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Abstract

The multivariate skew-normal distribution and the elliptically contoured distributions
have been developed to model a sample of independent and identically distributed ran-
dom vectors. Recently, various proposals have been made to extend those distributions
to the setting of spatial random fields. We describe identifiability problems associated
with inference for those proposals and suggest simple remedies. We also describe some
properties of the resulting spatial random fields.
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1. Introduction

Flexible parametric models for multivariate non-Gaussian distributions have received sus-
tained attention in recent years. For instance, the multivariate skew-normal distribution
introduced by Azzalini and Dalla Valle (1996) allows skewness in the data to be modeled
and includes the multivariate normal distribution as a special case; see the book edited by
Genton (2004) for an overview, further details and extensions. Although this multivariate
distribution was originally aimed at modeling a sample of independent and identically
distributed random vectors, various proposals have recently emerged to use it to define
skew-Gaussian spatial random fields; see, e.g., Kim and Mallick (2003, 2004) and Kim et
al. (2004). The spatial situation corresponds to observing a single random vector from the
multivariate skew-normal distribution, the dimension of which represents the number of
spatial observations. We demonstrate in this article that a spatial random field with a
multivariate skew-normal joint distribution as defined by Azzalini and Dalla Valle (1996)
cannot be identified correctly with probability 1 by a single realization, even if the number
of spatial locations increases to infinity, and we propose a simple remedy.
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Specifically, consider a real-valued spatial random field {Y (s): s ∈ R
d, d ≥ 1}, with finite

second-order moments. For inferential purposes, e.g., such as likelihood-based procedures,
the random field Y (s) is often assumed to be Gaussian. Although this assumption brings
mathematical tractability to many spatial statistics problems, it is clearly unrealistic for
a large number of practical data analyses. Indeed, the distribution of spatial data often
exhibits skewness and heavier tails than the Gaussian distribution. We first consider a
skew-Gaussian random field given by

Y (s) = δ|Z1| + (1 − δ2)1/2Z2(s), (1)

where Z1 is a standard normal random variable, independent of the zero-mean and unit-
variance Gaussian random field Z2(s), and δ ∈ (−1, 1). The finite-dimensional distributions
of the spatial random field given in Equation (1) are multivariate skew-normal as defined
by Azzalini and Dalla Valle (1996). Kim and Mallick (2003, 2004) and Kim et al. (2004)
applied such a multivariate skew-normal distribution to some spatial datasets. Although
this is an appealing construction, we show in the next section that the random field given
in Equation (1) has an identifiability problem.

The spatial random field construction in Equation (1) can be viewed as the sum of a
Gaussian random field and a non-Gaussian random variable. This additive structure can be
replaced by a multiplicative one with a random scale factor, leading to so-called elliptically
contoured multivariate distributions; see Fang et al. (1990). Those distributions are useful
for modeling a sample of independent and identically distributed random vectors with
heavier or lighter tails than the Gaussian distribution. Ma (2009, 2010a) extended this
idea to the construction of elliptically contoured spatial random fields given by

Y (s) = (E[R2])
−1/2

RZ(s), (2)

where Z(s) is a zero-mean Gaussian random field with covariance function CZ(s1, s2),
with s1, s2 ∈ R

d, and R is a non-negative random variable with finite second moment and
independent of the process Z(s). Ma (2009, 2010a) showed that the spatial random field
defined by Equation (2) is also zero-mean with covariance function CY (s1, s2) = CZ(s1, s2)
and has elliptically contoured finite-dimensional distributions. Ma (2009) derived some
explicit finite sample distributions of the process given in Equation (2). Although these
distributions are useful for modeling multivariate non-Gaussian data when independent
and identically distributed multivariate samples are available, we show that they have the
same identifiability problem as for Equation (1) when only a single realization from the
model given in Equation (2) is available.

The paper is organized as follows. In Section 2, we describe the identifiability problems
associated with skew-Gaussian random fields and elliptically contoured random fields. We
propose simple remedies in Section 3 and describe some properties of the resulting random
fields. We conclude with a discussion in Section 4. The proofs of our results are provided
in the Appendix.

2. Identifiability Problems

2.1 Skew-Gaussian random fields

We show that the multivariate skew-normal distribution defined by Azzalini and Dalla
Valle (1996) is problematic when it is applied to a single realization of a spatial process.
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Recall that a sample Y1, . . . , Yn has a multivariate skew-normal distribution if

Yi = τi|Z0| + ρiZi, i = 1, . . . , n,

where Z0 and Z = (Z1, . . . , Zn)⊤ are independent, Z0 ∼N(0, 1) and Z ∼Nn(0,Ω), with Ω a
correlation matrix, τi ∈ R and ρi > 0. If we assume that the first moments and the second
moments of Yi are all equal, which is an assumption that is commonly made in spatial
statistics, we must have τi = τ and ρi = ρ, for i = 1, . . . , n. Thus, the model parameters
are τ , ρ and Ω.

Such an n-variate distribution has been applied to spatial data in an attempt to in-
corporate skewed marginal distributions; see, e.g., Kim and Mallick (2003, 2004). If n
observations Y (s1), . . . , Y (sn) have the multivariate skew-normal distribution as defined
by Azzalini and Dalla Valle (1996), it can be written as

Y (si) = τ |Z0| + ρZ(si), i = 1, . . . , n, (3)

where Y (si) denotes the process at location si, Z(si) is the latent variable at location si and
Z0 is a latent variable independent of the Z(si)’s. Marginally, Y (si) defined by Equation (3)
has a univariate skew-normal distribution (see Azzalini, 1985) with probability density
function given by

2√
τ2+ρ2

φ
(

y√
τ2+ρ2

)

Φ
(

τ
ρ
√

τ2+ρ2

)

, y ∈ R, (4)

where φ(·) and Φ(·) are the probability density and cumulative distribution functions of a
N(0, 1) distribution, respectively.

The finite-dimensional joint probability density function of Y = (Y (s1), . . . , Y (sn))⊤ is

fY (y) = 2

∫

R+

φn

(

y − τw1n; ρ2Ω
)

φ(w)dw

= 2φn(y; Ψ)Φ
(

τ(1 − τ21⊤n Ψ−11n)−1/21⊤n Ψ−1y
)

, (5)

where φn(y; Ω) denotes the probability density function of a Nn(0,Ω) distribution, 1n ∈ R
n

is a vector of ones, and Ψ = ρ2Ω+τ21n1⊤n . The probability density function in Equation (5)
is of Azzalini and Dalla Valle (1996)’s type and reduces to (4) when n = 1. From Equa-
tion (3), the covariance matrix of the vector Y is given by

Var[Y ] = Ψ − 2

π
τ21n1⊤n =

(

1 − 2

π

)

τ21n1⊤n + ρ2Ω,

which is positive definite for any τ and ρ.
The model given in Equation (3) is problematic for statistical inference. Firstly, the data

have no information about the variability of Z0 and no information about the skewness of
the marginal distribution. Secondly, there is an upper bound on the amount of allowable
skewness described by τ when Ψ = In, where In denotes the identity matrix. In that case,
ρ2Ω = In − τ21n1⊤n is positive definite if and only if |τ | < 1/

√
n. Therefore, if the number

n of observations is large, then the allowable skewness produced by τ in Equation (3),
when Ψ = In, must be small. Moreover, when Ψ = In, Y = δ|Z0| + (In − δδ⊤)1/2Z1,
where δ = τ1n, Z0 ∼ N(0, 1) and Z0 is independent of Z1 ∼ Nn(0, In). Thus, Y has the
classical Azzalini and Dalla Valle (1996) multivariate skew-normal distribution in that
case. If Ψ 6= In, then there is no restriction on τ .
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The next proposition serves as a formal justification of the estimation problem we just
discussed. Its proof is provided in the Appendix.

Proposition 2.1 Let Yi, for i = 1, 2, . . ., have equal means and equal variances and have
the previously described multivariate skew-normal distribution with parameters τ and ρ.
Then, for any two sets of parameters (τ1, ρ) and (τ2, ρ), the two associated probability
measures are equivalent on the paths of Yi, for i = 1, 2, . . ..

One direct implication of Proposition 2.1 is that the parameter τ is not consistently
estimable. If we let Pτ, ρ denote the probability measure on the σ-algebra F = σ(Yi, i =
1, 2, . . .), Proposition 2.1 implies that there do not exist estimators gn(Y1, . . . , Yn) such
that, for any τ ,

Pτ, ρ

(

lim
n→∞

gn(Y1, . . . , Yn) → τ
)

= 1. (6)

Otherwise, if there is a strongly consistent estimator gn, let

Ai =
{

ω ∈ Ω∗, lim
n→∞

gn(Y1, . . . , Yn) → τi

}

, i = 1, 2,

for some τ1 6= τ2. Then, by Equation (6), Pτ1, ρ(A1) = 1 and Pτ2, ρ(A2) = 1. Recall that two
probability measures Pi on a measurable space (Ω∗,F) are equivalent if for any A ∈ F ,
P2(A) = 1 implies P1(A) = 1 and viceversa. Because Pτ1, ρ and Pτ2, ρ are equivalent and
Pτ2, ρ(A2) = 1, we must have Pτ1, ρ(A2) = 1, which contradicts with Pτ1, ρ(A1) = 1 because
A1 and A2 are mutually exclusive. This contradiction implies that strongly consistent
estimators do not exist. Consequently, weakly consistent estimators do not exist either
because any weakly consistent estimator has a subsequence that is strongly consistent.

Proposition 2.1 implies that τ cannot be estimated well, even when the spatial sample
size is extremely large. We note that we did not assume that the spatial domain is a
bounded region. Therefore, the proposition holds regardless of the asymptotic framework:
fixed-domain, increasing domain or mixed asymptotics.

Finally, we note that if the spatial data are from the model given in Equation (3), then we
have no empirical evidence that the data have a non-Gaussian distribution. For example,
the histogram of the data {Y (si), i = 1, . . . , n} is just the histogram of normal data
{a+ ρZ(si), i = 1, . . . , n}, where a is the realization of |Z0| multiplied by τ . Similarly, the
sample quantiles of {Y (si), i = 1, . . . , n} are those of the normal data {Z(si), i = 1, . . . , n}
plus a. Thus, the skewness of the marginal distribution of the process Y (s) is not seen in
either the histogram or the normal probability plot. We provide an alternative model in
Section 3 that is appropriate for spatial data having skewed marginal distributions.

2.2 Elliptically contoured random fields

We now assume that the underlying spatial process Y (s) is defined by Equation (2). The
following proposition implies again an identifiability problem, namely that the distribution
of R cannot be identified correctly with probability 1.

Proposition 2.2 For i = 1, 2, let Pi be a probability measure under which R has a
distribution function Fi with variance 1, and it is independent of the process Z(s) defined
by Equation (2). Furthermore, assume that the process Z(s) has the same distribution
under both measures Pi, for i = 1, 2. If F1 and F2 are absolutely continuous with respect
to each other, then P1 and P2 are equivalent on the paths of {Y (s): s ∈ R

d}.
Next, we consider the special case where Z(s) in Equation (2) is Gaussian, stationary,
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with zero-mean and Matérn covariance function given by

C(h) =
σ2(αh)ν

2ν−1Γ(ν)
Kν(αh), h ≥ 0, (7)

where Kν is the modified Bessel function of the second kind of order ν > 0; see Abramowitz
and Stegun (1967, pp. 375–376). The probability distribution of the process Y (s) is deter-
mined by the probability distribution of R and the Gaussian distribution of the process
Z(s), which depends on the parameters θ = (σ2, α, ν). It is known that the parameters
σ2 and α cannot be estimated consistently when Z(s) is observed in a bounded region
of R

d for d = 1, 2 and 3; see Zhang (2004). The following proposition says that the non-
identifiability problem and the inconsistency persist when the process Y (s) defined by
Equation (2) is observed.

Proposition 2.3 For i = 1, 2, let Pi be a probability measure under which R has a
distribution function Fi and Z(s) defined by Equation (2) is stationary, Gaussian, zero-
mean and with the Matérn covariance function given in Equation (7) for the parameter
θi = (σ2

i , αi, ν). If F1 and F2 have the same support, σ2
1α

2ν
1 = σ2

2α
2ν
2 and D is a bounded

subset of R
d, for d = 1, 2, 3, then the two measures P1 and P2 are equivalent on the paths

of {Y (s): s ∈ D}.

One immediate corollary of Proposition 2.3 is that F1 and F2 cannot be distinguished
correctly with probability 1 if Y (s) is observed in a bounded region. Neither can the
parameters σ2 and α be estimated consistently.

3. Remedies

3.1 Skew-Gaussian random fields

The identifiability problem of the spatial skew-Gaussian random field defined by Equa-
tion (1) can be removed by considering the following modification proposed by Zhang and
El-Shaarawi (2010):

Y (s) = δ|Z1(s)| + (1 − δ2)1/2Z2(s), (8)

where Z1(s) and Z2(s) are zero-mean unit-variance Gaussian random fields, independent
of each other, with correlation functions ρZ1

(s1, s2) and ρZ2
(s1, s2), respectively, and δ ∈

(−1, 1). The resulting spatial random field Y (s) has mean E[Y (s)] = δ(2/π)1/2, variance
Var[Y (s)] = 1 − (2/π)δ2, and covariance function CY (s1, s2) given by

2

π
δ2

[

(

1 − ρZ1
(s1, s2)

2
)1/2

+ ρZ1
(s1, s2) arcsin (ρZ1

(s1, s2)) − 1
]

+ (1 − δ2)ρZ2
(s1, s2).

The marginal distribution of Y (s) is univariate skew-normal according to the definition
of Azzalini (1985), that is, Y (s) has probability density function 2φ(y)Φ(αy), for y ∈ R,
with α = δ/(1 − δ2)1/2 ∈ R. The finite-dimensional joint probability density function of

Y = (Y (s1), . . . , Y (sn))⊤ is

fY (y) =

∫

R
n

+

φn

(

y − δw; (1 − δ2)ΩZ2

)

fW (w)dw, (9)
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where the correlation matrices ΩZ1
and ΩZ2

are constructed from ρZ1
(s1, s2) and

ρZ2
(s1, s2), respectively. Here W = |Z1|, with Z1 ∼ Nn(0,ΩZ1

), an n-dimensional mul-
tivariate normal distribution. However, Equation (9) is difficult to write out explicitly.
For example, when n = 2, the corresponding joint cumulative distribution function of
W = (W1,W2)

⊤ is

FW (w1, w2) = Φ2(w1, w2; ΩZ1
)−Φ2(w1,−w2; ΩZ1

)−Φ2(−w1, w2; ΩZ1
)+Φ2(−w1,−w2; ΩZ1

),

where Φn(y; ΩZ1
) denotes the cumulative distribution function from an n-dimensional mul-

tivariate normal distribution, Nn(0,ΩZ1
).

In the particular case where ΩZ1
= In, the finite-dimensional joint distribution of Y =

(Y (s1), . . . , Y (sn))⊤ is of a specific unified skew-normal type defined by Arellano-Valle and
Azzalini (2006), also called fundamental skew-normal distribution by Arellano-Valle and
Genton (2005), with probability density function given by

2nφn(y; Ω̄)Φn

(

δΩ̄−1y; In − δ2Ω̄−1
)

, y ∈ R
n, (10)

and Ω̄ = δ2In +(1− δ2)ΩZ2
. If ΩZ2

= In, then Ω̄ = In and the probability density function
given in (10) becomes that of a canonical fundamental skew-normal distribution.

The expression (10) is the likelihood function associated with a realization of size n from
the skew-Gaussian random field given in Equation (8) when Z1(s) is uncorrelated. The
cumulative distribution function Φn can be evaluated numerically with methods described
and implemented by Genz and Bretz (2009). The EM algorithm can also be used to
perform inference on the skew-Gaussian random field given in Equation (8) as detailed in
Zhang and El-Shaarawi (2010). Notice that the marginal distribution of the model given
in Equation (8) has a variance less than one. Hence, to accommodate an unknown variance
that may be greater than one, the model given in Equation (8) can be multiplied by a
constant, which is equivalent to employing the model

Y (s) = σ1|Z1(s)| + σ2Z2(s),

where σ1 ∈ R and σ2 > 0. Zhang and El-Shaarawi (2010) applied this model to a spatial
data set with skewed marginal distributions.

The unified skew-normal distribution has another stochastic representation based on
conditional distributions. Allard and Naveau (2007) used that approach to define spatial
skew-normal random fields. Gualtierotti (2005) used a similar idea to define skew-normal
processes.

3.2 Elliptically contoured random fields

The identifiability problem of the elliptically contoured random field defined by Equa-
tion (2) can be removed by considering the modification

Y (s) =
(

E
[

(R(s) − E [R(s)])2
])−1/2

[R(s) − E[R(s)]]Z(s), (11)

where Z(s) is a zero-mean Gaussian random field with covariance function CZ(s1, s2), R(s)
is a non-negative random field with finite second moment and correlation ρR(s1, s2), and
Z(s) is independent of R(s). The resulting spatial random field Y (s) has mean E[Y (s)] = 0,
variance Var[Y (s)] = CZ(s, s), and covariance function

CY (s1, s2) = ρR(s1, s2)CZ(s1, s2).
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For example, R(s) could be a χ2 random field; see Ma (2010b). The marginal distri-
bution of Y (s) is elliptically contoured but the finite-dimensional joint distribution of

Y = (Y (s1), . . . , Y (sn))⊤ does not seem to have a known form. However, parameters can
be estimated by the EM algorithm, similar to that proposed by Zhang and El-Shaarawi
(2010).

4. Conclusions

We have discussed identifiability issues associated with skew-Gaussian spatial random fields
based on the Azzalini and Dalla Valle (1996) multivariate skew-normal distribution and
with elliptically contoured random fields. We have also proposed remedies that avoid the
unidentifiability. Those ideas can then be combined to define skew-elliptical random fields,
that is, by making use of both Equations (8) and (11). A particular case is then skew-t
random fields that allow both skewness and heavy tails in the distribution of the spatial
data to be modeled; see Azzalini and Genton (2008) and references therein for details
about skew-t distributions. Log-normal spatial random fields have also been proposed in
the literature and can be extended to log-skew-Gaussian spatial random fields or, more
generally, to log-skew-elliptical spatial random fields by means of the log-skew-elliptical
multivariate distributions described by Marchenko and Genton (2010).
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Appendix: Proofs

Proof [Proposition 2.1] Let Pi be the probability measure corresponding to the param-
eters τi, ρ, for i = 1, 2. Let A ∈ σ(Yi, i = 1, 2, . . .), the σ-algebra generated by Y1, Y2, . . ..
Suppose P1(A) = 0. We show P2(A) = 0. Consequently, P2 is absolutely continuous with
respect to P1. Because

P1(A) = E1

[

E1[1A|Z0]
]

= 0,

we must have E1[1A|Z0] = 0 almost surely with respect to P1. Under the measure Pi,
given Z0, Y1, Y2, . . ., is a Gaussian sequence with mean τi|Z0| and covariance function
Cov(Zj , Zk). Therefore, for any z ∈ R

E2[1A|Z0 = z] = E1[1A|Z0 = τ2z/τ1]. (A.1)

If we define ei(z) = Ei[1A|Z0 = z], Equation (A.1) translates into e2(z) = e1(zτ2/τ1).
Because E1[1A|Z0] = 0 almost surely with respect to P1, we have e1(z) = E1[1A|Z0 = z] = 0
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and hence e2(z) = 0, for all z. Consequently,

P2(A) = E2

[

E2[1A|Z0]
]

=
1√
2π

∫ ∞

−∞
e2(z) exp(−z2/2)dz = 0.

Similarly, we can show that P2(A) = 0 implies P1(A) = 0. This concludes the proof. �

Proof [Proposition 2.2] Let A be a Borel set in R
d such that P1(Y ∈ A) = 0, where Y

denotes the spatial process {Y (s): s ∈ R
d}. We show P2(Y ∈ A) = 0. Write

P1(Y ∈ A) =

∫

P1(Y ∈ A|R = x)dF1(x) =

∫

P1(Y ∈ A|R = x)f(x)dF2(x), (A.2)

where f(x) = dF1(x)/dF2(x) is the Radon-Nikodym derivative of dF1 with respect to dF2.
Therefore, the set

{x: P1(Y ∈ A|R = x)f(x) = 0}

has measure 1 with respect to dF2. Because dF2 is absolutely continuous with respect to
dF1, f(x) > 0 almost surely with respect to dF2. Consequently,

{x: P1(Y ∈ A|R = x) = 0} = {x : P1(Y ∈ A|R = x)f(x) = 0},

has measure 1 with respect to dF2. Because of the independence of R and Z(s), and since
the distributions of the process Z(s) under the two measures P1 and P2 are identical, we
have, for any x,

P2(Y ∈ A|R = x) = P1(Y ∈ A|R = x).

Hence, the set {x: P2(Y ∈ A|R = x) = 0} has measure 1 with respect to dF2. It follows
immediately that

P2(Y ∈ A) =

∫

P2(Y ∈ A|R = x)dF2(x) = 0.

Then, P2 is absolutely continuous with respect to P1. Similarly, we can show that P1 is
absolutely continuous with respect to P2. The proof is complete. �

Proof [Proposition 2.3] Let A be a Borel set in R
d such that P1(Y ∈ A) = 0, where Y

denotes the spatial process {Y (s) : s ∈ D}. We show P2(Y ∈ A) = 0. We have shown in
the proof of Proposition 2.2 that the set {x: P1(Y ∈ A|R = x) = 0} has measure 1 with
respect to dF2.

Because of the independence of R and Z(s), P1(Y ∈ A|R = x) = P1(xZ ∈ A). Hence, the
set {P1(xZ ∈ A) = 0} has measure 1 with respect to dF2. In addition, since σ2

1α
2ν
1 = σ2

2α
2ν
2 ,

P1 and P2 are equivalent on the paths of Z(s), for s ∈ D; see Zhang (2004). It follows that
for any x, P1(Z ∈ xA) = 0 implies P2(Z ∈ xA) = 0. Thus, the set {P2(xZ ∈ A) = 0} has
measure 1 and therefore

P2(Y ∈ A) =

∫

P2(Y ∈ A|R = x)dF2(x) =

∫

P2(xZ ∈ A)dF2(x) = 0.

We have shown that P2 is absolutely continuous with respect to P1. Similarly, we can show
that P1 is absolutely continuous with respect to P2. This concludes the proof. �



Chilean Journal of Statistics 179

References

Abramowitz, M., Stegun, I., (eds.) 1967. Handbook of Mathematical Functions. U.S. Gov-
ernment Printing Office, Washington, D.C.

Allard, D., Naveau, P., 2007. A new spatial skew-normal random field model. Communi-
cations in Statistics - Theory and Methods, 36, 1821–1834.

Arellano-Valle, R.B., Azzalini, A., 2006. On the unification of families of skew-normal
distributions. Scandinavian Journal of Statistics, 33, 561–574.

Arellano-Valle, R.B., Genton, M.G., 2005. On fundamental skew distributions. Journal of
Multivariate Analysis, 96, 93–116.

Azzalini, A., 1985. A class of distributions which includes the normal ones. Scandinavian
Journal of Statistics, 12, 171–178.

Azzalini, A., Dalla Valle, A., 1996. The multivariate skew-normal distribution. Biometrika,
83, 715–726.

Azzalini, A., Genton, M.G., 2008. Robust likelihood methods based on the skew-t and
related distributions. International Statistical Review, 76, 106–129.

Fang, K.-T., Kotz, S., Ng, K.-W., 1990. Symmetric Multivariate and Related Distributions.
Chapman and Hall, London.

Genton, M.G. (ed.), 2004. Skew-Elliptical Distributions and Their Applications: A Journey
Beyond Normality. Edited Volume. Chapman and Hall/CRC, Boca Raton, FL.

Genz, A., Bretz, F., 2009. Computation of Multivariate Normal and t Probabilities.
Springer. New York.

Gualtierotti, A.F., 2005. Skew-normal processes as models for random signals corrupted by
Gaussian noise. International Journal of Pure and Applied Mathematics, 20, 109–140.

Kim, H., Ha, E., Mallick, B.K., 2004. Spatial prediction of rainfall using skew-normal
processes. In Genton, M.G. (ed.), Skew-Elliptical Distributions and Their Applications:
A Journey Beyond Normality. Chapman and Hall/CRC, Boca Raton, FL, pp. 279–289.

Kim, H., Mallick, B.K., 2003. A note on Bayesian spatial prediction using the elliptical
distribution. Statistics and Probability Letters, 64, 271–276.

Kim, H., Mallick, B.K., 2004. A Bayesian prediction using the skew-Gaussian processes.
Journal of Statistical Planning and Inference, 120, 85–101.

Ma, C., 2009. Construction of non-Gaussian random fields with any given correlation
structure. Journal of Statistical Planning and Inference, 139, 780–787.

Ma, C., 2010a. Elliptically contoured random fields in space and time. Journal of Physics
A: Mathematical and Theoretical, 43, 165–209.

Ma, C., 2010b. χ2 random fields in space and time. IEEE Transactions on Signal Process-
ing, 58, 378–383.

Marchenko, Y.V., Genton, M.G., 2010. Multivariate log-skew-elliptical distributions with
applications to precipitation data. Environmetrics, 21, 318–340.

Zhang, H., 2004. Inconsistent estimation and asymptotically equivalent interpolations in
model-based geostatistics. Journal of the American Statistical Association, 99, 250–261.

Zhang, H., El-Shaarawi, A., 2010. On spatial skew-Gaussian processes and applications.
Environmetrics, 21, 33–47.


