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Abstract

A density model with possible non-identically distributed random variables is consid-
ered. We aim to estimate a common function appearing in the densities. We construct a
new linear wavelet estimator and study its performance for independent and dependent
data (the ρ-mixing case is explored). Then, in the independent case, we develop a new
adaptive hard thresholding wavelet estimator and prove that it attains a sharp rate of
convergence.
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1. Introduction

We consider the following density model. Let (Xi)i∈Z be a random process such that, for
any i ∈ Z, the density of Xi is

gi(x) = wi(x)f(x), x ∈ R, (1)

where (wi(x))i∈Z is a known sequence of positive functions and f is an unknown positive
function. Let L > 0 and Xi(Ω) = {x ∈ R; gi(x) 6= 0}. We suppose that Xi(Ω) does not
depend on i, X1(Ω) ⊆ [−L,L], there exists a constant C∗ > 0 such that

sup
x∈R

f(x) ≤ C∗, (2)

∗Corresponding author. Christophe Chesneau. Department of Mathematics, LMNO, University of Caen, UFR de
Sciences, F-14032, Caen, France. Email: christophe.chesneau@gmail.com

ISSN: 0718-7912 (print)/ISSN: 0718-7920 (online)
c© Chilean Statistical Society – Sociedad Chilena de Estad́ıstica
http://www.soche.cl/chjs



32 C. Chesneau and N. Hosseinioun

and there exists a sequence of real positive numbers (vi)i∈Z (which can depend on n) such
that

inf
x∈X1(Ω)

wi(x) ≥ vi. (3)

The goal is to estimate f globally when only n random variables X1, . . . , Xn of (Xi)i∈Z
are observed. Such an estimation problem has been recently investigated by Aubin and
Leoni-Aubin (2008a,b). It can be viewed as a generalization of the standard biased density
model; see e.g., Patil and Rao (1977), El Barmi and Simonoff (2000), Brunel et al. (2009)
and Ramirez and Vidakovic (2010).

In this article, we investigate the estimation of f via the powerful tool of the wavelet
analysis. Wavelets are attractive for nonparametric density estimation because of their
spatial adaptivity, computational efficiency and asymptotic optimality properties. They
enjoy excellent mean integrated squared error (MISE) properties and can achieve fast rates
of convergence over a wide range of function classes (including spatially inhomogeneous
function). Details on wavelet analysis in nonparametric function estimation can be found
in Antoniadis (1997) and Härdle et al. (1998).

In the first part of this study, we develop a new linear wavelet estimator. We determine a
sharp upper bound for the associated MISE for independent (Xi)i∈Z. Then, we extend this
result for possible dependent (Xi)i∈Z following the ρ-mixing case. In particular, we prove
the upper bound obtained in the independent case is not deteriorated by our dependence
condition as soon as the ρ-mixing coefficients (ρm)m∈N∗ of (Xi)i∈Z (defined in Section 3)
satisfy

∑n
m=1 ρm ≤ C, where C > 0 denotes a constant independent of n. The second

part of the study is devoted to the adaptive estimation of f for independent (Xi)i∈Z. We
construct a new hard thresholding wavelet estimator and prove that it attains a sharp
upper bound, close to the one attained by the corresponding linear wavelet estimator. Let
us mention that our results are proved under very mild assumptions on w1(x), . . . , wn(x).

Section 2 presents wavelets and the Besov balls. The linear wavelet estimation is devel-
oped in Section 3. Section 4 is devoted to our hard thresholding wavelet estimator. The
proofs are postponed to Section 5.

2. Wavelets and Besov Balls

Let L > 0, N be a positive integer, and φ and ψ be the Daubechies wavelets db2N (which
satisfy supp(φ) = supp(ψ) = [1−N, N ]). Set

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k),

and

Λj = {k ∈ Z; 1−N ≤ 2jx−k ≤ N, x ∈ [−L, L]} = {k ∈ Z; −L2j +N−1 ≤ k ≤ L2j−N}.

Then, there exists an integer τ such that, for any integer ` ≥ τ , the collection

B = {φ`,k(.), k ∈ Λ`; ψj,k(.); j ∈ N− {0, . . . , `− 1}, k ∈ Λj}

is an orthonormal basis of L2([−L,L]) = {h : [−L,L] → R;
∫ L
−L h2(x)dx < ∞}. For more

details about wavelet basis, see Meyer (1992) and Cohen et al. (1993).
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For any integer ` ≥ τ , any h ∈ L2([−L,L]) can be expanded on B as

h(x) =
∑

k∈Λ`

α`,kφ`,k(x) +
∞∑

j=`

∑

k∈Λj

βj,kψj,k(x),

where αj,k and βj,k are the wavelet coefficients of h defined by

αj,k =
∫ L

−L
h(x)φj,k(x)dx, βj,k =

∫ L

−L
h(x)ψj,k(x)dx. (4)

Let M > 0, s > 0, p ≥ 1, r ≥ 1 and Lp([−L,L]) = {h : [−L,L] → R;
∫ L
−L |h(x)|pdx < ∞}.

Set, for every measurable function h on [−L,L] and ε ≥ 0, ∆ε(h)(x) = h(x + ε) − h(x),
∆2

ε (h)(x) = ∆ε(∆εh)(x) and identically, for N ∈ N∗, ∆N
ε (h)(x). Let

ρN (t, h, p) = sup
ε∈[−t,t]

(∫ L

−L
|∆N

ε (h)(u)|pdu

)1/p

.

Then, for s ∈ (0, N), we define the Besov ball Bs
p,r(M) by

Bs
p,r(M) =

{
h ∈ Lp([−L,L]);

[∫ L

−L

(
ρN (t, h, p)

ts

)r
dt

t

]1/r

≤ M

}
.

We have the following equivalence: h ∈ Bs
p,r(M) if and only if there exists a constant

M∗ > 0 (depending on M) such that the associated wavelet coefficients give in Equation
(4) satisfy

2τ(1/2−1/p)


 ∑

k∈Λτ

|ατ,k|p



1/p

+





∞∑

j=τ


2j(s+1/2−1/p)


 ∑

k∈Λj

|βj,k|p



1/p



r


1/r

≤ M∗. (5)

In Equation (5), s is a smoothness parameter and p and r are norm parameters. The Besov
balls capture a wide variety of smoothness features in a function; see e.g., Meyer (1992).

3. Linear Wavelet Estimation

For any integer j ≥ τ and k ∈ Λj , we can estimate the unknown wavelet coefficient
αj,k =

∫ L
−L f(x)φj,k(x)dx by a standard empirical one given by

α̂∗j,k =
1
n

n∑

i=1

φj,k(Xi)
wi(Xi)

. (6)

However, in this study, we consider

α̂j,k =
1
zn

n∑

i=1

vi
φj,k(Xi)
wi(Xi)

, zn =
n∑

i=1

vi. (7)

Our choice is motivated by the following upper bound results.
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Proposition 3.1 Suppose that (Xi)i∈Z are independent. For any integer j ≥ τ and
k ∈ Λj , let αj,k =

∫ L
−L f(x)φj,k(x)dx, α̂∗j,k be as in Equation (6) and α̂j,k be as in Equation

(7). Then, α̂∗j,k and α̂j,k are unbiased estimators of αj,k and there exists a constant C > 0
such that

E
[
(α̂∗j,k − αj,k)2

] ≤ C
1
n2

n∑

i=1

1
vi

, E
[
(α̂j,k − αj,k)2

] ≤ C
1
zn

.

These bounds are as sharp as possible and we have 1/zn ≤ (1/n2)
∑n

i=1 1/vi.

We define the linear wavelet estimator f̂lin by

f̂lin(x) =
∑

k∈Λj0

α̂j0,kφj0,k(x), (8)

where α̂j0,k is defined by Equation (7) and j0 is an integer which is chosen later.
Naturally, taking w1(x) = · · · = wn(x) = 1, Equation (1) becomes the standard density

model and f̂lin the standard linear wavelet estimator for this problem; see Härdle et al.
(1998, Subsection 10.2). For a survey on wavelet linear estimators for various density
models, we refer to Chaubey et al. (2010).

Theorem 3.2 Suppose that (Xi)i∈Z are independent and limn→∞ zn = ∞. Suppose that
f ∈ Bs

p,r(M), with s ∈ (0, N), p ≥ 2 and r ≥ 1. Let f̂lin be as in Equation (8) with the

integer j0 satisfying (1/2)z1/(2s+1)
n ≤ 2j0 ≤ z

1/(2s+1)
n . Then, there exists a constant C > 0

such that

E
[∫ L

−L

(
f̂lin(x)− f(x)

)2
dx

]
≤ Cz−2s/(2s+1)

n .

Note that, when w1(x) = · · · = wn(x) = 1, we have zn = n−2s/(2s+1) and this is the
optimal rate of convergence (in the minimax sense) for the standard density estimation
problem; see Härdle et al. (1998, Theorem 10.1).

Let us now explore the performance of f̂lin for a class of dependent (Xi)i∈Z.

Definition 3.3 Let (Xi)i∈Z be a random process. For any u ∈ Z, let FX−∞,u be the σ-
algebra generated by . . . , Xu−1, Xu and FX

u,∞ is the σ-algebra generated by Xu, Xu+1, . . .
For any m ∈ Z, we define the mth maximal correlation coefficient of (Xi)i∈Z by

ρm = sup
`∈Z

sup
(U,V )∈L2(FX

−∞,`)×L2(FX
m+`,∞)

|C(U, V )|√
V[U ]V[V ]

,

where, for any A ∈ {FX
−∞,`,FX

m+`,∞}, L2(A) =
{
U ∈ A; E[U2] < ∞}

and C(· , ·) denotes
the covariance function. Then, we say that (Xi)i∈Z is ρ-mixing if and only if

lim
m→∞ ρm = 0.

Further details on ρ-mixing dependence can be found in, e.g., Kolmogorov and Rozanov
(1960), Shao (1995) and Zhengyan and Lu (1996).

Results on wavelet estimation of a density in the ρ-mixing case can be found in Leblanc
(1996) and Hosseinioun et al. (2010).



Chilean Journal of Statistics 35

Theorem 3.4 Suppose that (Xi)i∈Z is ρ-mixing and there exist three constants υ > 0,
θ ∈ [0, 1) and γ ≥ 0 such that

lim
n→∞

1
nθ[log(n)]γ

n∑

m=1

ρm = υ, lim
n→∞

zn

nθ[log(n)]γ
= ∞. (9)

Suppose that f ∈ Bs
p,r(M), with s ∈ (0, N), p ≥ 2 and r ≥ 1. Let f̂lin be as in Equation

(8), with the integer j0 satisfying

1
2

(
zn

nθ[log(n)]γ

)1/(2s+1)

≤ 2j0 ≤
(

zn

nθ[log(n)]γ

)1/(2s+1)

.

Then, there exists a constant C > 0 such that

E
[∫ L

−L

(
f̂lin(x)− f(x)

)2
dx

]
≤ C

(
zn

nθ[log(n)]γ

)−2s/(2s+1)

.

The main role of the parameters θ and γ in Equation (9) is to measure the influence of the
ρ-mixing dependence of (Xi)i∈Z when limn→∞

∑n
m=1 ρm = ∞ on the performance of f̂lin.

The first assumption in Equation (9) can be viewed as a generalization of the standard one,
i.e.,

∑∞
m=1 ρm ≤ C, which corresponds to θ = γ = 0; see e.g., Leblanc (1996, Assumption

M1). Observe that, if θ = γ = 0, Theorem 3.4 extends the result of Theorem 3.2; the
ρ-mixing dependence on (Xi)i∈Z does not deteriorate the rate of convergence z

−2s/(2s+1)
n .

The main drawback of f̂lin is that it is not adaptive. It depends on the smoothness
parameter s in its construction. The adaptive estimation of f for independent (Xi)i∈Z is
explored in the next section.

4. On the Adaptive Estimation of f in the Independent Case

Suppose that (Xi)i∈Z are independent. We define the hard thresholding estimator f̂hard by

f̂hard(x) =
∑

k∈Λτ

α̂τ,kφτ,k(x) +
j1∑

j=τ

∑

k∈Λj

β̂j,k1I{|β̂j,k|≥κθ
√

log(zn)
zn

}ψj,k(x), (10)

where α̂τ,k is defined by Equation (7),

β̂j,k =
1
zn

n∑

i=1

vi
ψj,k(Xi)
wi(Xi)

1I{∣∣∣vi

ψj,k(Xi)

wi(Xi)

∣∣∣≤θ
√

zn
log(zn)

}, (11)

for any random event A, 1IA is the indicator function on A, j1 is the integer satisfying
(1/2)zn < 2j1 ≤ zn, θ =

√
C∗ and κ ≥ 8/3 + 2 + 2

√
16/9 + 4.

The originality of f̂hard is in the definition of Equation (11). We do not estimate the
unknown “mother” wavelet coefficient by the standard empirical estimator; we consider
a thresholding version of it. This thresholding combined with a suitable calibration of
the parameters allows us to have power MISE properties under very mild assumptions
on w1(x), . . . , wn(x). Such a technique has been firstly introduced in a hard thresholding
wavelet procedure in Delyon and Juditsky (1996) for nonparametric regression. Another
application of this technique can be found in Chesneau (2011).
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Theorem 4.1 Suppose that (Xi)i∈Z are independent and limn→∞ zn = ∞. Let f̂hard be
as in Equation (10). Suppose that f ∈ Bs

p,r(M) with r ≥ 1, {p ≥ 2 and s ∈ (0, N)} or
{p ∈ [1, 2) and s ∈ (1/p,N)}. Then, for a large enough n, there exists a constant C > 0
such that

E
[∫ L

−L

(
f̂hard(x)− f(x)

)2
dx

]
≤ C

(
log(zn)

zn

)2s/(2s+1)

.

Theorem 4.1 shows that f̂hard attains a rate of convergence close to one attains by f̂lin.
The only difference is the “negligible” logarithmic term [log(n)]2s/(2s+1). Mention that the
proof of Theorem 4.1 is based on Chesneau (2011, Theorem 2).

5. Proofs

In this section, C denotes any constant that does not depend on j, k and n. Its value may
change from one term to another and may depends on φ or ψ.

Proof [Proposition 3.1] We have

E
[
α̂∗j,k

]
=

1
n

n∑

i=1

∫ L

−L

φj,k(x)
wi(x)

gi(x)dx =
∫ L

−L
φj,k(x)f(x)dx = αj,k. (12)

Using Equation (12), the independence of X1, . . . , Xn, Equations (2) and (3) and∫ L
−L (φj,k(x))2 dx = 1, we obtain

E
[
(α̂∗j,k − αj,k)2

]
= V

[
α̂∗j,k

]
=

1
n2

n∑

i=1

V
[
φj,k(Xi)
wi(Xi)

]

≤ 1
n2

n∑

i=1

E

[(
φj,k(Xi)
wi(Xi)

)2
]

=
1
n2

n∑

i=1

∫ L

−L

(
1

wi(x)
φj,k(x)

)2

gi(x)dx

=
1
n2

n∑

i=1

∫ L

−L
(φj,k(x))2

f(x)
wi(x)

dx ≤ C∗
1
n2

n∑

i=1

1
vi

.

We have

E [α̂j,k] =
1
zn

n∑

i=1

vi

∫ L

−L

φj,k(x)
wi(x)

gi(x)dx =
1
zn

zn

∫ L

−L
φj,k(x)f(x)dx = αj,k. (13)

Using Equation (13), again the independence of X1, . . . , Xn, Equations (2), (3) and
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∫ L
−L (φj,k(x))2 dx = 1, we obtain

E
[
(α̂j,k − αj,k)2

]
= V [α̂j,k] =

1
z2
n

n∑

i=1

v2
i V

[
φj,k(Xi)
wi(Xi)

]

≤ 1
z2
n

n∑

i=1

v2
i E

[(
φj,k(Xi)
wi(Xi)

)2
]

=
1
z2
n

n∑

i=1

v2
i

∫ L

−L

(
φj,k(x)
wi(x)

)2

gi(x)dx

=
1
z2
n

n∑

i=1

v2
i

∫ L

−L
(φj,k(x))2

f(x)
wi(x)

dx ≤ C∗
1
z2
n

zn = C∗
1
zn

. (14)

The Hölder inequality yields

n =
n∑

i=1

√
vi

1√
vi
≤ z1/2

n

(
n∑

i=1

1
vi

)1/2

.

Therefore

1
zn
≤ 1

n2

n∑

i=1

1
vi

.

The proof of Proposition 3.1 is complete. ¥

Proof [Theorem 3.2] We expand the function f on B as

f(x) =
∑

k∈Λj0

αj0,kφj0,k(x) +
∞∑

j=j0

∑

k∈Λj

βj,kψj,k(x),

where αj0,k =
∫ L
−L f(x)φj0,k(x)dx and βj,k =

∫ L
−L f(x)ψj,k(x)dx.

Using the fact that B is an orthonormal basis of L2([−L,L]), Proposition 3.1 and, since
p ≥ 2, Bs

p,r(M) ⊆ Bs
2,∞(M), we have

E
[∫ L

−L

(
f̂lin(x)− f(x)

)2
dx

]
=

∑

k∈Λj0

E
[
(α̂j0,k − αj0,k)

2
]
+

∞∑

j=j0

∑

k∈Λj

β2
j,k

≤ C

(
2j0 1

zn
+ 2−2j0s

)
≤ Cz−2s/(2s+1)

n .

Theorem 3.2 is proved. ¥

Proof [Theorem 3.4] First of all, let us prove the existence of a constant C > 0 such that

E
[
(α̂j0,k − αj0,k)

2
] ≤ Cnθ[log(n)]γ

1
zn

.
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Since α̂j0,k is an unbiased estimator of αj0,k, we have

E
[
(α̂j0,k − αj0,k)

2
]

= V [α̂j0,k]

=
1
z2
n

n∑

i=1

n∑

`=1

viv`C
(

φj0,k(Xi)
wi(Xi)

,
φj0,k(X`)
w`(X`)

)

≤ 1
z2
n

n∑

i=1

v2
i V

[
φj0,k(Xi)
wi(Xi)

]
+

1
z2
n

n∑

i=1

n∑

`=1
6̀=i

viv`

∣∣∣∣C
(

φj0,k(Xi)
wi(Xi)

,
φj0,k(X`)
w`(X`)

)∣∣∣∣ .

(15)

It follows from Equation (14) that

1
z2
n

n∑

i=1

v2
i V

[
φj0,k(Xi)
wi(Xi)

]
≤ C

1
zn

.

In order to bound the second term in Equation (15), we use the following result on ρ-
mixing. The proof can be found in Doukhan (1994, Section 1.2.2.).

Lemma 5.1 Let (Xi)i∈Z be a ρ-mixing sequence. Then, for any (i, j) ∈ Z2 such that i 6= `
and any functions g and h, we have

|C (h(Xi), g(X`)) | ≤ ρ|i−`|
√

E [(h(Xi))2] E [(g(X`))2],

whenever these quantities exist.

Using Lemma 5.1, we obtain

n∑

i=1

n∑

`=1
6̀=i

viv`

∣∣∣∣C
(

φj0,k(Xi)
wi(Xi)

,
φj0,k(X`)
w`(X`)

)∣∣∣∣ ≤
n∑

i=1

n∑

`=1
6̀=i

viv`ρ|i−`|

√√√√E

[(
φj0,k(Xi)
wi(Xi)

)2
]

E

[(
φj0,k(X`)
w`(X`)

)2
]
.

(16)

By Equations (2), (3) and
∫ L
−L (φj0,k(x))2 dx = 1, we have

E

[(
φj0,k(Xi)
wi(Xi)

)2
]

=
∫ L

−L

(
φj0,k(x)
wi(x)

)2

gi(x)dx =
∫ L

−L
(φj0,k(x))2

f(x)
wi(x)

dx ≤ C∗
1
vi

.
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Therefore

n∑

i=1

n∑

`=1
6̀=i

viv`

∣∣∣∣C
(

φj0,k(Xi)
wi(Xi)

,
φj0,k(X`)
w`(X`)

)∣∣∣∣ ≤ C
n∑

i=1

n∑

`=1
6̀=i

√
vi
√

v`ρ|i−`|

≤ C
n∑

i=2

i−1∑

`=1

√
vi
√

v`ρi−`

≤ C

n∑

i=2

i−1∑

`=1

(vi + v`) ρi−`

= C
n∑

i=2

i−1∑

u=1

(vi + vi−u) ρu

= C

(
n∑

i=2

vi

i−1∑

u=1

ρu +
n∑

i=2

i−1∑

u=1

vi−uρu

)
.

Using Equation (9), we obtain

n∑

i=2

vi

i−1∑

u=1

ρu ≤ zn

n∑

u=1

ρu ≤ Cnθ[log(n)]γzn,

and

n∑

i=2

i−1∑

u=1

vi−uρu =
n−1∑

u=1

ρu

n∑

i=u+1

vi−u ≤ zn

n∑

u=1

ρu ≤ Cnθ[log(n)]γzn.

Hence

n∑

i=1

n∑

`=1
` 6=i

viv`

∣∣∣∣C
(

φj0,k(Xi)
wi(Xi)

,
φj0,k(X`)
w`(X`)

)∣∣∣∣ ≤ Cnθ[log(n)]γzn. (17)

Putting Equations (15), (16) and (17) together, we obtain

E
[
(α̂j0,k − αj0,k)

2
]
≤ C

(
1
zn

+
nθ[log(n)]γ

zn

)
≤ C

nθ[log(n)]γ

zn
.

Then we proceed as in Theorem 3.2. We expand the function f on B as

f(x) =
∑

k∈Λj0

αj0,kφj0,k(x) +
∞∑

j=j0

∑

k∈Λj

βj,kψj,k(x),

where αj0,k =
∫ L
−L f(x)φj0,k(x)dx and βj,k =

∫ L
−L f(x)ψj,k(x)dx. Using the fact that B is
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an orthonormal basis of L2([−L, L]) and, since p ≥ 2, Bs
p,r(M) ⊆ Bs

2,∞(M), we obtain

E
[∫ L

−L

(
f̂lin(x)− f(x)

)2
dx

]
=

∑

k∈Λj0

E
[
(α̂j0,k − αj0,k)

2
]
+

∞∑

j=j0

∑

k∈Λj

β2
j,k

≤ C

(
2j0 nθ[log(n)]γ

zn
+ 2−2j0s

)
≤ C

(
zn

nθ[log(n)]γ

)−2s/(2s+1)

.

The proof of Theorem 3.4 is complete. ¥

Proof [Theorem 4.1.] The result is proven using the following general result. It is a
reformulation of the result given in Chesneau (2011, Theorem 2).

Theorem 5.2 (Chesneau, 2011). Let L > 0. We want to estimate an unknown function
f with support in [−L,L] from n independent random variables U1, . . . , Un. We consider
the wavelet basis B and the notations of Section 3. Suppose that there exist n functions
h1, . . . , hn such that, for any γ ∈ {φ, ψ},
• (A1) Any integer j ≥ τ and any k ∈ Λj ,

E

[
1
n

n∑

i=1

hi(γj,k, Ui)

]
=

∫ L

−L
f(x)γj,k(x)dx.

• (A2) There exist a sequence of real numbers (µi)i∈N∗ satisfying limi→∞ µi = ∞ and two
constants, θγ > 0 and δ > 0, such that, for any integer j ≥ τ and any k ∈ Λj ,

1
n2

n∑

i=1

E
[
(hi(γj,k, Ui))

2
]
≤ θ2

γ22δj 1
µn

.

We define the hard thresholding estimator f̂H by

f̂H(x) =
∑

k∈Λτ

α̂τ,kφτ,k(x) +
j1∑

j=τ

∑

k∈Λj

β̂j,k1I{|β̂j,k|≥κλj,n}ψj,k(x),

where

α̂j,k =
1
n

n∑

i=1

hi(φj,k, Ui), β̂j,k =
1
n

n∑

i=1

hi(ψj,k, Ui)1I{|hi(ψj,k,Ui)|≤ηj,n},

for any random event A, 1IA is the indicator function on A,

ηj,n = θψ2δj

√
µn

log(µn)
, λj,n = θψ2δj

√
log(µn)

µn
,

κ = 8/3+2+2
√

16/9 + 4 and j1 is the integer satisfying (1/2)µ1/(2δ+1)
n < 2j1 ≤ µ

1/(2δ+1)
n .
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Let r ≥ 1, {p ≥ 2 and s ∈ (0, N)} or {p ∈ [1, 2) and s ∈ ((2δ + 1)/p,N)}. Suppose that
f ∈ Bs

p,r(M). Then, there exists a constant C > 0 such that

E
[∫ L

−L

(
f̂H(x)− f(x)

)2
dx

]
≤ C

(
log(µn)

µn

)2s/(2s+2δ+1)

.

Let us now investigate the assumptions (A1) and (A2) of Theorem 5.2 with, for any
i ∈ {1, . . . , n}, Ui = Xi, θψ =

√
C∗, δ = 0, µn = zn and

hi(γj,k, y) =
n

zn
vi

γj,k(y)
wi(y)

.

• On (A1). By Proposition 3.1, for any γ ∈ {φ, ψ}, we have

E

[
1
n

n∑

i=1

hi(γj,k, Xi)

]
=

∫ L

−L
f(x)γj,k(x)dx.

• On (A2). Using Equation (14), we have

1
n2

n∑

i=1

E
[
(hi(γj,k, Xi))

2
]
≤ C∗

1
zn

.

Let f ∈ Bs
p,r(M). It follows from Theorem 5.2 that the hard thresholding estimator give

in Equation (10) satisfies, for any r ≥ 1, {p ≥ 2 and s ∈ (0, N)} or {p ∈ [1, 2) and
s ∈ (1/p,N)},

E
[∫ L

−L

(
f̂hard(x)− f(x)

)2
dx

]
≤ C

(
log(zn)

zn

)2s/(2s+1)

.

The proof of Theorem 4.1 is complete. ¥
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