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(Received: 10 June 2011 · Accepted in final form: 23 September 2011)

Abstract

In this paper, we motivate the use of linear mixed models and diagnostic analysis in
practical actuarial problems. Linear mixed models are an alternative to traditional cred-
ibility models. Frees et al. (1999) showed that some mixed models are equivalent to some
widely used credibility models. The main advantage of linear mixed models is the use of
diagnostic methods. These methods may help to improve the model choice and to iden-
tify outliers or influential subjects which deserve better attention by the insurer. As an
application example, the data set in Hachemeister (1975) is modeled by a linear mixed
model. We can conclude that this approach is superior to the traditional credibility one
since the former is more flexible and allows the use of diagnostic methods.
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· Diagnostics · Local influence · Residual analysis.

Mathematics Subject Classification: Primary 62J05 · Secondary 62J20.

1. Introduction

One of the main concerns in actuarial science is to predict the future behavior for the
aggregate amount of claims of a certain contract based on its past experience. By accurately
predicting the severity of the claims, the insurer is able to provide a fairer and thus more
competitive premium.

Statistical analysis in actuarial science generally belongs to the class of repeated measures
studies, where each subject may be observed more than once. By subject we mean each
element of the observed set which we want to investigate. Workers of a company, class of
employees, and different states are possible examples of subjects in actuarial science. To
model actuarial data, a large variety of statistical models can be used, but it is usually
difficult to choose a model due to the data structure, in which within-subject correlation
is often seen. Correlation misspecification may lead to erroneous analysis. In some cases
this error is very severe. A clear example may be seen in Demidenko (2004, pp. 2-3) and
a similar artificial situation is reproduced in Figure 1, that shows the relation between
the number of claims and the number of policy holders of an insurer for nine different
regions within a country. In each region the two variables are measured once a year on the
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same day for three consecutive years. In Figure 1(a) we do not consider the within-region
(within-subject) correlation. The dashed line is a simple linear regression and suggests that
the more the policy holders, the less claims occur. In Figure 1(b) we joined the observations
for each region by a solid line. It is clear now that the number of claims increases with the
number of policy holders.
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Figure 1. (a) Not considering the within-subject correlation, (b) considering the within-subject correlation.

It is necessary to take into consideration that each region may have a particular behavior
which should be modeled, but only this is usually not enough. Techniques summarized
under the name of diagnostic procedures may help to identify issues of concern, such as high
influential observations, which may distort the analysis. For linear homoskedastic models,
a well known diagnostic procedure is the residual plot. For linear mixed models better
types of residuals are defined. Besides residual techniques, which are useful, there is a less
used class of diagnostic procedures, which includes case deletion and measuring changes in
the likelihood of the adjusted model under minor perturbations. Several important issues
may not be noticed without the aid of these last diagnostics methods.

For introductory information regarding regression models and respective diagnostic anal-
ysis; see Cook and Weisberg (1982) or Drapper and Smith (1998). For a comprehensive
introduction to linear mixed models, see Verbeke and Molenberghs (2000), McCulloch
and Searle (2001) and Demidenko (2004). Diagnostic analysis of linear mixed models were
presented and discussed in Beckman et al. (1987), Christensen and Pearson (1992), Hilden-
Minton (1995), Lesaffre and Verbeke (1998), Banerjee and Frees (1997), Tan et al. (2001),
Fung et al. (2002), Demidenko (2004), Demidenko and Stukel (2005), Zewotir and Galpin
(2005), Gumedze et al. (2010) and Nobre and Singer (2007, 2011).

The seminal work of Frees et al. (1999) showed some similarities and equivalences be-
tween mixed models and some well known credibility models. Applications to data sets in
actuarial context may be seen in Antonio and Beirlant (2006). Our contribution is to show
how to use diagnostic methods for linear mixed models applied to actuarial science. We
illustrate how to identify outliers and influential observations and subjects. We also show
how to use diagnostics as a tool for model selection. These methods are very important
and usually overlooked by most of the actuaries.

This paper is divided as follows. In Section 2 we present a motivational example using
a well known data set. In Section 3 we briefly present the linear mixed models. Section 4
contains a short introduction to the diagnostic methods used in the example. In Section
5 we present an application based on the motivational example. Section 6 shows some
conclusions. Finally, in an Appendix, we present mathematical details of some formulas
and expressions used in the text.
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2. Motivational Example

For a practical example, consider the Hachemeister (1975) data on private passenger bodily
injury insurance. The data were collected from five states (subjects) in the US, through
twelve trimesters between July 1970 and June 1973, and show the mean claim amount and
the total number of claims in each trimester. The data may be found in the actuar package
(see Dutang et al., 2008) from R (R Development Core Team, 2009) and are partially shown
in Table 1.

Table 1. Hachemeister’s data.
Trimester State Mean claim amount Number of claims

1 1 1738 7861
1 2 1364 1622
1 3 1759 1147
1 4 1223 407
1 5 1456 2902
2 1 1642 9251
...

...
...

...
12 1 2517 9077
12 2 1471 1861
12 3 2059 1121
12 4 1306 342
12 5 1690 3425

In Figure 2 we plot the individual profiles for each state and the mean profile. It suggests
that the claims have a different behavior along the trimesters for each state. One may
notice that the claims from state 1 are greater than those from other states for almost
every observation, and the claims from states 2 and 3 seem to grow more slowly than
those from state 1. If the insurer wants to accurately predict the severity, the subjects’
individual behavior must also be modeled. Traditionally this is possible with the aid of
credibility models; see, e.g., Bühlmann (1967), Hachemeister (1975) and Dannenburg et
al. (1996). These models assign weights, known as credibility factors, to a pair of different
estimates of severity.
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Figure 2. Individual profiles and mean profile for Hachemeister (1975) data.

Credibility models may be functionally defined as

ZB + (1− Z)C,
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where A represents the severity in a given state, Z is a credibility factor restricted to [0, 1],
B is a priori estimate of the expected severity for the same estate and C is a posteriori
estimate also of the expected severity. Considering a particular state, B may be equal to
the sample mean of the severity of its observations and C equal to the overall sample mean
of the data in the same period.

Frees et al. (1999) showed that it is possible to find linear mixed models equivalent to
some known credibility models, such as Bühlmann (1967) and Hachemeister (1975) models.
Information about linear mixed models is provided in the next section.

3. Linear Mixed Models

Linear mixed models are a popular alternative to analyze repeated measures. Such models
may be functionally expressed as

yi = Xiβ + Zibi + ei, i = 1, . . . , k, (1)

where yi = (y1, y2, . . . , yni
)> is a ni×1 vector of the observed values of the response variable

for the ith subject, Xi is a ni × p known full rank matrix, β is a p× 1 vector of unknown
parameters, also known as fixed effects, which are used to model E[yi], Zi is a ni×q known
full rank matrix, bi is a q × 1 vector of latent variables, also known as random effects,
used to model the within-subject correlation structure, and ei = (ei1, ei2, . . . , eini

)> is the
ni × 1 random vector of (within-subject) measurement errors. It is usually also assumed
that ei

ind∼ Nni
(0, σ2Ini

), where Ini
denotes the identity matrix of order ni for i = 1, . . . , k,

bi
iid∼ Nq(0, σ2G) for i = 1, . . . , k in which G is a q × q positive definite matrix, and

ei and bj are independent ∀ i, j. Under these assumption, this is called a homoskedastic
conditional independence model. It is possible to rewrite model given in Equation (1) in a
more concise way as

y = Xβ + Zb + e, (2)

where y = (y>1 , . . . ,y>k )>, X = (X>
1 , . . . ,X>

k )>, Z =
⊕k

i=1 Zi, b = (b>1 , . . . ,b>k )> and
e = (e>1 , . . . , e>k )>, with

⊕
representing the direct sum.

It can be shown that, conditional on known covariance parameters of the model, that is
conditional to the elements of G and σ2, the best linear unbiased estimator (BLUE) for
β and the best linear unbiased predictor (BLUP) for b are given by

β̂ = (X>V−1X)−1X>V−1y, (3)

and

b̂ = DZ>V−1(y −Xβ̂),

respectively, where D = σ2G, V = σ2(In + ZGZ>), with n =
∑k

i=i ni; see Hachemeister
(1975).

Maximum likelihood (ML) and restricted maximum likelihood (RML) methods can be
used to estimate the variance components of the model. The latter, proposed in Patterson
and Thompson (1971), is usually chosen since it often generates less biased estimators
related to the variance structure. When estimates for V are used in Equation (3) to
obtain β̂ and b̂, they are called empirical BLUE (EBLUE) and empirical BLUP (EBLUP),
respectively. Usually the estimation of the parameters involves the use of iterative methods
for maximizing the likelihood function.
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Linear mixed models are not the only way to deal with repeated measures studies. Other
popular alternatives are the generalized estimation equations (see Liang and Zeger, 1986;
Diggle et al., 2002) and multivariate models as seen in Johnson and Whichern (1982)
and Vonesh and Chinchilli (1997). But usually these alternatives are more restrictive than
linear mixed models, and they only model the marginal expected value of the response
variable.

4. Diagnostic Methods

Diagnostic methods comprehend techniques whose purpose is to investigate the plausi-
bility and robustness of the assumptions made when choosing a model. It is possible to
divide the techniques shown here in two classes: residual analysis, which investigates the
assumptions on the distribution of errors and presence of outliers; and sensitivity analysis,
which analyzes the sensitivity of a statistical model when subject to minor perturbations.
Usually, it would be far more difficult, or even impossible, to observe these aspects in a
traditional credibility model.

In the context of traditional linear models (homoskedastic and independent), examples
of diagnostic methods may be seen in Hoaglin and Welsch (1978), Belsley et al. (1980)
andCook and Weisberg (1982). Linear mixed models, extensions and generalizations are
briefly discussed here and may be seen in Beckman et al. (1987), Christensen and Pearson
(1992), Hilden-Minton (1995), Lesaffre and Verbeke (1998), Banerjee and Frees (1997),
Tan et al. (2001), Fung et al. (2002), Demidenko (2004), Demidenko and Stukel (2005),
Zewotir and Galpin (2005), Nobre and Singer (2007, 2011) and Gumedze et al. (2010).

4.1 Residual analysis

In the linear mixed models class three different kinds of residuals may be considered. The
conditional residuals: ê = y − Xβ̂ − Zb̂, the EBLUP: Zb̂, and the marginal residuals:
ξ̂ = y−Xβ̂. These predict respectively conditional error e = y−E[y|b] = y−Xβ−Zb,
random effects Zb = E[y|b]− E[y] and the marginal error ξ = y − E[y] = y −Xβ. Each
of the mentioned residuals is useful to verify some assumption of the model, as seen in
Nobre and Singer (2007) and briefly presented next.

4.1.1 Conditional residuals

To identify cases with a possible high influence on σ̂2 in linear mixed models, Nobre and
Singer (2007) suggested the standardization for the conditional residual given by

ê∗i =
êi

σ
√

qii
,

where qii represents the ith element in the main diagonal of Q defined as

Q = σ2(V−1 −V−1X(X>V−1X)−1X>V−1).

Under normality assumptions on e, this standardization identifies outlier observations and
subjects; see Nobre and Singer (2007). To do so, the same authors consider the quadratic
form MI = y>QUI(U>

I QUI)−1U>
I Qy, where UI = (uij)(n×k) = (Ui1 , . . . ,Uik

), with Ui

representing the ith column of the identity matrix of order n. To identify an outlier subject
let I be the index set of the subject observations and evaluate MI for this subset.
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Table 2. Diagnostic techniques involving residuals.

Diagnostic Graph
Linearity of fixed effects ξ̂ vs. explanatory variables (fitted values)
Presence of outliers ê vs. observation index
Homoskedasticity of the conditional errors ê vs. fitted values
Normality of the conditional errors QQ plot for the least confounded residuals
Presence of outlier subjects Mahalanobis distance vs. observation index
Normality of the fixed effects weighted QQ plot for b̂i

4.1.2 Confounded residuals

It can be shown that, under the assumptions made by model given in Equation (1), we
have

ê = RQe + RQZb and Zb̂ = ZGZ>QZb + ZGZ>Qe,

where R = σ2In. These identities tell us that ê and Zb̂ depend on b and e and thus
are called confounded residuals; see Hilden-Minton (1995). To verify the normality of the
conditional errors using only ê may be misleading because of the presence of b in the
above formulas. Hilden-Minton (1995) defined the confounding fraction as the proportion
of variability in ê due to the presence of b. The same work suggested the use of a linear
transformation L such that L>ê has the least confounding fraction possible. The suggested
transformation also generates uncorrelated homoskedastic residuals. It is more appropri-
ated to analyze the assumption of normality in the conditional errors using L>ê instead
of ê as suggested by Hilden-Minton (1995) and verified by simulation in Nobre and Singer
(2007).

4.1.3 EBLUP

The EBLUP is useful to identify outlier subjects given that it represents the distance
between the population mean value and the value predicted for the ith subject. A way of
using the EBLUP to search for outliers subjects is to use the Mahalanobis distance (see
Waternaux et al., 1989), ζi = b̂>i (V̂ar[b̂i − bi])−1b̂i. It is also possible to use the EBLUP
to verify the random effects normality assumption. For more information; see Nobre and
Singer (2007). In Table 2 we summarize diagnostic techniques involving residuals discussed
in Nobre and Singer (2007).

4.2 Sensitivity analysis

Influence diagnostic techniques are used to detect observations that may produce excessive
influence in the parameters estimates. There are two main approaches of such techniques:
global influence, which is usually based on case deletion; and local influence, which intro-
duces small perturbations in different components of the model.

In normal homoskedastic linear regression, examples of sensitivity measures are the
Cook distance, DFFITS and the COVRATIO; see Cook (1977), Belsley et al. (1980) and
Chatterjee and Hadi (1986, 1988).

4.2.1 Global influence

A simple way to verify the influence of a group of observations in the parameters es-
timates is to remove the group and observe the changes in the estimation. The group
of observations are influential if the changes are considerably large. However, in LMM,
it may not be practical to reestimate the parameters every time a set of observations is
removed. To avoid doing so, Hilden-Minton (1995) presented an update formula for the
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BLUE and BLUP. Let I = {i1, . . . , ik} be the index set of the removed observations and
U I = (U i1 , . . . , U ik

). Hilden-Minton (1995) showed that

β̂ − β̂(I) = (X>MX)−1X>MU Iφ̂(I) and b̂− b̂(I) = DZ>QU Iφ̂(I),

where the subscript (I) indicates that the estimates were obtained without the observations
indexed by I and φ̂(I) = (U>

I QU I)−1U>
I Qy.

A suggestion to measure the influence on the parameters estimates in linear mixed
models is to use the Cook distance (see Cook, 1977) given by

DI =
(β − β̂(I))>(X>V −1X)−1(β − β̂(I))

c
=

(y − ŷ(I))>V −1(y − ŷ(I))
c

,

such as seen in Christensen and Pearson (1992) and Banerjee and Frees (1997), where c
is a scale factor. However, it was pointed out by Tan et al. (2001) that DI is not always
able to measure the influence on the estimation properly in the mixed models class. The
same authors suggest the use of a measure similar to the Cook distance, but conditional
to BLUP (b̂). The conditional Cook distance is defined for the ith observation as

Dcond
i =

k∑

j=1

P>
j(i)Var[y|b]−1Pj(i)

(n− 1)k + p
, i = 1, . . . , k,

where Pj(i) = ŷj−ŷj(i) = (Xjβ̂+Zjb̂j)−(Xjβ̂(i)+Zjb̂j(i)). The same authors decomposed
Dcond

i = Dcond
i1 + Dcond

i2 + Dcond
i3 and commented the interpretation of each part of the

decomposition. Dcond
i1 is related to the influence in the fixed effects, Dcond

i2 is related to the
influence on the predicted values and Dcond

i3 to the covariance of the BLUE and the BLUP,
which should be close to zero if the model is valid.

When all the observations from a subject are deleted, it is not possible to obtain the
BLUP for the random effects of that subject, making it impossible to obtain Dcond

I as
stated above. For this purpose, Nobre (2004) suggested using Dcond

I = (ni)−1
∑

j∈I Dcond
j ,

where I indexes the observation from a subject, as a way to measure the influence of a
subject on the parameters estimates when its observations are deleted.

There are natural extensions of leverage measures for linear mixed models. These can
be seen in Banerjee and Frees (1997), Fung et al. (2002), Demidenko (2004) and Nobre
(2004). However, they only provide information about leverage regarding fitted marginal
values. This has two main limitations as commented in Nobre and Singer (2011). First
we may be interested in detecting high-leverage within-subject observations. Second, in
some cases the presence of high-leverage within-subject observations does not imply that
the subject itself is detected as a high-leverage subject. Suggestions of how to evaluate
the within-subject leverage may be seen in Demidenko and Stukel (2005) and Nobre and
Singer (2011).

4.2.2 Local influence

The concept of local influence was proposed by Cook (1986) and consists in analyzing the
sensitivity of a statistical model when subjected to small perturbations. It is suggested
to use an influence measure called the likelihood displacement. Considering the model
described in Equation (2), up to a constant, the log-likelihood function may be written as

L(θ) =
k∑

i=1

Li(θ) = −1
2

k∑

i=1

{
ln |Vi|+ (yi −Xiβ)>V−1(yi −Xiβ)

}
.
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The likelihood displacement is defined as LD(ω) = 2{L(θ̂) − L(θ̂ω)}, where ω is a l × 1
perturbations vector in an open set Ω ∈ Rl; θ is the parameters vector of the model,
including covariance parameters; θ̂ is the ML estimate of θ and θ̂ω is the ML estimate when
the model is perturbed. It is necessary to assume that ω0 exists such that L(θ̂) = L(θ̂ω0)
and such that LD has its first and second derivatives in a neighborhood of (θ̂

>
, ω>0 )>. Cook

(1986) considered a Rl+1 surface formed by the influence function α(ω) = (ω>, LD(θ̂ω))>
and the normal curvature in the vicinity of ω0 in the direction of a vector d, denoted by
Cd. In this case, the normal curvature is given by

Cd = 2|d>H>L̈−1Hd|,

where L̈ = ∂2L(θ)/∂θ>∂θ and H = ∂2L(θω)/∂θ>∂ω both evaluated at θ = θ̂; see Cook
(1986). It can be shown that Cd always lies between the minimum and maximum eigen-
value of the matrix F̈ = −H>L̈−1H, so dmax, the eigenvector associated to the highest
eigenvalue, gives information about the direction that exhibits more sensitivity of LD(θ)
in a ω0 neighborhood. Beckman et al. (1987) made some comments on the effectiveness of
the local influence approach. Lesaffre and Verbeke (1998) and Nobre (2004) showed some
examples of perturbation schemes in the linear mixed models context.

Perturbation scheme for the covariance matrix of the conditional errors. To ver-
ify the sensitivity of the model to the conditional homoskedasticity assumption, pertur-
bations are inserted in the covariance matrix of the conditional errors. This can be done
by considering Var[ε] = σ2Λ(ω), where Λ(ω) = diag(ω), with ω = (ω1, . . . , ωN )>, the
perturbation vector. For this case we have ω0 = 1N . The log-likelihood function in this
case is given by

L = L(θω) = −1
2

{
ln |V (ω)|+ (y −Xβ)>V (ω)−1(y −Xβ)

}
,

where V ω = ZDZ> + σ2Λ(ω).

Perturbation scheme for the response. For the local influence approach, Beckman et
al. (1987) proposed the perturbation scheme

y(ω) = y + sω,

where s represents a scale factor and ω is a n × 1 perturbation vector. For this scheme
we have ω0 = 0, with 0 representing the n × 1 null vector. In this case, the perturbed
log-likelihood function is proportional to

L(θω) = −1
2
(y + sω −Xθ)>V −1(y + sω −Xβ).

Perturbation scheme for the random effects covariance matrix. It is possible to
assess the sensitivity of the model in relation to the random effects homoskedasticity
assumption by perturbing the matrix G. Nobre (2004) suggested the use of Var[bi] = ωiG
as a perturbation scheme. In this case ω is a q × 1 vector and ω0 = 1q. The perturbed
log-likelihood function is proportional to

L(θ) = −1
2

k∑

i=1

{
ln |V i(ω)|+ (yi −Xiβ)−1V (ω)−1(yi −Xiβ)

}
.
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Perturbation scheme for the weighted case. Verbeke (1995) and Lesaffre and Verbeke
(1998) suggested perturbing the log-likelihood function as

L(θ|ω) =
k∑

i=1

ωiLi(θ).

Such a perturbation scheme is appropriate for measuring the influence of the ith subject
using the normal curvature in its direction and is given by

Ci = 2|d>i H>L̈−1Hdi|,

where di is a vector whose entries are 1 in the ith coordinate and zero everywhere else.
Verbeke (1995) showed that if Ci has a high value, then the ith subject has great influence
in the value of θ̂. A threshold of twice the mean value of all Cj ’s helps to decide whether
or not the observation is influential.

Lesaffre and Verbeke (1998) extracted from Ci some interpretable measures. They es-
pecially propose using ‖XiX>

i ‖2, ‖Ri‖2 ‖ZiZ>i ‖2, ‖Ini
− RiR>i ‖2 and ‖V̂−1

i ‖2, where
Xi = V̂−1/2Xi, Zi = V̂−1/2

i Zi, Ri = V̂−1/2
i êi, to evaluate the influence of the ith subject

in the model parameter estimates. The actual interpretation of each of these terms can be
seen in the original paper.

4.2.3 Conform local influence

The Cd measure proposed by Cook (1986) is not invariant to scale re-parametrization.
To obtain a similar standardized measure and make it more comparable, Poon and Poon
(1999) used the conform normal curvature instead of the normal curvature given by

Bd(θ) =
2|d>H>L̈−1Hd|
‖2H>L̈−1H‖ .

It can be shown that 0 ≤ Bd(θ) ≤ 1 to d direction and that Bd is invariant to conform scale
re-parametrization. A re-parametrization is said to be conform if its jacobian J is such that
J>J = tIs, to some real t and integer s. They showed that if λ1, . . . , λl are the eigenval-
ues of F̈ matrix with v1, . . . ,vl representing the respective normalized eigenvectors, then

the value of the conform normal curvature in vi direction is equal to λi/
√∑l

i=1 λ2
i and∑l

i=1 B2
vi

(θ) = 1. If every eigenvector has the same conform normal curvature, its value is
equal to 1/

√
l. Poon and Poon (1999) proposed to use this measure as a referential to mea-

sure the intensity of the local influence of an eigenvector. It can also be shown that when
d has the direction of dmax the conform normal curvature also attains its maximum. In
this way, the normal curvature and the conform normal curvature are equivalent methods.

5. Application

According to Frees et al. (1999), the random coefficient models are equivalent to the
Hachemeister linear regression model which is used for the example data in Hachemeister
(1975). The random coefficient model to the data in Table 1 may be described as

yij = αi + jβi + eij , i = 1, . . . , 5, j = 1, . . . , 12,
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where yij represents the average claim amount for state i in the jth trimester, αi = α + ai

and βi = β + bi, with fixed α and β, and (ai, bi)> ∼ N2(0,D), in which D is a 2 × 2
covariance matrix. In order to find a possible simpler model, we used R to apply the
asymptotic likelihood ratio test described in Giampaoli and Singer (2009) to compare the
suggested random coefficients model and a random intercept model. The p-value obtained
from the test was 0.0514. It indicates that it may be enough to consider the random
effect for the intercept only. This decision is also supported by the Bayesian information
criterion (BIC), which is equal to 808.3 for the single random effect model and 811.6 for the
model with two random effects. We may also use another set of tests, involving bootstrap,
monte-carlo and permutational methods, to investigate whether or not should we prefer
the random intercept model. These tests may be seen in Crainiceanu and Ruppert (2004),
Greven et al. (2008) and Fitzmaurice et al. (2007). However, this is very distant from our
goals and is not discussed here. For the sake of simplicity and based on the presented
reasons we shall use the random intercept model, which differs a little from the model
proposed by Frees et al. (1999). Thus, the model to be adjusted for the data in this
example is

yij = αi + jβ + εij , i = 1, . . . , 5, j = 1, . . . , 12, (4)

where αi = α + ai, β and ε are the same as defined before. Assume also that Var[εij ] = σ2
ε

and Var[ai] = σ2
a.

The model parameter estimates were obtained by the RML method using the lmer()
function from the lme4 package in R. The standard errors were obtained from SAS c© (SAS
Institute Inc., 2004) using the proc MIXED. The estimates are shown in Table 3.

Table 3. Model parameter estimates.

Parameter α β σ2
ε σ2

a

Estimate 1460.32 32.41 32981.53 73398.25
SE 131.07 6.79 6347.17 24088.00

Figure 3 shows the five conditional regression lines obtained from the linear mixed model
given in Equation (4). The adjusted model clearly suggests that the claim amount is higher
in state 1. Also it suggests a similarity in the claim amounts from states 2 and 4. Besides
that, we can expect a smaller risk from policies in state 5, since they are much closer to
the respective adjusted conditional line. Further information is explored by the diagnostic
analysis commented next.
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5.1 Diagnostic analysis

The standardized residuals proposed by Nobre and Singer (2007) suggest that observation
4.7 (obtained from state 4 in the seventh trimester) may be considered an outlier as shown
in Figure 4(a). According to the QQ plot in Figure 4(b) it is reasonable to assume that the
conditional errors are normally distributed. The Mahalanobis distance in Figure 4(c) was
normalized to fit the interval [0, 1] and suggests that the first state may be an outlier. The
measure MI proposed by Nobre and Singer (2007) in Figure 4(d), also normalized, suggests
that none of the states have outlier observations. The Mahalonobis distance should not
be confounded with MI . The first is based on the EBLUP and the last is based on the
conditional errors, and thus they have different meanings. For both analyses, an observation
is highlighted if it is greater than twice the mean of the measures.
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Figure 4. Residual analysis: (a) standardized residuals, (b) least confounding residuals, (c) EBLUP, (d) values for
MI .

The conditional Cook distance is shown in Figure 5. The distances were normalized for
comparison. Figure 5(a) suggests that observation 4.7 is influential in the model estimates.
The first term of the distance decomposition suggests that no observations were influential
in the estimate of β as shown in Figure 5(b). The second term of the decomposition
suggests that observation 4.7 is potentially influential in the prediction of b as seen on
Figure 5(c). The last term, Di3, is as close to zero as expected and is omitted.



68 L.G. Bastos Pinho, J.S. Nobre and S.M. Freitas

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

State

C
oo

k’
s 

co
nd

iti
on

al
 d

is
ta

nc
e

4.7

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

State

D
1

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

State

D
2

4.7

Figure 5. (a) Conditional Cook distance, (b) Di1, (c) Di2.

Figure 6 shows the local influence analysis using three different perturbation schemes.
The first, in Figure 6(a), is related to the conditional errors covariance matrix, as suggested
in Beckman et al. (1987), and indicates that the observations from the fourth state, espe-
cially 4.7, are possibly influential in the homoskedasticity and independence assumption
for the conditional errors. Notice that it is possible to explain the influence of observation
4.7 analyzing Figure 2. This observation has a value considerably higher than the others
from the same state. Figure 6(b) demonstrates the perturbation scheme for the covariance
matrix associated to the random effects as shown in Nobre (2004). Alternative perturba-
tion schemes for this case can be seen at Beckman et al. (1987). These schemes suggest that
all states are equally influential in the random effects covariance matrix estimate. Finally,
there are evidences that the observations in the fourth state may not be well predicted by
the model; see Figure 6(c).

After the diagnostic we proceed to a confirmatory analysis by removing the observations
from states 1 and 4, one at a time and then both at the same time. The new estimates are
shown in Table 4. For each parameter, we calculate the relative change in the estimated
values, defined for parameter θ, as

RC(θ) =

∣∣∣∣∣
θ̂(i) − θ̂

θ̂

∣∣∣∣∣× 100%.
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Figure 6. Perturbation schemes: (a) conditional covariance matrix, (b) random effects’ covariance matrix, (c) values
for ‖Ini −RiR>i ‖2.

Table 4. Estimates and relative changes for the model given in Equation (4) parameter estimates with and without
states 1 and 4.

Situation α β σ2
ε σ2

a
Complete data 1460.32 32.41 32981.53 73398.25

Without State 1 1408.63 (3.67%) 25.26 (22.06%) 34666.31 ( 5.11%) 34335.64 (53.22%)
Without State 4 1530.94 (4.61%) 33.50 ( 3.36%) 24940.12 (24.38%) 59214.50 ( 19.32%)

Without States 1 and 4 1485.56 (1.70%) 24.32 (24.96%) 24497.48 (25.72%) 23707.07 (67.70%)

If all five states were equally influential, we would expect the value for RC to lie around
1/5 = 20% after removing a state. If RC(θ) exceeds two times this value, that is 40%,
for some parameter θ we consider the state was potentially influential. It is possible to
conclude that three observations from state 1 were influential in the within-subject variance
estimate. From Figure 2, one can explain this influence noticing that all the observations
from state 1 had higher values compared to the other states. Notice that such influence was
not detected in Figure 5(b), but was pointed out by the Mahalanobis distance in Figure
4(c). Removing state 1 from our analysis and running every diagnostic procedure again
we detect no excessive influence and the only issue is the observation 4.7, which is still an
outlier. From this result the model is validated and it is assumed to be robust and ready
for use.
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6. Conclusions

The use of linear mixed models in actuarial science should be encouraged given their
capability to model the within-subject correlation, their flexibility and the presence of
diagnostic tools. Insurers should not use a model without validating it first. For the specific
example seen here, the decision makers may consider a different approach for state 1.
After removing observations from state 1 there was a relative change of more than 50% in
the random effect variance estimate, which reflects significantly in the premium estimate.
Such analysis would not be possible in the traditional credibility models approach. This
illustrates how the model can be used to identify different sources of risk and can be used
in portfolio management. Linear mixed models are also usually easier to understand and
to present, when compared to standard actuarial methods, such as the credibility models
and Bayesian approach for determining the fair premium. The natural extension of this
work is to repeat the estimation and diagnostic procedures, adapting what is necessary,
to the generalized linear mixed models, which are also useful to actuarial science. Some
works have already been made in this area; see, e.g., Antonio and Beirlant (2006). It is also
interesting to continue a further analysis of the example in Hachemeister (1975), using the
diagnostic procedures again when weights are introduced to the covariance matrix of the
conditional residuals in the random coefficient models, and to evaluate the robustness of
the linear mixed models equivalent to the other classic credibility models. Again, this care
is justified because the fairest premium is more competitive in the market.

Appendix

We present here expressions for matrix H and the derivatives seen in the different pertur-
bation schemes presented in Section 4.2.2. These calculations are taken from Nobre (2004)
and are presented here to make this text more self-content.

Appendix A. Perturbation Scheme for the Covariance Matrix of the
Conditional Errors

Let H(k) be the kth column of H and f be the number of distinct components of matrix
D, then

H(k) =

{(
∂2L(ω)
∂ωk∂β

)>
,
∂2L(ω)
∂ωk∂σ2

,
∂2L(ω)
∂ωk∂θ1

, . . . ,
∂2L(ω)
∂ωk∂θf

}>
,

where

∂2L(ω)
∂ωk∂β

∣∣∣
θ=

ˆθ;ω=ω0

= X>Dkê,

∂2L(ω)
∂ωk∂σ2

∣∣∣
θ=

ˆθ;ω=ω0

= −1
2

{
σ̂−2 tr

[
DkZD̂Z>

]
− 2ê>DkV̂

−1
ê + σ̂−2ê>Dkê

}
,

∂2L(ω)
∂ωk∂θi

∣∣∣
θ=

ˆθ;ω=ω0

= −1
2

{
tr

[
DkZḊiZ

>
]
− 2ê>DkZḊiZ

>ê
}

,
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with

Dk =
∂V −1(ω)

∂ωk

∣∣∣
θ=

ˆθ;ω=ω0

= −σ2V̂
(k)

(V̂
(k)

)>, e Ḋi =
∂D

∂θi

∣∣∣
θ=

ˆθ;ω=ω0

,

and V (k) representing the kth column of V −1.

Appendix B. Perturbation Scheme for the Response

It can be shown that

∂2L(ω)
∂ω∂β

∣∣∣
θ=

ˆθ;ω=ω0

= sV̂
−1

X,

∂2L(ω)
∂ω∂σ2

∣∣∣
θ=

ˆθ;ω=ω0

= sV̂
−1

V̂
−1

ê,

∂2L(ω)
∂ω∂θi

∣∣∣
θ=

ˆθ;ω=ω0

= sV −1ZḊiZ
>V̂

−1
ê,

implying

H> = sV −1
[
X, V̂

−1
ê, ZḊ1Z

>V̂
−1

ê, . . . ,ZḊfZ>V̂
−1

ê
]
.

Appendix C. Perturbation Scheme for the Random Effects Covariance
Matrix

For this scheme we have

H(k) =

{(
∂2L(ω)
∂ωk∂β

)>
,
∂2L(ω)
∂ωk∂σ2

,
∂2L(ω)
∂ωk∂θ1

, . . . ,
∂2L(ω)
∂ωk∂θf

}>
.

It can be shown that

∂2L(ωk)
∂ω∂β

∣∣∣
θ=
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= X>
k V̂

−1

k ZkĜZ>
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>
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