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Abstract

The accuracy of results obtained by geostatistical analysis, regarding spatial prediction,
depends substantially on determining more efficient sampling schemes, with a reduced
number of samples. This in the sense that the obtained results are similar to the actual
results in the area, thus reducing operational costs. By using simulated data, the present
work has laid plans for efficient spatial sampling in the prediction of variables with spa-
tial dependence. The simulated annealing and hybrid genetic algorithm (GA) methods
of optimization are used, considering the mean of the prediction variance as objective
function. In addition, this work allows us to resize a sample configuration. This has
already been applied to an experiment of precision agriculture in the cultivation of soy-
beans in Paraná, reducing by 50% its sample size and minimizing the efficiency losses of
spatial prediction that this sample reduction may cause. The results for the simulations
show that the optimized sample configurations produce lower estimates for the mean
variance of the spatial prediction and better estimates for the characteristics related to
spatial prediction in the studied area. Moreover, for the experiment considered in this
study, the results show that the sample configuration reduce by hybrid GA shows a
greater similarity with the initial sample configuration. Thus, the 50% reduction in the
sample size by using the hybrid GA produces effective results for the classification of
potassium (K) fertilizer in the area. Therefore, this reduced sample configuration may
be used in future experiments for this area, reducing by 50% costs of chemical analysis
of soil, without great loss of efficiency in the conclusions drawn by the spatial prediction.
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1. Introduction

The study of spatial variability structure of geo-referenced variables can be carried out
using techniques of geostatistics, which allow, from a set of sample elements, understand the
continuity of variables of interest across the area, thus demonstrating the spatial variation
of the phenomenon by means of thematic maps of variability (see Diggle and Ribeiro
Junior, 2007), which provide support information in the decision-making process for better
management. However, restricted financial resources can cause great conflicts when having
research objectives such as defining a sampling scheme used in the analysis of spatial
variability, with the smallest size possible, to reduce operational costs when acquiring it,
and maximize the results obtained for the spatial prediction; see Stingel (2007).

In one area, the entire population of points is not enumerable. Therefore, determining
a sample set, that maximizes the efficiency of spatial prediction, from this population
of points, makes it even more complex. A choice of methodology is to consider an initial
sampling grid, with a large number of points, as a discretization of the area. Thus, defining
the best sample configuration becomes a problem of choosing from an initial sampling grid,
a reduced sample setting, minimizing the loss of information regarding spatial prediction,
and resulting on cost reduction of the process of sample collection. This methodology is
used for problems of avoiding expenses in environmental monitoring networks stations (see
Bueso et al., 1999; Banjevic and Switzer, 2001; Nunes et al., 2005) and re-configuration of
electric power networks; see Miasaki and Romero (2007).

Methods in the literature that regard resizing of sample configurations consider, as search
criteria, a measure called objective function, which is minimized or maximized, and which
summarizes the efficiency of the optimization of sample configuration for spatial prediction.
The pursuit for the best sample configuration can be made by complete enumeration of all
possible solutions (see Wu and Zidek, 1992; Le et al., 2003) or by sequential search methods
(see Cressie, 1993; Boer et al., 2002; Royle, 2002), in which a sample is added or deleted
in each step of the sequential process. However, when sample size is large, these methods
are computationally exhaustive and impractical. Therefore, metaheuristics strategies, used
in artificial intelligence, are an alternative in the pursuit for better sample configurations,
since they easily adapt to different structures, are directed to the global optimization of
the problem and promote search procedures that prevent a premature stop in excellent
locations; see Ferri and Piccioni (1992), Groenigen and Stein (1998), Costa and Poppi
(1999) and Zhu and Stein (2006).

In the past decade, several procedures categorized to be meta heuristics emerged, such
as the simulated annealing algorithm and genetic algorithms (GA), including its hybrid
version, which is an iterative method that pursuits optimal solution; see Banjevic and
Switzer (2001); Nunes et al. (2005); Zhu and Stein (2006), Costa and Poppi (1999); Ruiz-
Cárdenas et al. (2010), and Medeiros and Guimarães (2004); Chakrapani and Rajan (2008);
Ruiz-Cárdenas et al. (2010).

The goal of this paper is to define optimal sample configurations for ten simulated data
sets, using optimization algorithms called simulated annealing and hybrid GA. Further-
more, using this same methodology, we propose a hybrid GA to resize a sample set of
256 points obtained by stratified systematic unaligned sampling (see Wollenhaupt and
Wolicowski, 1994; Souza et al., 1999), considering potassium content as variable. This new
sample configuration, with a previously established 50% reduction in size, reduces losses
that may be caused by its resizing in the accuracy of results regarding spatial prediction.

The paper is organized as follows. Section 2 describes in detail the simulation study. Sec-
tion 3 presents the SA and GA algorithms for determining the best sample configuration.
Section 4 compares the performance of these algorithms using simulated data. Section 5
applies these algorithms to the reduction of original sample configuration of the potassium
values. Finally, a short discussion and concluding remarks are presented in Section 6.
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2. Simulation Study

The discretization of the studied area is represented by an initial regular lattice, 20× 20,
consisting of 400 points. The simulated results for the regionalized variable, located at
this sample grid, are obtained through simulations. These represent the achievements of
multivariate stochastic processes, assuming a set of stationary random variables, with no
directional trend, isotropic and ceiling in the x and y coordinates equal to 1. This set of
variables is represented by the spatial linear model

Z(xi) = µ(xi) + S(xi), (1)

where µ(xi) = µ is a constant, xi, for i = 1, . . . , 400, are the locations of the sampling
grid points. In addition, S(xi) is the Gaussian process, spatially referenced, with variance
equal to C1 and semivariance function represented by the exponential model

γ(h) =
{

C0 + C1[1− exp
(−3h

a

)
], if 0 < h < a;

C0 + C1, if h ≥ a,
(2)

where C0 is called nugget, C0 + C1 is the value sill and a is the range.
Considering the spatial linear model described in Equation (1), the set of random vari-

ables have normal distribution given by Z ∼ Nn(µ1,Σ), where 1 is a vector of ones and
Σ = [(σij)], σij = Cov (xi, xj) = C (h), with |xi − xj | = h, for i = j = 1, . . . , 400, is the
symmetric and positive covariance matrix, established by the following relationship with
the model described in Equation (2) and given by γ (h) = C (0)− C (h). Thus, according
to Cressie (1993), each simulated data set is obtained by pre-establishing a mean vector
µ1 and a covariance matrix Σ with parameters of its respective semivariance function
model described in Equation (2), previously determined with: range equal to 0.6, nugget
effect (NE) equal to 0, and value sill equal to 1. Then, the matrix L is obtained using the
Cholesky decomposition, given by Σ = LL>. Thus, each simulated data set is obtained
using the following relationship:

Z = µ1 + Lε, (3)

where ε is a vector of uncorrelated random variables following a normal distribution with
zero mean and variance equal to one.

3. Stochastic Search Algorithms

Determining the best sample configuration consists on reducing the sample size of the
initial grid. However, this reduction is obtained by iterative methods called simulated an-
nealing and hybrid GA, which in this study consist of a combination of GA with simulated
annealing method; see Jackson and Norgard (2008) and Zhou et al. (2010). The simu-
lated annealing algorithm (see Kirkpatrick et al., 1983) makes an analogy to a natural
phenomenon of annealing, which main objective is to increase the resistance of metals or
glasses, by heating at elevated temperatures and subsequently cooling them slowly and
gradually. The implementation of simulated annealing (SA) is considered for this work
following the steps mentioned next.

Step 0. The pursuit for the optimal solution is made from the iteration i = 0, considering
an initial temperature value, for example ti = 8, and a stopping criterion of 1000 iterations
for the data from each simulation and 500 iterations for the potassium variable under study.
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The choice for such stopping criterion is motivated by the observation that with this many
iterations, the parameter of temperature had become small enough, changing very little
current sample configuration and its corresponding objective function value;

Step 1. An initial random sample Si is selected, belonging to the original grid, reduced to
a set with the predetermined size of 196 points for the simulated data sets and 128 points
for potassium content, which respectively represent 49% and 50% of the initial grid;

Step 2. The objective function for Si is calculated as follows: for this sample configuration,
an exponential model is adjusted using the method of maximum likelihood and the spatial
prediction of the variable values in the study is performed, using the geostatistical inter-
polation called kriging. For the simulation, the prediction is made in relation to the values
of the variable under this study, in the locations of the original grid. For the application
example, the prediction performed referred to the points that are not sampled in a very
thin grid in the area, with 17100 points. Next step is to calculate the objective function
f (·) determined by the prediction variance mean

(
σ̄2

0

)
, given the prediction previously

described and expressed by

σ̄2
0 =

n∑

i=1

λiγi0 + α− γii, (4)

where γi0 is the value of the semivariance function within the sampled point xi and the
non-sampled point x0, γii is the value of the semivariance function within the sampled
point xi and itself and α is the Lagrange multiplier;

Step 3. A neighbor sample configuration is obtained Si+1, considering a disturbance in
a random point of the previous sample configuration Si. This disturbance is made by
exchanging this point by another randomly chosen in its neighborhood;

Step 4. The objective function for the sample configuration Si+1, the same way as Step
2;

Step 5. The variation that occurred from the variance mean values of the spatial prediction
within both sample configurations is given by ∆ = f (Si+1)−f (Si). The new solution Si+1

is accepted with probability and described as

P[ accept Si+1] =





1, if ∆ ≤ 0;

exp
(−∆

ti

)
, if ∆ > 0,

where ti is called current temperature, and its purpose is to control the quantity of solutions
that is accepted in the optimization process. The process of simulated annealing is initiated
with a high value for ti, to allow a greater probability of acceptance of any new solution,
including inefficient solutions, thus avoiding local minima;

Step 6. The optimization process is ended when and if the stop criterion is met. If not, the
value of ti, is reduced through the relation ti+1 = 0.85 ti. Thus, the quantity of inefficient
solutions to be accept are reduced, admitting only Si+1 solutions with low value of the
objective function, causing engagement with global optimum solution; see Nunes et al.
(2005);

Step 7. A i = i + 1 equation is determined and resumed to Step 3.
The structure of the hybrid GA, used in this work and for each data set, is described

below.
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Step 0. Considering 60 iterations from i = 0, a initial population is determined with 100
sample configurations (called individuals), randomly chosen, all with the same previously
established size;

Step 1. For each individual is made estimation and spatial prediction of non-sampled lo-
calizations, as described in the process of simulated annealing, and the objective function is
calculated f (·), represented by the variance mean of spatial prediction, shown in Equation
(4);

Step 2. The first selection is made, in which 50% of individuals with the highest values
of objective function are eliminated from the population;

Step 3. Two sample configurations (called parents) are randomly selected from the popu-
lation of individuals, and then he crossing is made. These settings are coded into vectors,
and its elements represent respectively the sample points of the original grid that either be-
long or not to the initial sample configuration. Then, another position in these two vectors
is randomly selected, called the cutoff, so that both sample configurations are partitioned,
and its shares are recombined, generating two new sample configurations; see Chakrapani
and Rajan (2008);

Step 4. The new sample configurations are evaluated by the objective function described
in Equation (4), and the best sample configuration evaluated compared to the best of
its parents, is chosen or not to the step of mutation, with the same probability used in
simulated annealing;

Step 5. The step of mutation is carried out with the individual selected in the previous
step. This mutation consists in modifying the resulting configuration from the cross, by
the process of simulated annealing;

Step 6. The modified sample configuration is added to the population of individuals,
replacing the individual with the highest value of mean variance of spatial prediction;

Step 7. The optimization process is ended when and if the stop criterion is met. Otherwise,
a i = i + 1 equation is determined and resumed to Step 3.

The optimized sampling grids are compared to samples found in the literature, such as
simple random sampling (Ale), regular lattice (Sis), lattice plus close pairs (Pro) and lattice
plus in-fill (Fill). For the comparison of these sampling schemes, measures of comparison
associated with the prediction of points belonging to the original grid are considered.
However, in simulated data sets, sampling schemes are compared by the mean variance
of prediction, percentage and total sum of greater variable than the third quartile, and
estimates of model parameters adjusted to the semivariance.

The obtained reduced sample configuration for potassium content is compared in rela-
tion to the mean variance of spatial prediction, percentage of predicted values that are
inserted in each interval of potassium classification for the fertilization of potash fertilizers
in soybean crops in Paraná; see Oleynik et al. (1998). For each reduced data set and for
the real data set, maps that express the spatial variability of potassium are designed. In
order for these maps to be compared it is necessary to quantify the areas and determine
the correlation among them. This information can be obtained from the error matrix,
considered as reference map, the map obtained by sample configuration with the totality
of points and as a base map, the map that is obtained by reduced sample configuration.
Each element in the matrix represents the area that belongs to the class i from the base
map and class j from the reference map. The main diagonal (when i = j) represents cases
when the area presented the same classification on both maps while the elements off the
main diagonal represent the mistaken classifications.
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From the error matrix, measures of accuracy called overall accuracy (OA) and Kappa
statistics (K̂) are calculated as (see Couto, 2003)

OA =
∑r

i=1 xii

N
and K̂ =

N
∑r

i=1 xii −
∑r

i=1 xi+ x+i

N2 −∑r
i=1 xi+ x+i

,

where xii is the total area that presented the same classification in both maps, r is the
total number of classes, xi+ =

∑r
j=1 xij is the amount of area of class i of the reference

map, x+i =
∑r

u=1 xuj is the amount of area of class i of the base map and N is the total
area of the maps (pixel’s). This allows us to measure the similarity between two maps.

To identify whether the results obtained by the optimized mesh sample are similar, we
determinate the best configuration reduced sample from the optimization process per-
forms on ten simulated data sets. The attainment of the simulated data sets, the imple-
mentation of algorithms and geostatistical analysis are carried out using the software R
(www.R-project.org); see R Development Core Team (2009).

4. Comparison of Algorithms on Simulated Data

Through the plots of simulated values at their respective locations and from the reduced
sample configuration points, shown in Figure 1, one may observe that the sampling schemes
obtained by the optimization processes in Figure 1(e) and Figure 1(f), when compared with
other, provide better coverage of the sampling points in the area.

Figure 2 shows, for the simulations, the scatter plots obtained, of the order of iterations
versus the mean variance of spatial prediction, by the optimization processes of SA and
hybrid GA. On the plots it is observed that the optimization processes sought the lowest
value for the mean variance of spatial prediction, with about 600 iterations for the sim-
ulated annealing and 50 for the hybrid GA, and the search time for the best optimized
sample configuration is one hour.

For the results regarding the estimates of the exponential model of semivariance function,
for sampling schemes under study, shown in Table 1, we have that in all reduced samples
the estimate values, on average, are very close to actual values, and the sampling grid
optimized by simulated annealing showed, on average, a closer result to the value sill
(C0 +C1), nugget (C0) and NE coefficient (NE = [C0/(C0 + C1)]×100) of simulated data.

Table 1. Estimate mean of the exponential model parameters.

Parameter Ale Sis Pro Fill SA GA
Range (a) 0.77 0.77 0.82 0.83 0.82 0.80
Nugget (C0) 0.010 0.017 0.016 0.009 0.006 0.010
NE coefficient 1.17 2.14 1.90 1.08 0.72 1.15
Value sill (C0 + C1) 0.82 0.83 0.86 0.86 0.87 0.85

Table 2 presents the mean results related to measures regarding spatial prediction. The
lowest values for the mean variance of spatial prediction σ̄2

0 are observed in the sampling
schemes obtained by the optimization methods (SA and GA). The same results are shown
in the boxplots in Figure 3(a), which highlight a low dispersion of results, especially in
sampling schemes obtained by SA.

When analyzing Table 2 and the boxplots from Figures 3(b) and 3(c), it appears that only
the sampling schemes obtained by the GA showed values for the predict value percentage
above the 75th percentile (PVPP75), closer to the actual value, with lower dispersion and
lower square sum of errors (SQEPVPP75). Moreover, although in general the mean values
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Figure 1. Location of the 400 sampling points (of one simulation) in the simulated area (◦) and 196 points (•).
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Figure 2. Scatter plots of the order of iterations versus the mean variance of the spatial prediction, of one simulation.

of the sum of predicted values above the 75th percentile (SVPP75) are different from true
mean value (108.54), the lowest square sum of errors (SQESVPP75) are submitted by the
sample configurations obtained by optimization methods (GA and GA), mainly by hybrid
GA, as shown in Figures 3(d) and 3(e).
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Table 2. Estimate mean of measures related to spatial prediction, considering the mean value that represents the
sum of simulated values of the original grid equal to 108.54.

Parameter Ale Sis Pro Fill SA GA
σ̄2

0 0.091 0.085 0.092 0.104 0.078 0.076
PVPP75 24.61 24.35 24.56 25.08 24.41 25.16
SQEPVPP75 0.15 0.18 0.26 0.24 0.23 0.10
SVPP75 108.50 104.20 106.40 109.04 108.20 101.53
SQESVPP75 32× 103 43× 103 32× 103 60× 103 23× 103 19× 103
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Figure 3. Boxplot of estimates: (a) variance mean of prediction (σ̄2
0), (b) percentage of predicted values above the

75th percentile (PVPP75), (c) squared sum of errors of the percentage of predicted values above the 75th percentile
(SQEPVPP75), (d) sum of predicted values above the 75th percentile (SVPP75) and (e) squared sum of errors of the
sum of predicted values above the 75th percentile (SQESVPP75).

5. Analysis of Potassium Content Data Results

Figure 4 shows plots of potassium values in their respective locations, where the area of
each point is proportional to its value for the original sample configuration (see Figure 4a)
and for sampling schemes with reduced number of sample elements: simple random (see
Figure 4b) regular lattice (see Figure 4c), optimized by SA (see Figure 4d) and optimized
by the GA (see Figure 4e). Regularity is observed to exist in the arrangement of points on
the systematic sampling and on the optimized sampling (SA and GA). In which one can
identify the formation of regions with similar values and excellent coverage of the samples
in the area, because there are no regions without sample points.

Parameters of the exponential model of semivariance function and the mean variance
of spatial prediction (σ̄2

0) are estimated for each of the reduced sampled sets and for the
actual sample set, and such parameters are shown in Table 3. Comparing these results,
it is noted that in all reduced samples, the values of the NE coefficient are not similar
to the estimate of the initial sample. Except for the sample optimized by simulated SA,
estimates with range (a) and value sill (C0 + C1) are similar to the value obtained in the
initial sampling. It is also noted that the optimized sampling yielded a lower value for
the mean variance of spatial prediction, even in relation to the value obtained by initial
sampling.



Chilean Journal of Statistics 47

x0 50 100 150

0

5
0

1
0
0

y

(a)

0 10050 150
x

0
5

0
1
0
0

y

(b)

x0 40 80 120

0
4
0

8
0

1
2
0

y

(c)

0 50 100 150x

0
5
0

1
0
0

y

(d)

0 50 100 150x

0
5
0

1
0
0

y

(e)

Figure 4. (a) Plot of potassium content values distributed on their respective locations where the area of each point
is proportional to its value for the initial sample set and of samples: (b) Random simple, (c) regular lattice, (d)
sampling optimized by simulated annealing algorithm and (e) sampling optimized by hybrid GA.

Table 3. Estimates of semivariance function model parameters for potassium content in the samples under study
and mean variance of spatial prediction.

Statistic Initial set Ale Sis SA GA
Range (a) 56.41 47.90 52.36 101.35 45.42
Nugget (C0) 0.0007 0.0000 0.0006 0.0000 0.0037
NE coefficient 21.52 0.00 6.96 0.00 48.68
Value sill (C0 + C1) 0.0034 0.0065 0.0080 0.0047 0.0076
σ̄2

0 0.0034 0.024 0.032 0.0008 0.0005

On the same spatial prediction grid, predicted values of reduced samples and of the initial
grid are categorized, in accordance with the recommendation of the levels of potassium
content for the fertilization of soybean crops in the State of Paraná (see Oleynik et al.,
1998). Table 4 shows the amounts and percentages of predicted values, in the reduced
sampling and in the initial sampling, which are in each of the intervals of classification of
manure for potassium content. In general, it is observed that the sample reduced by the
optimization method GA shows percentage and values of the amount of predicted values
in each classification more similar to the values obtained by initial sampling. The accuracy
indexes called overall accuracy (OA) and kappa statistics (K̂), described in Table 5, show
that all sampling schemes have high accuracy, since OA ≥ 0.85 (see Anderson et al., 1976)
and K̂ ≥ 0.80 (see Kripendorf, 1980), and the highest values of these indexes are submitted
by sample configuration optimized by the hybrid GA.
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Table 4. Estimates of number and percentage of predicted values inserted in each interval of the classification of
potassium for fertilization in the State of Paraná (see Oleynik et al., 1998).

Statistic Classification of Emater Initial set Ale Sis SA GA
Number of K ≤ 0.1 0 0 0 0 0
predicted 0.1 < K ≤ 0.2 0 0 21 0 0
values 0.2 < K ≤ 0.3 6830 6011 7555 5541 6916

K > 0.3 10270 11089 9524 11559 10184
Sum 17100 17100 17100 17100 17100

Percentage K ≤ 0.1 0.00 0.00 0.00 0.00 0.00
of predicted 0.1 < K ≤ 0.2 0.00 0.00 0.12 0.00 0.00
values 0.2 < K ≤ 0.3 39.94 35.15 44.18 32.40 40.44

K > 0.3 60.06 64.85 55.70 67.60 59.56
Sum 100.00 100.00 100.00 100.00 100.00

Table 5. Measures of accuracy considering the variability map which is designed from the sample of 256 points,
used as base map; And the variability map which is designed from the sampling configurations with 128 points, used
as the reference map.

Accuracy measures Ale Sis SA GA
Overall accuracy 0.952 0.956 0.925 0.995
Kappa 0.900 0.917 0.838 0.900

Figure 5 shows maps of spatial variability of potassium content, taking into account the
rating for fertilization in Paraná, designed by using the grid with all data (see Figure 5a)
and the reduced sampling schemes from Figure 5(b) to Figure 5(e). It is observed that the
samples reduced by random simple (see Figure 5b) and optimized by simulated annealing
(see Figure 5d) overestimate some regions predicted by the map of spatial variability of
potassium content obtained using data of sampling that contain the entire data (see Figure
5a) not indicating the suggested classification. Variability maps which are designed through
the regular lattice (see Figure 5c) and sampling scheme optimized by hybrid GA (see Figure
5e) had the highest similarity and an underestimation of some predicted regions, in relation
to the variability map designed by using the grid containing all data, especially with closer
approximation of each region, so understated.

6. Conclusions

The analysis that we have been carried out for the simulations has shown that the sam-
ples obtained by the optimization methods (SA and GA), mainly by the hybrid genetic
algorithm, provided estimates that were closer in similarity to the actual value, regarding
the measures related to spatial prediction in non-sampled locations, and the lowest values
of mean variance of spatial prediction. Give so that samples obtained by the optimization
methods proved to be more reliable for spatial prediction. Analyses on reduced samples
with 128 samples, for the potassium content variable, showed that the sampling optimized
by the hybrid genetic algorithm had lower estimates for the mean variance of spatial pre-
diction, even in relation to the value of this estimate obtained by means of the initial data
set with 256 sampling units. In addition, in sampling optimized by hybrid genetic algo-
rithm, estimates of the number and of the percentage of predicted values belonging to each
interval of classification, used to determine the amount of product to be applied at each
sampling location, were similar to the values obtained in the initial data set. These results
indicate that sampling optimized by hybrid genetic algorithm, with 50% of samples, can
be used in place of the sample set that contains all data in future experiments in this area,
reducing half of the expenses spent with soil chemical analysis with little influence on the
final results.
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Figure 5. Map which represents the spatial variability of K (cmolc/dm3) in the area, according to the classification
for fertilization in soybean crops in Paraná, obtained from the following samplings: (a) initial set, (b) random simple,
(c) regular lattice, (d) optimized by SA and (e) optimized by hybrid GA.
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