Tα and TΩ−1 is indeed reasonable also in finite
sample.

−2 −1 0 1 2

−4

−2

0

2

4

Tα

T
Ω

−1

n = 200n = 200

−2 −1 0 1 2

−4

−2

0

2

4

Tα

T
Ω

−1

n = 500n = 500

Figure 3. Independence of the test statistics Tα and T
Ω−1

Table 2 shows the percentage of rejections of the null hypothesis Hα
0 : αi = αj = 0 and

HΩ−1

0 : Ωij = 0, on each edge, for the two nominal levels 0.10 and 0.05. The simulated level
is close the nominal one even for sample sizes as small as 200. Moreover, the power of the
test, as in the previous experiment, is definitely satisfactory.

Table 2. Experiment 2: percentage of rejections of the null hypothesis Hα

0
and HΩ

−1

0
for two nominal levels, 0.10

and 0.05.

Nominal level 0.10 0.05
Edges Edges

n {1, 2} {1, 3} {2, 3} {1, 2} {1, 3} {2, 3}
100 60.94% 6.15% 64.23% 47.63% 2.51% 51.86%
200 92.61% 8.02% 94.03% 86.03% 3.87% 89.76%
500 99.96% 9.12% 99.95% 99.90% 4.19% 99.92%
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Table 3 records the percentage of rejections, in experiment 2, when the complete pro-
cedure is implemented, that is, Hα

0 is initially tested, and then either (6) or (11) are
considered, according to the outcome of test given in (10). The overall nominal level of
the test is 0.10. The results provide simulated values for the actual significance level very
close to the nominal one and an appreciable power.

Table 3. Experiment 2: percentage of rejections of the null hypothesis in the complete procedure, for the nominal
level 0.10.

Nominal level 0.10
Edges

n {1, 2} {1, 3} {2, 3}
100 67% 5.76% 69.95%
200 94.05% 7.63% 95.13%
500 99.96% 8.74% 99.97%

Table 4 provides, for experiment 2, the probabilities of Wn > χ2(2, η) given Tα ∈ Rα.
The results show that it may be reasonable to approximate such probabilities with those
of a χ2(2) random variable in the evaluation of the overall significance level.

Table 4. Simulated probabilities of Wn > χ2(2, η) given Tα ∈ Rα.

n

Percentile 100 200 500

80% 0.230 0.21 0.170
90% 0.093 0.110 0.067
95% 0.044 0.062 0.027

97.5% 0.022 0.031 0.010

6. Conclusions

We have considered testing procedures for model selection in conditional independence
graphs when the variables have an ESN distribution. Under regularity conditions, a Wald-
type statistic, with an asymptotic chi-squared distribution, has been obtained. A simula-
tion study have shown that when the sample size increases, the actual level of the test is
reasonably close to the nominal one and the power is satisfactory. We have proposed a test
to handle the situation when the parameter space lacks the usual regularity conditions.
Results from numerical simulations have shown that this second test is also accurate and
powerful even for small sample sizes in the context of graphical models. The main advan-
tage of proposed procedures is the possibility to work with a model able to fit distributions
of data affected by skewness which, nevertheless, shares many nice properties of the normal
one. However, it would be interesting to investigate whether the proposed model selection
procedure can be generalized to a conditional independence graph when the variables fol-
low a multivariate extended skew-Student-t distribution. This class of distributions enjoys
the feature of closure under conditioning, as well as, the ability to model lighter tails than
the normal distribution. For a complete discussion of multivariate unified skew-elliptical
distributions, see, for example, Arellano-Valle and Genton (2010b).
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Appendix: Score Functions

The log-likelihood function for the reparameterization θ = (ξ,Λ, α, τ), with Λ = Ω−1, is

l(θ) =
n

∑

i=1

ℓi(θ) =
n

∑

i=1

{

−d

2
log(2π) +

1

2
log (|Λ|) − 1

2
(yi − ξ)⊤Λ(yi − ξ)

+ log (Φ(γ)) − log (Φ(τ))
}

,

where γ = τ(1+η⊤Λ−1η)1/2 +η⊤(yi−ξ) = τ(1+α⊤Ωα)1/2 +α⊤ω−1(yi−ξ) and η = ω−1α.
The score function for ξ is

Sξ(y) =
∂ (ℓ(θ))

∂ξ
=

∂

∂ξ

(

−1

2
(yi − ξ)⊤Λ(yi − ξ) + log (Φ(γ))

)

= Λ(yi − ξ) − η r(γ),

where r(γ) = φ(γ)/Φ(γ).
In order to obtain the score function for Λ, we compute the score vector associated with

the d(d + 1)/2 different parameters in Λ = Ω−1 (see, e.g. Magnus and Neudecker, 1999)
given by

∂ (ℓ(θ))

∂λ
=

1

2
vec(Λ)⊤ vec

(

Λ−1 − (yi − ξ)(yi − ξ)⊤ − φ(γ)

Φ(γ)
τ∗Λ

−1ηη⊤λ−1

)

.

Hence, the score function for Λ is

SΛ(y) =
1

2
D⊤vec

(

Λ−1 − (yi − ξ)(yi − ξ)⊤ − τ∗r(γ)Λ−1ηη⊤Λ−1
)

,

where D is the duplication matrix of dimension d2 × [d(d + 1)/2]. The score function for
α is

Sα(y) =
∂ (ℓ(θ))

∂α
=

∂

∂α
(log (Φ(γ))) =

φ(γ)

Φ(γ)

∂γ

∂α

= r(γ)
{

τ∗ ω−1Λ−1η + ω−1(yi − ξ)
}

,

where τ∗ = τ/(1 + η⊤Λ−1η)1/2. The score function for τ is

Sτ (y) =
∂ (ℓ(θ))

∂τ
=

∂

∂τ
(log (Φ(γ)) − log (φ(τ)))

= r(γ)(1 + η⊤Λ−1η)1/2 − φ(τ)

Φ(τ)
.
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