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Abstract

Researchers commonly inspect histograms as a first step in data analysis, often finding
that these graphs fail to closely align with any of the several hundred ideal frequency
distributions. The purpose of this paper is to address how positive spatial autocorrela-
tion –the most frequently encountered in practice– can distort histograms when they are
constructed with georeferenced data. Normal, Poisson, and binomial random variables
–three widely applicable ones– are studied after establishing appropriate moment gen-
erating functions, and are illustrated with selected simulations. The simulations were
designed with an ideal surface partitioning, and with the irregular China county surface
partitioning. Results show that even moderate levels of positive spatial autocorrelation,
while not affecting means, not only inflate variance, but also modify the probabilities of
extreme and/or central values, and can alter skewness and kurtosis. A methodology is
outlined for recovering the underlying unautocorrelated frequency distributions.

Keywords: Beta random variable · Binomial random variable · Histogram · Normal
random variable · Poisson random variable · spatial autocorrelation
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1. Introduction

Often statistical as well as other quantitative geospatial data analysis begins with an in-
spection of attribute variable histograms. Most spatial statistical research to date addresses
impacts of spatial autocorrelation (SA) on parameter estimates, with the general conclu-
sion that positive SA tends to have little or no impact on first moment types of parameter
estimates, while inflating their respective standard errors (i.e., impacts are on variance
estimates). This tendency implies that as SA in a random variable (RV) increases, its tails
should become heavier and its center should become flatter. Dutilleul and Legendre (1992)
appear to be the only researchers to systematically investigate this topic, although they
do so in a rather artificial geographic context and only for a normal RV.
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Positive SA is widely acknowledged as a source of variance inflation for normal RVs,
and a source of overdispersion (i.e., excess variance) for Poisson and binomial RVs. But
how does this increased variation impact upon a variable’s histogram? The purpose of this
paper is to address this question. Intuitively speaking, variance increases as increasingly
extreme values (i.e., outliers) appear in a histogram. SA-generated heavy tails in a normal
distribution are consistent with this data feature. But although a Poisson RV can have
extreme large counts, its extreme small counts can only become excessive numbers of
zeroes. Meanwhile, a binomial RV cannot have radically extreme values, because its counts
are constrained to be in the closed interval [0, Ntr], where Ntr denotes the number of trials
in the experiment under consideration. In other words, is some of the quite bothersome
noise in or potential dirtiness of data geospatial researchers routinely encounter simply a
manifestation of SA?

The paper is organized as follows. Section 1 discusses about the effect of the spatial au-
tocorrelation in the specification of model. Section 2 presents a standard benchmark based
on normal curve theory. Section 3 provides a heuristic overview of the beta distribution.
Sections 4 and 5 introduce results about the Poisson and Binomial distributions. Section
6 is devoted to methodological aspects for spatial scientists. Finally, some discussion and
implications are presented in Section 7.

2. Accounting for SA in a RV Model Specification

Besag (1974) introduced and summarized the notion of auto-models for spatial data. His
specifications contain a response variable, Yi, on the left-hand side of an equation for lo-
cation (i.e., observation) i, and some linear combination of Yjs (i 6= j) on the right-hand
side of the same equation for the n − 1 other locations j. This is the model specification
addressed by Cliff and Ord (1973) and Ord (1975) for Gaussian RVs; their early work more
fully develops the auto-normal model. Weaknesses of this general auto-model specification
include: an auto-Poisson and auto-negative binomial probability model can accommodate
only negative SA; because of the intractability of normalizing constants, non-normal RV
parameter estimation requires Markov chain Monte Carlo (MCMC) techniques; and, atten-
tion has been restricted to the natural exponential family of statistical distributions (e.g.,
auto-normal, auto-logistic, auto-binomial, auto-Poisson, and auto-negative binomial).

Because Besag’s (1974) auto-Poisson and auto-negative binomial models, for example,
suffer from an inability to account for positive SA, by far the most common nature of SA to
manifest in empirical data, he and his collaborators (see, e.g., Besag et al., 1991; Besag and
Kooperberg, 1995; Besag et al., 1995) introduced a random effects term into a hierarchi-
cal Bayesian model specification to compensate for this drawback. This conceptualization
represents SA as a feature of model parameters, rather than correlated response variable
values. It casts a model intercept as an observation-specific surrogate for unobserved vari-
ables by expressing it as a random deviation from some global intercept. For georeferenced
data, a random effects term comprises two components: a spatially structured component
accounting for spatial dependence, and a spatially unstructured component accounting
for overdispersion. Software such as WinBUGS implements this specification with a condi-
tional autoregressive (CAR) normal prior distribution. The intrinsic CAR (ICAR) version,
which sets the autoregressive parameter to its maximum value and is an improper prior but
a limiting case of the CAR version, is the most common specification in practice. A convo-
lution prior distribution can be constructed for a random intercept by summing a spatially
structured and a spatially unstructured parameter. The set of exchangeable prior distribu-
tions for this spatially unstructured intercept almost always are assumed to be univariate
normal with mean zero (0). The formulation extends to a frequentist case by analyzing re-
peated measures: the random effects term becomes an observation-specific constant across
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repeated measures. A spatial filter can be used to capture the spatially structured ran-
dom effects, removing the estimation necessity to include repeated measures. This type
of model specification posits that empirical probabilities are correct, while simple model
parameters are not. In contrast, an auto-model posits that simple model parameters are
correct, while empirical probabilities are conditional on other observations. Consequently,
in the development of Bayesian mapping analysis (see, e.g., GeoBUGS in WinBUGS), this
direct dependency between values of a response is replaced by the incorporation of SA into
prior parameter distributions; see Clayton and Kaldor (1987) and Besag et al. (1991).

A modified version of this latter approach is adopted in this paper; i.e., parameters in
RV probability model specifications are modified to account for SA. In other words, “[t]he
data model is one of conditionally independent [RVs], conditional on parameters that are
distributed [over some geographic landscape] according to a spatial process”; see Kaiser
et al. (2002, p. 450). Accounting for SA in this way allows individual observations to be
treated as being independent.

2.1 Eigenvector spatial filtering

The eigenvector spatial filtering approach is a methodology that accounts for SA in RVs
by incorporating heterogeneity into parameters in order to model non-homogeneous popu-
lations. It renders a mixture of distributions that can be used to model observed georefer-
enced data whose various characteristics differ from those that are consistent with a single,
simple underlying distribution with constant parameters across all observations. The aim
of this technique is to capture SA effects with a set of spatial proxy variables-namely,
eigenvectors-rather than to identify a global SA parameter governing average direct pair-
wise correlations between selected observed values. As such, it utilizes the misspecification
interpretation of SA, which assumes that SA is induced by missing exogenous variables,
which themselves are spatially autocorrelated, and hence relates to heterogeneity.

Paralleling the Hammersley-Clifford theorem (see Besag, 1974), SA exists between sub-
sets of neighbors in a set of n locations: a location j is said to be a geographic neighbor
of location i if and only if the specification of the functional form of a probability den-
sity/mass (pdf/pmf) function for location i is dependent upon location j. In eigenvector
spatial filtering, this dependency is captured by a common factor (see, e.g., Burridge, 1980,
1981) that is a linear combination of synthetic variates summarizing distinct features of
the neighbors’ geographic configuration structure for a given georeferenced data set. The
synthetic variates may be the eigenvectors of the matrix

(
I− 11>

n

)
C

(
I− 11>

n

)
, (1)

the matrix appearing in the numerator of the Moran Coefficient (MC) index of SA1,
where C often is an n-by-n binary 0-1 geographic connectivity matrix (i.e., cij = 1 when
locations i and j are neighbors, and zero (0) otherwise2), 1 is an n-by-1 vector of ones,
and superscript T denotes matrix transpose. Cliff and Ord (1973, p. 34) and Clifford et
al. (1989, p. 47) used this matrix to construct the moment generating function (MGF)
of the MC under an assumption of normality. de Jong et al. (1984) showed that the
extreme eigenfunctions of this matrix define the most extreme levels possible of SA for
a given surface partitioning, a result in combination with Tiefelsdorf and Boots (1995)

1The Geary ratio counterpart to matrix the Equation (1) also could be used.
2An eigenfunction spatial filtering comparison of this topological-based definition of geographic neighbor with one
employing inter-point distances appears in Griffith and Peres-Neto (2006).
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and Griffith (1996) that attaches conceptual meaning to the extracted synthetic variates.
These variates summarize distinct map pattern features because they are both orthogonal
and uncorrelated; see Griffith (2000a).

The eigenfunction problem solution is similar to that obtained with principal components
analysis in which a covariance matrix is given by [I+k (I−11>/n)C (I−11>/n)], for some
suitable value of k; sequential, rather than simultaneous, variance extraction is desired in
order to preserve interpretation of the extremes; see de Jong et al. (1984). This solution
relates to the following decomposition theorem (after Tatsuoka, 1988, p. 41): the first
eigenvector, say E1, is the set of numerical values that has the largest MC achievable by
any set of real numbers for the spatial arrangement defined by the geographic connectivity
matrix C; the second eigenvector is the set of real numbers that has the largest achievable
MC by any set that is uncorrelated with E1; the third eigenvector is the third such set of
values; and so on through En, the set of values that has the largest negative MC achievable
by any set that is uncorrelated with the preceding (n− 1) eigenvectors.

The corresponding eigenvalues index these levels of SA: MC = nE>CE/1>C1. But,
in contrast to principal components analysis, rather than using the resulting eigenvectors
to construct linear combinations of attribute variables (which would be the n 0-1 binary
indicator variables forming matrix C), the eigenvectors themselves (instead of principal
components scores) are the desired synthetic variates, each containing n elements, one for
each areal unit (i.e., location). For a given geographic landscape surface partitioning, the
eigenvectors represent a statistical fixed effect in that matrix (I− 11>/n)C (I− 11>/n)
does not, and hence they do not change from one attribute variable to another. Frequently,
the linear combination of eigenvectors describing SA is what changes between attribute
variables.

As with spatial autoregression analysis, eigenvector spatial filters depend upon the spec-
ification of matrix C. A large number of the extracted eigenvectors can be classified into
three qualitatively different positive SA groups: global, regional, and local (Figure 1). The
first two members of this first group tend to be eigenvectors that strongly correlate with
the underlying Cartesian coordinate system used to geocode locations (relating them to
trend surface or gradient analysis), while the third eigenvector tends to portray a more
centrally positioned hill/mound pattern; in other words, this group comprises gradients
and dispersed sets of large-sized clusters of similar values. This second group comprises
eigenvectors that portray dispersed sets of moderate-sized clusters of similar values. And,
this third group comprises eigenvectors that portray dispersed sets of small-sized clusters
of similar values. These latter two classes relate to local indices of SA; see, e.g., Anselin
(1995). These three types of map pattern respectively reflect strong, moderate, and weak
positive SA. Spatial filtering utilizes linear combinations of these eigenvectors-Eβ , where
β is a vector of regression coefficients-to describe SA latent in a given georeferenced re-
sponse variable, capturing local spatial associations whose aggregate sum is measured by
some global index value (e.g., the MC).

2.2 Relationships between spatial filtering and spatial autoregression

Consider, for example, the following nonlinear auto-normal model specification (the SAR
specification; see Ord, 1975), written in matrix notation:

Y = µ1 + (I− ρC)−1 ε, ε ∼ N(0, σ2I),
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Figure 1. Spatial filter map patterns for a regular square tessellation (top) and the China county surface partitioning
(bottom); quintile eigenvector value classes (which are relative, to a factor of −1) range from dark green to dark red.
Top left (a): global map pattern. Top middle (b): regional map pattern. Top right (c): local map pattern. Bottom
left (d): global map pattern. Bottom middle (e): regional map pattern. Bottom right (f): local map pattern.

where C is a geographic weights matrix and ρ is a SA parameter. This equation has no
covariates because it is being used to construct a histogram for random variable Y. Now

(I− ρC)Y = µ(I− ρC)1 + ε

Y = ρCY + µ1− µρC1 + ε

= ρEΛE> + µ1− µρEΛE>1 + ε

= E (ΛE>ρY) + µ1− µρEΛE>1 + ε

= Eβ∗ + µ1− µρEΛE>1 + ε,

where EΛE> is the spectral decomposition of matrix C. Standard principal components
regression replaces covariate matrix X with its orthogonal and uncorrelated component
scores. Here matrix E is orthogonal but not uncorrelated (because the mean of each eigen-
vector is not necessarily zero). It can be transformed to an orthogonal and uncorrelated
matrix by replacing matrix C with matrix (I − 11>/n)C (I − 11>/n); in other words,
the initial model becomes Y = µ1+ [I− ρ(I−11>/n)C (I−11>/n)]−1ε1. Consequently,

Y = ρ(I− 11>/n)C (I− 11>/n)Y + µ1− µρ(I− 11>/n)C (I− 11>/n)1 + ε

= E∗(ΩE∗>ρY) + µ1 + ε

= E∗β + µ1 + ε.

Because ρ ∈ (1/ωmin, 1/ωmax), where ωmin and ωmax are the extreme eigenvalues of matrix
(I− 11>/n)C (I− 11>/n), ρwj < 1.

Now consider the reduced linear specification

Y = E∗kβ + µ1 + ε,

for which the standard regression result is β̂k = (E∗k
>E∗k)

−1E∗k
>Y, all E∗j for which

E∗j
>Y ≈ 0 have been removed (hence, k << n) from the model specification, and re-

calling that E∗j
>1 = 0 for all but the eigenvector proportional to vector 1 (which has an

1Pre- and post-multiplying by the projection matrix results in the 1st eigenvalue of matrix C being replaced by zero,
and all of the other eigenvalues being asymptotically the same as those for C.
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eigenvalue of 0). Because ρwj < 1 for the nonlinear case, its regression coefficients are less
than those for the linear case (ρwjE∗j

>Y rather than E∗j
>Y). This is one trade-off between

the nonlinear and linear specifications.
This result extends to the auto-binomial model through its standard log-linear specifi-

cation:

< ln
[

E(p)
1− E(p)

]
>= α1 + ρC

{
< ln

[
E(p)

1− E(p)

]
> −α1

}
,

where < · > denotes a vector, and E(p) = 1/(1 + eα), when ρ = 0. From the preceding
derivations, this equation implies

< ln
[

E(p)
1− E(p)

]
>= α1 + E∗kβk.

For the auto-Poisson model, following Cressie,

< ln E(Y) >= α1 + ρC(N− α1)

for the vector of counts, N. As a Poisson regression, this equation also can be rewritten
as before:

< ln E(Y) >= α1 + E∗kβk.

As such, it is a respecification of Besag’s auto-model that is in keeping with his random
effects model specification.

The preceding description furnishes equivalencies between the selected auto-models and
the spatial filter models. Many of the same histogram results can be simulated with the
auto-models (using the Kaiser-Cressie winsoring for the auto-Poisson), employing MCMC
techniques especially for the auto-Poisson case. But these auto-models are unable to achieve
the extreme levels of SA that a spatial filter specification can achieve, because it involves
a reduced form in that all eigenvectors for which E∗j

>Y ≈ 0 are not included in the model
specification. These extreme cases are the ones Besag once noted are of great interest.

2.3 A functional form of selected eigenvectors

A regular square tessellation (which is associated with a remotely sensed image) can be
used to illustrate selected features of the eigenvectors used to construct spatial filters. One
advantage of using matrix C based upon this surface partitioning is that its eigenvectors
are known analytically to be 2/(

√
(P + 1)(Q + 1)) sin[hpπ/(P + 1)] sin[kqπ/(Q + 1)], for

p = 1, . . . , P and q = 1, . . . , Q, constituting the elements of an eigenvector with specified
values h and k, for h = 1, . . . , P and k = 1, . . . , Q, being the n different eigenvectors.
Those vectors for which h and/or k are even integers also are eigenvectors of Equation (1).
Furthermore, after replacing its first eigenvector with (1/

√
n)1 (which has a corresponding

eigenvalue of 0), the remaining roughly PQ/4 eigenvectors for which both h and k are odd
integers converge on their Equation (1) counterparts as n increases; see Griffith (2000a). A
noteworthy eigenvector solution property is that to secure uniqueness, software packages
produce normalized eigenvectors, meaning that E>j Ej = 1. But uniqueness is to a mul-
tiplicative factor of −1, because E>j Ej produces a sum of squared values. Consequently,
the sign of each regression coefficient in vector β obtained by regressing some response
variable Y on a subset of K eigenvectors Ek becomes relative.
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A second property associated with normalizing eigenvector Ej is that its elements eij

tend to become smaller as n increases. This property is illustrated by taking the limit
of (1/

√
n)1, which is zero. The presence of this particular eigenvector means that the

projection matrix (I−11>/n) centers all of the non-principal eigenvalues. In addition, this
particular eigenvector suggests that multiplying all of the normalized eigenvectors by

√
n

should result in their converging to a constant other than 0 as n increases. Consequently,

Lemma 2.1 All of the elements of the normalized non-principal eigenvectors of matrix C
based upon a regular square tessellation forming a complete rectangular region go to 0 as
n goes to ∞.

Proof limP→∞ limQ→∞ 2/(
√

(P + 1)(Q + 1)) sin[g1pπ/(P + 1)] sin[g2qπ/(Q + 1)] = 0,
for 0 < h < 1 and 0 < k < 1, hP = p and kQ = q, g1 = 1, . . . , P and g2 = 1, . . . , Q, where
g1 and g2 cannot both be 1. ¥

Multiplying the eigenvectors by
√

n
√

PQ results in each eigenvector element converging
to a constant.

Lemma 2.2 When a normalized non-principal eigenvector of matrix C based upon a
regular square tessellation forming a complete rectangular region is multiplied by

√
n =√

PQ, the elements of this eigenvector converge on constants as n goes to ∞.

Proof limP→∞ limQ→∞ 2
√

PQ/(
√

(P + 1)(Q + 1)) sin[g1pπ/(P +1)] sin[g2qπ/(Q+1)] =
2 sin(hπ) sin(kπ) ∈ [−2, 2], for 0 < h < 1 and 0 < k < 1, hP = p and kQ = q, g1 = 1, . . . , P
and g2 = 1, . . . , Q, where g1 and g2 cannot both be 1. ¥

Therefore, premultiplying a vector by
√

n results in at least some of its elements not
going to 0 with increasing n, and the sum of the elements of each adjusted eigenvector
remaining 0, whereas the sum of its squared values now equals n. Accordingly, its variance
becomes standardized to 1. In subsequent sections, eigenvectors are the normalized vectors
pre-multiplied by

√
n.

2.4 Assumptions underlying and major implications of the spatial model
specifications

The principal assumptions for eigenvector spatial filter models are as follows:
Assumption 1. The direct SA structure of a system only depends upon cliques containing
no more than two locations,
Assumption 2. The probability distribution associated with each location accounts for SA
across the parent map through the parameters of this distribution,
Assumption 3. The n RVs are (conditionally) independent.

Assumption 1 supports the construction of the geographic neighbors matrix C. In addi-
tion, by construction, the eigenvectors are orthogonal and uncorrelated, each has a mean
equal to 0 [induced by the projection matrix (I − 11>/n)] and a sum of squares equal
to n (because they are normalized eigenvectors premultiplied by

√
n), and each is unique

except for a multiplicative factor or −1.
The auto-models literature reveals that the mean of a RV tends to be unbiased (one

notable exception is the autoregressive response, or spatial lag, specification when covari-
ates are present), whereas the variance tends to be altered by the presence of non-zero SA.
Eigenvector spatial filtering specifications preserve these two features of RVs. Although
Kaiser and Cressie (1997) established a methodology that allows some degree of positive
SA to be accounted for in Poisson RVs through winsorization, the attainable levels are
modest at best. Eigenvector spatial filtering specifications allow marked levels of positive
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SA to be accounted for in a Poisson or negative binomial RV. Meanwhile, the auto-normal
model has heterogeneous variance (because of the matrix inversion involved), and becomes
unstable as its autoregressive parameter approaches the boundary of its feasible SA pa-
rameter space. And, both the winsorized auto-Poisson and the auto-binomial models tend
to enter phase transitions even when SA reaches only moderate levels. These are features
not retained by the eigenvector spatial filtering specifications.

Eigenvector spatial filters involve one of two kinds of specification. The first one simply
is an additive term, Eiβ, where Ei is a 1-by-K row vector of the ith elements of K
eigenvectors, that converts a constant, α, to an observation-specific, variable intercept
term, αi, for observation i. This intercept term is expressed as

αi = α + Eiβ, (2)

and is suitable for linear models. Because 1>Eβ = 0, αi = α. If β = 0 (i.e., zero SA),
αi = α, ∀i. The second specification is a multiplicative one, ki, for observation i. Now an
intercept term for a nonlinear model, such as that for a Poisson RV, is expressed as

eαi = eα

(
neEiβ

∑n
i=1 eEiβ

)
,

where ki = neEiβ/
∑n

i=1 eEiβ. In other words, SA either inflates, does not modify, or
deflates a location-specific intercept term, depending upon whether or not the observation-
specific quantity eEiβ is greater than , equal to, or less than the average spatial filter value
(
∑n

i=1 eEiβ)/n. Because
∑n

i=1 (neEiβ/
∑n

i=1 eEiβ)/n = 1, eαi = eα. If β = 0 (i.e., zero
SA), eαi = eα, ∀i. A generalized version of this multiplicative specification is given by
eEiβ(

∑n
i=1 eEiβ/n)η, where η may be other than −1. Selection of one or the other of

these two specifications is based upon a mean response exhibiting a geographic trend
while its intercept term remains unbiased. Of note is that the appropriate use of additive
or multiplicative SA terms also characterizes spatial autoregressive model specifications
(e.g., the auto-normal versus auto-Poisson model).

3. A Standard Benchmark: Normal Curve Theory

Historically, variable transformations, such as Box-Cox and Manly, were devised so that
well-developed normal curve theory could be used to analyze appropriately transformed
RVs of almost any type. Griffith (2000b) presented a respecification of the auto-normal
pdf as one for n independent normal RVs, Yi = 1, . . . , n for which the expression of each
mean is defined by Equation (2), in keeping with linear model theory (i.e., a standard
linear regression specification):

P(Y1, . . . , Yn) = (2πσ2)−n/2e−
∑n

i=1 [yi−(µi+Eiβ)]2/(2σ2),

where µ denotes the unautocorrelated RV population mean and σ2 denotes the unauto-
correlated RV population variance, both of which are constant across a map. This joint
specification modifies a parameter by rewriting the non-constant mean of an individual
observation i as µi = µ +Eiβ, for which, as an aside, Eiβ becomes the spatially structure
random effects term in a mixed model specification. Accordingly, for each location i,

P(Yi) = (2πσ2)−1/2e−[yi−(µ+Eiβ)]2/(2σ2) = pdfi. (3)
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The joint MGF of Equation (3) for n independent RVs is

M(t1, . . . , tn) =
∫ ∞

−∞
. . .

∫ ∞

−∞
ey1t1pdf1 . . . eyntnpdfn dy1 . . . dyn,

with the marginal distribution for observation i being given by

M(0>m1
, ti,0>m2

) =
∫ ∞

−∞
eyitipdfi dyi = e(µ+Eiβ)t+σ2t2/2, (4)

where 0mj
is an mj-by-1 vector of 0s, with m1 + m2 = n− 1.

The mean of a set of n independent map values has the MGF

M(
∑n

i=1 Yi)/n(t) =
n∏

i=1

e(µ+Eiβ)t/n+σ2(t/n)2/2,

whose first derivative with respect to t, when t = 0, is µ, the mean of the normal RV in
the absence of SA. In other words, the mean is unbiased, and a sample histogram tends to
be distributed around the constant part of the population map mean, except for sampling
error.

The variance of a set of n independent map values is given by the average across all
locations of the second derivative of Equation (4) with respect to ti, when ti = 0, of
Equation (4), adjusted for its mean, yielding

E

(
1
n

n∑

i=1

{Yi − µ}2

)
=

1
n

n∑

i=1

[(Eiβ)2 + σ2] =
K∑

j=1

β2
j + σ2 = σ2


1 +

1
σ2

K∑

j=1

β2
j


 ,

where K denotes the number of eigenvectors in a spatial filter, and (
∑n

i=1 β2
j )/σ2

a SA-signal-to-independent-RV-noise ratio. The variance inflation factor (VIF) is [1 +
(
∑K

j=1 β2
j )/σ2]. This term reduces to 1 when SA is zero (i.e., βj = 0, ∀j).

The skewness of a set of n independent map values is given by the average across all
locations of the third derivative of Equation (4) with respect to ti, when ti = 0, of Equation
(4), adjusted for its mean, yielding

E

(
1
n

n∑

i=1

{Yi − µ}3

)
=

1
n

n∑

i=1

[(Eiβ)3 + 3(Eiβ)σ2] =
1
n

n∑

i=1

(Eiβ)3

= σ3 1
nσ3

n∑

i=1




K∑

j=1

eijβj




3

,

where eij denotes the ith element of the jth eigenvector, which is the numerator of the
skewness measure. Expansion of the cubic expression reveals that this quantity is not 0
if a spatial filter comprises at least three eigenvectors for which βj 6= 0, or if the surface
partitioning in question is other than a regular square tessellation (which lacks symmetry
in the set of elements contained in each of its eigenvectors). Therefore, skewness is given
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by

α3 =
1

nσ3

∑n
i=1

(∑K
j=1 eijβj

)3

(
1 +

∑K
i=1

β2
j

σ2

)3/2
,

indicating that SA tends to distort the skewness of a normal RV. When zero SA is present,
α3 = 0. Finally, the kurtosis (not the excess kurtosis) of a set of n independent map values
is given by the average across all locations of the fourth derivative with respect to ti, when
ti = 0, of Equation (4), adjusted for its mean, yielding

E

(
1
n

n∑

i=1

{Yi − µ}4

)
=

1
n

n∑

i=1

[(Eiβ)4 + 6(Eiβ)2σ2 + 3σ4]

= σ4


 1

nσ4

n∑

i=1




K∑

j=1

eijβj




4

+
6
σ2

K∑

j=1

β2
j + 3


 ,

which is the numerator of the kurtosis measure. If at least a single βj 6= 0, this quantity
does not equal 3σ4. Therefore, kurtosis is given by

α4 =
1

nσ4

∑n
i=1

(∑K
j=1 eijβj

)4
+ 6

σ2

∑K
j=1 β2

j + 3
(
1 + 1

nσ4

∑K
j=1

β2
j

σ2

)2 ,

indicating that SA also tends to distort the kurtosis of a normal RV. When zero SA is
present, α4 = 3; otherwise, it does not.

In conclusion, besides variance inflation, SA impacts upon the skewness and the kurtosis
of normal RVs, a finding essentially ignored in the literature. This impact is more acute for
surface partitioning that do not form a square tessellation. As an example of regular square
tessellation data, consider such a tessellation forming a complete 50-by-40 rectangular
landscape (n = 2000). Suppose the spatial filter is given by SF = 4E1 + 2E2 + E3, the
three eigenvectors of matrix expression give in Equation (1) portraying the highest levels of
positive SA, and consider a standard normal RV. Figure 2a portrays a simulated outcome
for this case, with its affiliated summary statistics appearing in Table 1. As an example
of irregular surface partitioning data, consider the partitioning of China into counties
(n = 2, 379). Using its first three eigenvectors of matrix expression give in Equation (1)
portraying the highest levels of positive SA produces a simulated outcome portrayed in
Figure 3a. Its affiliated summary statistics appear in Table 2.

4. A Heuristic Overview: The Beta RV

The beta distribution is very flexible, being able to mimic a sinusoidal RV, a uniform RV,
a skewed (e.g., exponential form) RV, and a normal RV, and as such furnishes a wide
range of insights into the impacts of SA on histograms. 1985 and McKenzie demonstrated
that an auto- version of the beta probability model is feasible at least for time series data.
More recently, Kaiser et al. (2002) furnished the first spatial version of a beta probability
model that accounts for SA. One issue about which a spatial filter version of the beta
probability model informs concerns selection between a multiplicative and an additive
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Table 1. Simulation examples for a 50-by-40 regular square tessellation.

Standard Beta RV
Statistic normal α = γ = α = γ = α = γ = α = 36 Poisson Binomial

RV 12 250 12; SF/15 γ = 12 RV RV
Theoretical results

Map mean 0 0.50 0.50 0.50 0.75 20 5
VIF 22.0 4.50 1.17 1.19 3.33 76.3 4.3
Skewness 0.42 0.29 0.02 0.02 0.02 3.05 0.09
Kurtosis 2.59 2.39 2.98 1.69 2.55 12.52 1.73

Simulation results
MC 0.95 0.81 0.15 0.22 0.71 0.98 0.85
% variance
accounted 95.4 80.7 14.5 23.5 71.0 98.7 84.9
for by SF
Goodness- Reject H0 Reject H0 Fail to Reject H0 Reject H0 Reject H0 Reject H0

of-fit1 Reject H0

Table 2. Simulation examples for the China county surface partitioning.

Standard Beta RV Poisson Binomial
Statistic normal α = γ = α = γ = α = γ = α = 36, γ = RV; RV

RV 12; SF/2 3; SF/8 1.1; SF/22 12; SF/2 SF/20 SF/2
Theoretical results

Map mean 0 0.5 0.5 0.5 0.5 20 5
VIF 22.0 1.88 1.21 1.08 1.58 19.93 3.89
Skewness 5.77 0.02 0.00 0.00 -0.29 32.98 0.01
Kurtosis 55.29 3.27 2.32 1.81 3.35 1369.89 1.92

Simulation results
MC 1.12 0.54 0.23 0.11 0.42 0.51 0.90
% variance
accounted 95.5 48.9 19.3 11.1 37.3 95.4 82.6
for by SF
Goodness- Reject H0 Mixed Reject H0 Reject H0 Reject H0 Reject H0 Reject H0

of-fit2

parameter adjustment to account for latent SA. Let ki = eEiβ/(
∑n

i=1 eEiβ/n) be the
multiplicative SA factor; if β = 0, then ki = 1. The respecified marginal beta pdfi may be
written as

Γ(αki, γki)
Γ(αki)Γ(γki)

yαki−1
i (1− yi)γki−1,

where 0 < yi < 1, α > 0 and γ > 0, are shape parameters, αki > 0 and γki > 0, and Γ
denotes the gamma function. The marginal distribution for observation i derived from the
joint MGF is

M(0>, ti,0>) =
∫ 1

0
eyitipdfidyi = 1 +

∞∑

h=1

[
h−1∏

r=0

αki + r

αki + γki + r

]
thi
h!

.

The expected value of the mean of n independent map values has the MGF

M(
∑n

i=1 Yi)/n(t) =
n∏

i=1

{
1 +

∞∑

h=1

[
h−1∏

r=0

αki + r

αki + γki + r

]
thi

nhh!

}
,

whose first derivative with respect to t, when t = 0, is α/(α+ γ), which is the mean of the
beta RV in the absence of SA. In other words, the mean is unbiased as well as a constant
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Figure 2. Histograms for simulated positive SA outcomes based on a square tessellation. Top left (a): normal RV.
Top right (b): bell-shaped beta RV. Middle left (c): uniform-shaped beta RV. Middle right (d): negative skewed beta
RV. Bottom left (e): Poisson RV. Bottom right (f): binomial RV.

across a map, and a sample histogram tends to be distributed around the population map
mean, except for sampling error.

A conspicuous problem with this multiplicative specification is that because µi = α/(α+
γ), ∀i, no SA can be detected in a mean response map pattern employing this multiplicative
respecification, even though it creates variance inflation and impacts skewness and kurtosis.
For the case where α = γ, as α = γ increases, the shape of the beta distribution increasingly
is indistinguishable from that of a normal distribution. Therefore, in keeping with Equation
(3), this feature suggests that the appropriate specification should yield µi = α/(α + γ) +
f(Eiβ). Consequently, the multiplicative specification is inappropriate for a beta RV.

In contrast, the additive respecification, such that the parameters become α + Eiβ and
γ −Eiβ, results in the marginal beta pdfi being written as

Γ(α + Eiβ, γ −Eiβ)
Γ(α + Eiβ)Γ(γ −Eiβ)

y
α+Eiβi−1
i (1− yi)γ−Eiβi−1,
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Figure 3. Histograms for simulated positive SA outcomes based on a square tessellation. Top left (a): normal RV.
Top right (b): bell-shaped beta RV. Middle left (c): uniform-shaped beta RV. Middle right (d): negative skewed beta
RV. Bottom left (e): Poisson RV. Bottom right (f): binomial RV.

where, α + Eiβ > 0 and γ − Eiβ > 0. These restrictions need to be carefully assessed
because each eigenvector always contains both positive and negative elements (i.e., its
elements sum to 0, by construction). This specification is in keeping with that formulated
by Hardouin and Yao (2008). Now the marginal MGF for location i is

1 +
∞∑

h=1

(
h−1∏

r=0

α + Eiβ + r

α + γ + r

)
thi
[

h!]. (5)

With this additive specification, the expected value of a map mean becomes

E

(
1
n

n∑

i=1

Yi

)
=

1
n

n∑

i=1

[
α

α + γ
+ Ei

β

α + γ

]
=

α

α + γ
,

which is the mean of the beta RV in the absence of SA. In addition, the individual location
i means, α/(α + γ) + Eiβ/(α + γ), display SA. Again, a sample histogram tends to be
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distributed around the population map mean, except for sampling error.
The variance of a set of n independent map values is given by the average across all

locations of the expected value of the second marginal moment about the mean, or

E

(
1
n

n∑

i=1

{Yi − µ}2

)
=

αγ

(α + γ)2(α + γ + 1)



1 +

α + γ

αγ

K∑

j=1

β2
j



 .

The VIF is {1 + [(α + γ)/(αγ)]
∑K

j=1 β2
j }. This term reduces to 1 when SA is zero (i.e.,

βj = 0, ∀j).
The numerator of skewness calculated with a set of n independent map values is given

by the average across all locations of the expected value of the third marginal moment
about the mean, or

E

(
1
n

n∑

i=1

{Yi − µ}3

)
=

(γ + α)
[
3(γ − α)

∑K
j=1 β2

j + (α + γ) 1
n

∑n
i=1

(∑K
j=1 Eijβj

)]

(α + γ)3(α + γ + 1)(α + γ + 2)

+
2αγ(γ − α)

(α + γ)3(α + γ + 1)(α + γ + 2)
.

Expansion of its cubic expression reveals that this average moment is not 0 when α = γ
if a spatial filter comprises at least three eigenvectors for which βj 6= 0, or if the surface
partitioning in question is other than a regular square tessellation. Here, skewness is given
by

α3 =

√
α + γ + 1 {2γα(γ − α) + (α + γ)}

[
3γα

∑K
j=1 β2

j + (γ + α) 1
n

∑n
i=1

(∑K
j=1 Eijβj

)3
]

(γα)
3
2 (α + γ + 2)

(
1 + α+γ

αγ

∑K
j=1 β2

j

) 3
2

,

indicating that SA tends to distort the skewness of a beta RV. When zero SA is present,
α3 = 0 when α = γ, although α3 = 0 is converged upon as α = γ → ∞, holding the
included SF constant, with non-zero SA affecting this rate of convergence. Finally, the
numerator of kurtosis calculated with a set of n independent map values is given by the
average across all locations of the expected value of the 4th marginal moment about the
mean, or

E

(
1
n

n∑

i=1

{Yi − µ}4

)
=

{
3αγ(2γ2 + γ2α− 2γα + γα2 + 2α2)

+(γ + α)(11γ2 + 6γ2α− 14γα + 6γα2 + 11α2)

×
K∑

j=1

β2
j + 6(γ + α)2(γ − α)

[
1
n

n∑

i=1

( K∑

j=1

Eijβj

)3]

+(γ + α)3
[

1
n

n∑

i=1

( K∑

j=1

Eijβj

)4]}/

{
(α + γ)4(α + γ + 1)(α + γ + 2)(α + γ + 3)

}
.
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If at least a single βj 6= 0, the second, third, and fourth terms on the right-hand-side of
this equation do not equal zero. Therefore, kurtosis is given by

α4 =

{
3αγ(α + γ + 1)(2γ2 + γ2α− 2γα + γα2 + 2α2)

+(γ + α)(α + γ + 1)(11γ2 + 6γ2α− 14γα + 6γα2 + 11α2)
( K∑

j=1

β2
j

)

+6(γ + α)2(γ − α)(α + γ + 1)
[

1
n

n∑

i=1

( K∑

j=1

Eijβj

)3]

+(γ + α)3(α + γ + 1)
[

1
n

n∑

i=1

( K∑

j=1

Eijβj

)4]}/

{[
(αγ)2(α + γ + 2)(α + γ + 3)

(
1 +

α + γ

αγ

K∑

j=1

β2
j

)2]}
,

indicating that SA also tends to distort the kurtosis of a beta RV. Whether or not zero
SA is present, α4 converges on 3 as α = γ → ∞, holding the included SF constant; but,
non-zero SA affects this rate of convergence.

In conclusion, besides variance inflation, SA impacts upon the skewness and the kurtosis
of beta RVs. The type of georeferenced RV of interest here is illustrated by the set of digital
numbers measuring radiance in a remotely sensed image, which commonly range from 0
to 255, with these two extremes indicating minimum and maximum radiance. As with
normal RVs, SA impacts are more acute for surface partitioning that do not form a square
tessellation. Continuing the preceding regular square tessellation example, but for a beta
rather than a normal RV, suppose α = γ = 12 (note: these values were selected because
the extremes of the spatial filter are roughly 8 and 11), which yields the estimates α̂ = 2.2
and γ̂ = 2.1 when non-zero SA is overlooked. Figure 2b portrays a simulated outcome
for this case. A simulated outcome for the case of increasing the parameter values to
α = γ = 250 (a value far greater than what is needed in the absence of SA in order to
mimic a bell-shaped curve) illustrates the preservation of a bell-shaped curve when a SF
is held constant and α = γ increases. Now α̂ = 215.6, γ̂ = 215.3. Thus, although a bell-
shape is preserved, the parameter estimates are grossly wrong. Next, Figure 2c portrays a
simulated outcome for a uniform distribution (i.e., α = γ = 1, and the spatial filter is set
to SF/15), which yields the estimates α̂ = 0.70 and γ̂ = 0.69. Finally, Figure 2d portrays
a simulated outcome for a negatively skewed distribution with α = 36 and γ = 12, which
yields the estimates α̂ = 8.2 and γ̂ = 2.7. Affiliated summary statistics for each of these
four simulations appear in Table 1.

Meanwhile, as an example of irregular surface partitioning data, again consider the
county partitioning of China. The spatial filter SF = 4E4 +2E9 +E10,which renders results
that are more comparable to those obtained with the regular square tessellation than does
SF = 4E1 + 2E2 + E3, has a range of roughly −11 to 12. This spatial filter is used here for
illustrative purposes because dramatic asymmetries in the elements of the original spatial
filter involving E1, E2 and E3 virtually always result in a histogram that resembles a near-
bell-shaped curve (α and γ have to be at least 78) with noticeable positive skewness. This
new spatial filter produces a slightly lower level of positive SA, but furnishes results that
parallel those for a regular square tessellation, allowing counterparts to Figures 2b-2d to
be constructed (Figures 3b-3d). Affiliated summary statistics appear in Table 2.
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5. The Poisson RV

Griffith (2002) also presented a respecification of the auto-Poisson model, one that can
account for a wide range of positive SA, that expresses each log-mean as the sum of a
constant and an eigenvector spatial filter, yielding the pmfi

e−e[ln(µ)+Eiβ−ln(
∑n

i=1 eEiβ/n)]
{

e[ln(µ)+Eiβ−ln(
∑n

i=1 eEiβ/n)]
}yi

yi!
=

eµeEiβ/(
∑n

i=1 eEiβ/n)
[

µeEiβ

(
∑n

i=1 eEiβ/n)

]yi

yi!
, (6)

where ln denotes the natural logarithm, and µ > 0. This specification allows the mean of an
individual observation i to be rewritten as µi = µeEiβ/

(∑n
i=1 eEiβ/n

)
-the multiplicative

spatial filter specification-which results in a constant mean being inflated or deflated,
depending upon whether the eigenvector spatial filter term is greater than, or less than,
the average spatial filter term.

The marginal distribution for observation i derived from the joint MGF is

M(0>, ti,0>) =
∞∑

yi=0

eyitipmfi = eµ[eEiβ/(
∑n

i=1 eEiβ/n)](et−1).

The expected value of the mean of n independent map values has the MGF

M(
∑n

i=1 Yi)/n(t) =
n∏

i=1

eµ[eEiβ/(
∑n

i=1 eEiβ/n)](et−1),

whose first derivative with respect to t, when t = 0, is µ, which is the mean of the Poisson
RV in the absence of SA. In other words, the mean is unbiased, and a sample histogram
tends to be distributed around the population map mean, except for sampling error.

The variance of a set of n independent map values is given by the average across all
locations of the expected value of the second marginal moment about the mean, or

E

(
1
n

n∑

i=1

{Yi − µ}2

)
= µ

[
1− µ +

µ
n

∑n
i=1 e2Eiβ

(
1
n

∑n
i=1 eEiβ

)2

]
.

The VIF is [1 − µ + (µ/n)
∑n

i=1 e2Eiβ/(
∑n

i=1 eEiβ/n)2]. This term reduces to 1 when SA
is zero (i.e., βj = 0, ∀j).

The numerator of skewness calculated with a set of n independent map values is given
by the average across all locations of the expected value of the third marginal moment
about the mean, or

E

(
1
n

n∑

i=1

{Yi − µ}3

)
= µ

[
1− 3µ + 2µ2 +

3(µ−µ2)
n

∑n
i=1 e2Eiβ

(
1
n

∑n
i=1 eEiβ

)2 +
µ2

n

∑n
i=1 e3Eiβ

(
1
n

∑n
i=1 eEiβ

)3

]
.
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Here, skewness is given by

α3 =
µ−1/2

[
1− 3µ + 2µ2 +

3(µ−µ2)
n

∑n
i=1 e2Eiβ

( 1
n

∑n
i=1 eEiβ)2 +

µ2

n

∑n
i=1 e3Eiβ

( 1
n

∑n
i=1 eEiβ)3

]


1− µ +

µ

n

∑n
i=1 e2Eiβ

( ∑n
i=1 eEiβ

n

)2




3
2

,

indicating that SA tends to distort the skewness of a Poisson RV. When zero SA is present,
α3 = 0 when µ →∞, a property not preserved in the presence of non-zero SA. Finally, the
numerator of kurtosis calculated with a set of n independent map values is given by the
average across all locations of the expected value of the fourth marginal moment about
the mean, or

E

(
1
n

n∑

i=1

{Yi − µ}4

}
= µ

{
1− 4µ + 6µ2 − 3µ3 + (7µ− 12µ2 + 6µ3)

[
1
n

∑n
i=1 e2Eiβ

(∑n
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1
neEiβ

)2

]

+(6µ2 − 4µ3)

[
1
n

∑n
i=1 e3Eiβ

(
1
n

∑n
i=1 eEiβ

)3

]
+ µ3

[
1
n

∑n
i=1 e4Eiβ

(
1
n

∑n
i=1 eEiβ

)4

]}
.

Therefore, kurtosis is given by

α4 =
1
µ

{
1− 4µ + 6µ2 − 3µ3 + (7µ− 12µ2 + 6µ3)

[
1
n

∑n
i=1 e2Eiβ

(
1
n
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1− µ +

µ
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i=1 e2Eiβ

(
1
n
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i=1 eEiβ

)2

]2


 ,

indicating that SA also distorts the kurtosis of a Poisson RV. In addition, α4 no longer
converges on 3 as µ → 0 (i.e., the right-hand term in braces does not reduce to 3µ + 1).

In conclusion, besides variance inflation, SA impacts upon the skewness and the kurtosis
of Poisson RVs. As with normal and beta RVs, SA impacts are more acute for surface par-
titioning that do not form a square tessellation. Continuing the preceding regular square
tessellation example, but for a Poisson RV and the spatial filter set to SF/3, suppose
µ = 20 (the minimum value at which a normal approximation is considered very good).
Figure 2e portrays a simulated outcome for this case; the insert depicts the unautocorre-
lated distribution. In this case, SA dramatically increases the number of 0s, reducing the
minimum count from 7 to 0, while increasing the maximum count from 35 to 254, and
transforms the shape to one that looks more like an exponential RV; the resulting gen-
eralized linear model deviance statistic is roughly 44 (indicating excessive extra-Poisson
variation). Affiliated summary statistics for this simulation appear in Table 1. Meanwhile,
yet again as an example of irregular surface partitioning data, consider the county parti-
tioning of China. Figure 3e portrays a simulated outcome for this case; the insert depicts
the unautocorrelated distribution. The deviance statistic quantifying extra-Poisson vari-
ation is approximately 5. As with the square tessellation, SA dramatically increases the
number of 0s, reducing the minimum count from 7 to 0, while increasing the maximum
count from 37 to 873. Affiliated summary statistics for this simulation appear in Table 2.
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6. The Binomial RV

Griffith (2004) presented a respecification of the auto-logistic/binomial model that ex-
presses the expected value of the log-odds ratio as the sum of a constant and an eigenvector
spatial filter. This specification allows the probability of an individual observation i to be
rewritten as

pi =
1

1 + eln[(1−p)/p]/θi
, (7)

where θi = eEiβ+η ln(
∑n

i=1 eEiβ/n) -the generalized multiplicative specification-and p is the
average population probability across a map. The parameter η ensures that

∑n
i=1 pi/n = p.

At least for simulation purposes, this parameter can be estimated with software such as
SAS PROC NLMIXED. In data analysis situations, it becomes part of the estimated
intercept term. Meanwhile, the marginal MGF affiliated with Equation (7) is

M(0>, ti,0>) =
Ntr∑

yi=1

eyitipmfi =

[
p eti

p + 1−p
θi

+
1− p

θ2
i

+
1− p

θi

]Ntr

.

With this multiplicative specification, the expected value of a map mean becomes

E

(
1
n

n∑

i=1

Yi

)
=

Ntrp

n

∑n
i=1 θi

(1− p) + pθi
= Ntrp,

where the value of η is selected to ensure that this equality holds. Once more, a sample
histogram tends to be distributed around the population map mean, except for sampling
error.

The variance of a set of n independent map values is given by the average across all
locations of the expected value of the second marginal moment about the mean, or

E

(
1
n

n∑

i=1

{Yi −Ntrp}2

)
= Ntrp(1− p)

[
1
n

n∑

i=1

Ntrp(1− p)(1 + θ2
i ) + [1− 2Ntrp(1− p)] θi

[(1− p) + pθi]2

]
.

The VIF is
[
(1/n)

∑n
i=1

{
Ntrp(1− p)(1 + θ2

i ) + [1− 2Ntrp(1− p)] θi

}
/[(1− p) + pθi]2

]
.

This term reduces to 1 when SA is zero (i.e., βj = 0, ∀j).
Based upon the third marginal moment about the mean, here skewness is given by

α3 = [Ntrp(1− p)]−1/2

{
√

n
n∑

i=1

N2
trp

2(1− p)2(θ3 − 1)− p
[
1− 3Ntr(1− p) + 3N2

trp(1− p)2
]
θ2
i

[(1− p) + pθi]
3

+
√

n
n∑

i=1

(1− p)
[
1− 3Ntrp + 3N2

trp
2(1− p)

]
θi

[(1− p) + pθi]
3

}/

{ [
n∑

i=1

Ntrp(1− p)(1 + θ2
i ) + [1− 2Ntrp(1− p)] θi

[(1− p) + pθi]
2

]3/2 }
,

indicating that SA tends to distort the skewness of a binomial RV. When zero SA is
present, the right-hand term reduces to (1−2p), and α3 = 0 when p = 1/2 or as Ntr →∞,
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properties that are not preserved in the presence of non-zero SA. Finally, kurtosis is
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n

n∑

i=1

N3
trp

3(1− p)3(1 + θ4
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i [(1− p) + pθi]

4
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2
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 ,

indicating that SA also distorts the kurtosis of a binomial RV. In addition, α4 no longer
converges on 3 as Ntr →∞.

Therefore, in the presence of non-zero SA, a binomial histogram behaves similar to what
is portrayed by both the beta RV (although for discrete values) and the Poisson RV. If
p = 1/2, the binomial histogram tends to: (1) increasingly mimic a bell-shaped curve as
Ntr increases, for low levels of SA; mimic a discrete uniform distribution for intermediate
levels of SA; and, mimic a sinusoidal RV for high levels of SA (i.e., mostly 0 and Ntr

values). As p moves toward 0, the binomial histogram behaves more like that for a Poisson
RV, except that it is constrained to have a maximum count value, Ntr (i.e., extremes tend
to be smaller).

In conclusion, besides variance inflation, SA impacts upon the skewness and the kurtosis
of binomial RVs. As with normal, beta, and Poisson RVs, SA impacts are more acute for
surface partitioning that do not form a regular square tessellation. Continuing the preced-
ing regular square tessellation example, but for a binomial RV, for p = 1/2, the original
spatial filter has η = 0.06405; for p = 1/10, η = 0.54660. The former histogram resembles
Figure 2c, whereas the latter histogram resembles Figure 2e. For p = 1/2 and SF/2.5,
the histogram for a simulated outcome resembles a discrete uniform distribution (Figure
2f); the resulting generalized linear model deviance statistic is roughly 5 (i.e., substantial
extra-binomial variation). Affiliated summary statistics for this simulation appear in Table
1. Meanwhile, as an example of irregular surface partitioning data, once more consider the
county partitioning of China, and consider the new spatial filter, SF = 4E4 + 2E9 + E10;
asymmetries in the original spatial filter eigenvector elements cause marked distortion only
in one tail of the resulting histogram. For p = 1/2 , this spatial filter has η = 0.00108. The
resulting generalized linear model deviance statistic for a simulated outcome is roughly
5 (extra-binomial variation). The counterpart to Figure 2f is Figure 3f. And, affiliated
summary statistics for this simulation appear in Table 2.

7. Methodology for Spatial Scientists

The preceding discussion implies that a spatial scientist should be interested in the nature
of a RV uncontaminated by SA. Regression analysis furnishes a tool for identifying an
underlying spatially independent frequency distribution. The approach outlined here par-
allels that for removing trends with classical linear models to obtain normally distributed
residuals.
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7.1 Recovering the underling unautocorrelated histogram

Recovering the underling histogram for a normal RV is easy. The spatial filter is a linear
combination of eigenvectors constituting a non-constant part of the mean response. The
underlying histogram can be constructed by regressing the response variable Y on the
appropriate set of eigenvectors, and then constructing a histogram with the residuals plus
the intercept term. A synthetic positive spatially autocorrelated normal RV, with a mean
of 0 and a variance of 1, was generated with the SAS pseudo-random number generator
and a spatial filter for a 50-by-40 regular square tessellation. Figure 4 shows the way
the realization changes from its initial normal distribution (Figure 4a), to its positively
spatially autocorrelated distribution (Figure 4b), and then to its recovered underlying
normal distribution (Figure 4c). Figure 4d is a scatterplot constructed with the original
and recovered value pairs, and reveals a very close correspondence between the two (the
corresponding bivariate linear regression has nearly 100% of the variation in the initial
values accounted for by the recovered values, yields an intercept of 0, and a slope of
1). Summary statistics confirm that the recovered histogram (the estimated spatial filter
accounts for roughly 96% of the variance) for this simulation example more closely conforms
to a normal frequency distribution; see Table 3.

Figure 4. Left (a): normal quantile plot for original values. Left-middle (b): normal quantile plot after strong positive
spatial autocorrelation embedded into original values. Right-middle (c): normal quantile plot for recovered values.
Right (d): scatterplot of original and recovered value pairs.

Table 3. Summary statistics the simulation example.

Statistic Original Spatially Recovered
values autocorrelated values values

Shapiro-Wilk probability 0.4078 < 0.0001 0.4686
Skewness 0.0320 0.4270 0.0251
Kurtosis 2.9768 2.5868 2.9827

Because this simulation employed a regular square tessellation, the increase in skewness
is surprisingly high; its theoretical value is 0.4196. The change decrease kurtosis is as
anticipated; its theoretical value is 2.5950. In addition, the variance inflation attributed to
the embedded positive spatial autocorrelation is roughly 22.
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Recovering the underling histogram for a Poisson RV is more difficult, in part because
one SA impact on this RV is a tendency to create excess zeroes, and in part because it
involves a discrete RV. Fortunately, this former complication can be handled with a zero-
inflated Poisson regression model. This latter complication introduces some distortion in
the recovered results. The recovered histogram can be constructed with the following data
analysis steps:
Step 1. Calculate expected values with a zero-inflated Poisson regression of a georefer-
enced RV on a candidate set of eigenvectors,
Step 2. Estimate Poisson probabilities for these expected values,
Step 3. Use the estimated probabilities and adjusted intercept term alone to compute the
corresponding counts with a CDF, which then are used to construct the histogram.

Figure 5 portrays the results for a simulated example. Although the recovered histogram
has an inflated mean, its variance is correct, and it is much better behaved vis-à-vis a
Poisson RV.

Figure 5. Left (a): simulated Poisson counts histogram. Left-middle (b): positive spatially autocorrelated Poisson
counts histogram. Right-middle (c): spatial filter recovered Poisson counts histogram. Right (d): scatterplot of
original and recovered value pairs.

Finally, recovering the underling histogram for a binomial RV is even more difficult,
in part because a correction factor that needs to be estimated is involved, and in part
because both 0 and Ntr can become inflated. Fortunately, this correction factor appears to
converge on 1 in the limit, although this convergence seems to be hampered by irregularities
in surface partitioning. Unfortunately, Ntr-inflated binomial model estimation techniques
do not exist. The recovered histogram for a simulated binomial RV with Ntr = 50 and
p = 0.26801 more closely conform to a binomial distribution (Figure 6). The recovered
histogram can be constructed with the following data analysis steps:
Step 1. Standardize to Ntr = 1, 000 (exploits asymptotics for correction factor),
Step 2. Use beta distribution to redistribute y = Ntr inflated values,
Step 3. Utilize the estimated probabilities and adjusted intercept term alone to compute
the corresponding counts with a CDF, which then are used to construct the histogram.
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Again the recovered histogram is much better behaved vis-à-vis a binomial RV.

Figure 6. Left (a): simulated binomial counts histogram. Left-middle (b): positive spatially autocorrelated binomial
counts histogram. Right-middle (c): spatial filter recovered binomial counts histogram. Right (d): scatterplot of
original and recovered value pairs.

8. Discussion and Implications

Based upon the eigenvector spatial filter probability model specification, the preceding
analyses suggest the following conjecture:

Conjecture: Even if positive SA does not introduce bias into a map mean for a georef-
erenced RV, it inflates the RV’s map variance, and it tends to distort the RV’s skewness
and kurtosis, rendering a misleading histogram constructed with observed georeferenced
data when non-zero SA is overlooked.

Four specific instances of this conjecture are the following theorems.

Theorem 8.1 Positive SA does not introduce bias into a map mean for a georeferenced
normal RV, but inflates its variance, and alters its skewness and kurtosis, rendering a
misleading histogram constructed with observed georeferenced data when non-zero SA is
overlooked.

Proof
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{Yi − µ}4

)
6= 3.

This is the most straightforward RV result. ¥
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Theorem 8.2 Positive SA does not introduce bias into a map mean for a georeferenced
beta RV with parameters α > 0 and γ > 0, but inflates its variance, and alters its skewness
and kurtosis, rendering a misleading histogram constructed with observed georeferenced
data when non-zero SA is overlooked.

Proof
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.

¥

This beta RV treatment appears to be one of the few attempts to formulate a beta
RV specification that accounts for SA; see also Kaiser et al. (2002); Hardouin and Yao
(2008). Its principal advantage is that it mimics many other RV histograms, making it an
important but overlooked spatial model supporting the preceding conjecture, and as such
furnishes a heuristic tool for exploring the impacts of SA on numerous RVs. In addition,
although an asymptotic normal approximation remains a property, convergence is slowed
by positive SA.

Theorem 8.3 Positive SA does not introduce bias into a map mean for a georeferenced
Poisson RV, but inflates its variance, and alters its skewness and kurtosis, rendering a
misleading histogram constructed with observed georeferenced data when non-zero SA is
overlooked.

Proof
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¥

This result is particularly useful because the Poisson, exponential, and gamma auto-
models tend to be of little practical interest because they can be applied only to spatial
competition situations. Kaiser and Cressie (1997) offered a specification to circumvent
this restriction. In contrast, the eigenvector spatial filter specification furnishes probability
models for a wide range of spatial cooperation situations involving count data, and as such
appears to be superior to this alternative specification. Finally, the following theorem is
established.

Theorem 8.4 Positive SA does not introduce bias into a map mean for a georeferenced
binomial RV with parameters p and Ntr (i.e., the number of trials), but inflates its variance,
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and alters its skewness and kurtosis, rendering a misleading histogram constructed with
observed georeferenced data when non-zero SA is overlooked.

Proof
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¥

For Theorems 3 and 4, the asymptotic normal approximation property also is lost in the
presence of positive SA.

In contrast, the central limit theorem for y still holds, although the rate of convergence is
slowed by the presence of positive SA. This finding is in keeping with Mardia and Marshall
(1984).

Theorem 8.5 Let Yi, i = 1, . . . , n, be n real values tagged to n regular square lattice
locations forming a rectangular region on a map, each with a finite mean, µ , and variance,
and with the map containing positive SA (i.e., the Yi display nearby location correlation).
Given an eigenvector spatial filter specification of the n marginal pdfi/pmfis, as the number
of locations increases (either infill or increasing domain asymptotics), the distribution of
the sample map mean approaches a normal distribution with mean µ and variance σ2VIF/n
regardless of whether the original Yi are normal, beta, Poisson or binomial RVs.

Proof

E (y) = µ; E
({y − µ}2

)
= σ2VIF/n, VIF 6= 1;

lim
n→∞E

({y − µ}3
)

=
limn→∞ µ∗3√
n (σ2VIF)3/2

= 0;
limn→∞ E

({y − µ}4
)

(σ2VIF)2
= 3,

given Lemma 2, where µ∗k are the kth moments about the mean when positive SA is
present. This Lemma 2 also implies that the sums of the third and of the fourth powers
of a spatial filter across a map converge to finite values in the limit; see Appendix. ¥

The variance of the sampling distribution decreases as n increases, but more slowly than
if VIF = 1. Skewness converges on 0, but more slowly than if VIF = 1 and µ∗3 = µ3. And,
convergence on a normal distribution is slower in the presence of positive SA. This result
relates to the reduction in degrees of freedom from n (i.e., the effective degrees of freedom)
for a sampling distribution when positive SA is present in data; see, e.g., Clifford et al.
(1989).

In conclusion, the eigenvector spatial filter mixture model specification outlined here
furnishes a relatively simple way to account for SA in georeferenced data for any valid
marginal distribution 1. It also reveals that constructing histograms with such data can

1Griffith and Peres-Neto (2006) showed that this eigenvector formulation generalizes from the binary matrices used
in this paper to distance-based neighbor matrices. The conceptualization parallels that presented in Hodges and
Reich (2010).
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yield misleading suggestions about the RVs under study when SA is overlooked. Con-
sequently, spatial scientists need to initiate descriptive statistical analyses based upon
recovered frequency distributions that remove impacts of latent SA in their georeferenced
data. In addition, future research needs to improve the independent and identically dis-
tributed (i.e., iid) RV recovery technique, which for non-normal RVs is slightly distorted
in the right-hand tails (see Figures 5 and 6), and yields a slightly inflated mean.

Appendix: Convergence Values for the Illustrative Additive Spatial
Filter, SF = 4E1 + 2E2 + E3

(A1) lim
n→∞
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k=1

SFjk = 0,

(A2) lim
n→∞
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j=1

Q∑

k=1

SF 2
jk =

3∑

h=1

β2
h = 42 + 22 + 12 = 21,

(A3) lim
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P∑

j=1
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SF 3
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Q∑
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βfβgβhejk,fejk,gejk,h =
6(4)(2)(1)(2048)

(255π2)
= 44.2679,

(A4) lim
n→∞
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Q∑
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SF 4
jk =

9
4

3∑

h=1

β4
h + 6

2∑

g=1

3∑

h=g+1

β2
gβ2

h

=
9
4
(44 + 24 + 14) + 6(4222 + 4212 + 2212) = 1126.97.

The respective values for the 50-by-40 square tessellation are as follows:

(A1): 0,
(A2): 21,
(A3): 43.29,
(A4): 1118.25.

(A3) and (A4) in this numerical example are very close to their asymptotic values.
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