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Abstract

Spearman’s footrule is a well known measure of disarray for ranked data that recently
has found applications in many areas of research. Exact, computational, and asymptotic
properties of the measure are discussed using a unified approach utilizing a Markovian
property with an inherited martingale structure, extension to the partial rankings case
is discussed. A method allowing the generation of weighted versions is introduced, and
asymptotic normality is established.
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1. Introduction

Spearman’s (1906) footrule is a well known measure of disarray for ranked data (see Dia-
conis and Graham, 1977) that recently has found applications in several areas of research,
including aggregate rankings for search engines, bioinformatics, genomics, information sci-
ence, litigation and management science; see Berman (1996), Kim et al. (2004), Fagin et
al. (2006), Pihur et al. (2007, 2008), Bar-Ilan et al. (2007), Sufyan and Ahmed (2007),
Jurman et al. (2008), Lin and Ding (2009), Lee and Yu (2010), and Powell and Reinhardt
(2010). The measure has been extended to cases where we have incomplete, censored or
multivariate data; see Critchlow (1985), Alvo and Charbonneau (1997), Sen et al. (2003),
Salama and Quade (2004), Ubeda-Flores (2005), and Quade and Salama (2006). We also
refer to the recent survey by Genest et al. (2010).

Beside theoretical interest, incomplete rankings (censored rankings) appear naturally in
ranking the top k out of n objects. This is the case when a search engine responds to a
search query. Out of a million items (related to the query), the search engine reports the
top (say) 100 items. The search engine may report more, but (for all practical purposes)
only the top 100 are of interest. The problem also appears in comparing the results of
different search engines. Again, each search engine reports the top (say) 100 items, and we
would like to find a measure that may be used to study if these results are “consistent”
with each other (or, if we have an internal agreement among the several reported results).
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Two measures are widely used in this situation: Kendall’s tau and Spearman’s footrule.
Most of the works (so far) have used these measures as “deterministic” measures, meaning
comparison is done based on the actual value of the measure (not much about probability).

Another important problem where Spearman’s footrule is used is in the determination
of the top k genes (out of n genes, where k is relatively small and n is large). It is also used
to study the reproducibility of microarray experiments (Kim et al., 2004), and to address
stability issues (Boulesteix and Slawski, 2009), meaning if the produced “rankings” (of the
objects under consideration) will remain approximately the same after small perturbations
in the data. Another problem that uses Spearman’s footrule is the aggregation of several
ranks or partial ranks to produce a final list, in which Spearman’s footrule and weighted
versions of it are used; see Dwork et al. (2001), Fagin et al. (2003), Fagin et al. (2004),
Pihur et al. (2009), and Lin (2010). Weighted versions for Spearman’s rank correlation
and Kendall’s tau have been discussed in Salama and Quade (1982), Quade and Salama
(1992), Mango (1997), Shieh (1998), Blest (2000), Costa et al. (2001), Costa and Soares
(2005, 2007), Genst and Plante (2007), and Tarsitano (2009).

The exact distribution of Spearman’s footrule is discrete in nature. This may be ef-
ficiently generated (under the assumptions of independence and uniformity) using the
algorithm introduced in Salama and Quade (2002), which may be reasonable to use in the
case of a moderate number of objects. But, in many applications, the number of objects
being ranked (or considered for ranking) becomes increasingly large (tens of thousands),
hence, there is a practical need for asymptotics. Diaconis and Graham (1977) provided a
proof for the asymptotic normality using Hoeffding’s (1951) combinatorial limit theorem.
Another approach was considered by Sen and Salama (1983) and extended by Sen et al.
(2003) to study the asymptotic normality for the partial rankings case, using a Markovian
property, with an inherited martingale structure.

This paper is organized as follows. In Section 2, we discuss Spearman’s footrule for
full ranks (permutations), providing a representation as a linear combination of a Markov
chain. This representation allows for an algorithm computing the exact distribution (of
Spearman’s footrule) in O(n4) time. This also conduces to a martingale structure leading
to (a more general) limit theorem. In Section 3, we extend the results to the partial rankings
case. In Section 4, we include weighted versions of the measure using the same framework
considered in Section 3. We conclude by some remarks in Section 5.

2. The Full Ranking Case

In this section, we consider an equivalent representation of a metric known as Spearman’s
footrule with an inherited Markovian structure. This structure greatly facilitates the study
of the exact and asymptotic properties of such a metric.

Let Sn be the set of all (n!) permutations of the first n integers {1, . . . , n}. As in Diaconis
and Graham (1977), we may define Spearman’s footrule (Dn) on Sn by

Dn(πn, σn) =

n
∑

i=1

|σn(i) − πn(i)|, (1)

where σn = (σn(1), . . . , σn(n)) and πn = (πn(1), . . . , πn(n)) are elements of Sn. The rela-
tionships of Dn with other commonly used non-parametric measures of association (such as
Kendall tau and Spearman rho) and its asymptotic normality (under the assumption that
σn and πn are chosen independently and distributed uniformly in Sn) have been studied
by Diaconis and Graham (1977).
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2.1 Representation

First, we assume (without loss of generality) that πn = (1, . . . , n), the identity permutation.
Then, we may write

Dn(σn) = Dn(1n, σn) =

n
∑

i=1

|i − σn(i)|.

Second (as in Salama and Quade, 1982), for σn ∈ Sn, and for j = 1, . . . , n, let

Tn,i = Tn,i(σn) = Tn,i(1n, σn) =

i
∑

j=1

I(σn(j) ≤ i)

and

Tn = Tn(σn) = Tn(1n, σn) =

n
∑

i=1

Tn,i.

Then (see Sen and Salama, 1983) we have the following representation. For every σn ∈ Sn

and n (≥ 1), we have

Tn(σn) +
1

2
Dn(σn) =

n(n + 1)

2
.

2.2 Markovian property

The importance of this representation lies in the following theorem.

Theorem 2.1 For every n (≥ 1), whenever σn is distributed uniformly on Sn and
{Tn,i: i ≤ n} is a Markov chain, i.e., for every k (≤ n − 1) and 0 ≤ r1 ≤ · · · ≤ rk ≤
rk+1(≤ n),

P(Tn,k+1 = rk+1|Tn,j = rj, j ≤ k) = P(Tn,k+1 = rk+1|Tn,k = rk).

Proof Let P be the set of all permutations (of {1, . . . , n}) satisfying the condition {Tn,1 =
r1, . . . , Tn,k = rk}. It is easy to see that for any σ ∈ P, Tn,k+1 can only assume the values
rk, rk +1 and rk +2. If (σ(1), . . . , σ(n)) ∈ P, then among the set {σ(1), . . . , σ(k)}, we have
k − rk elements of the set {k + 1, . . . , n}. If we denote this set by A and its complement
by Ac, then, we may have either of the following:

(i) k + 1 ∈ A. This happens with the (conditional) probability

(

n − k − 1
n − rk − 1

)

(

n − k
k − rk

) =
(k − rk)

(n − k)

and
(ii) k + 1 ∈ Ac . This happens with the (conditional) probability

1 −
(k − rk)

(n − k)
=

(n − 2k + rk)

(n − k)
.
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In case (i), Tn,k+1 can assume only the values rk + 1 or rk + 2 with probabilities [(n− k)−
(k − rk)]/(n − k) and (k − rk)/(n − k), respectively, while in case (ii), Tn,k+1 can assume
only the values rk and rk+1 with respective probabilities [(n − k) − (k − rk) − 1]/(n − k)
and [(k − rk) + 1]/(n − k). Thus, the assumed values of Tn,k+1 (rk,rk + 1 and rk + 2) and
their respective (conditional) probabilities (given Tn,i, for i ≤ k) depend only on the value
rk assumed by Tn,k. �

By a similar (elementary) argument to that of Theorem 2.1, we have the following lemma.

Lemma 2.2 Let σn to have a uniform distribution on Sn. Then, for every k and r

P(Tn,k = r) =

(

k
r

)(

n − k
k − r

)

(

n
k

) , r = max{0, (2k − n)}, . . . , k, 1 ≤ k ≤ n,

and, for every k < q and r ≤ s,

P(Tn,k = r, Tn,q = s) =

(

n − q
q − s

)

∑

u≥r

(

k
u

)(

q − k
s − u

)(

u
r

)(

q − u
k − r

)

n![k!(q − k)!(n − q)!]−1
.

Based on results of Lemma 2.2, we have the following lemma.

Lemma 2.3

P(Tn,k+1 = s|Tn,k = r) =























(n−2k+r)(n−2k+r−1)
(n−k)2 , s = r;

(n−2k+r)(2k−2r+1)
(n−k)2 , s = r + 1;

(k−r)2

(n−k)2 , s = r + 2;

0, s ≥ r + 3 or s < r.

Hence, for k = 0, . . . , n − 1 (letting Tn,0 = 0),

E(Tn,k+1|Tn,k) =
(n − k − 1)2

(n − k)2
Tn,k +

2k + 1

n − k
−

k

(n − k)2
.

From Lemma 2.3, we also

µn,k = E(Tn,k) =
k2

n
, (2)

γ2
n,k = Var (Tn,k) =

k2(n − k)2

n2(n − 1)
, (3)

and

γn,kq = Cov (Tn,k, Tn,q) =
k2(n − q)2

n2(n − 1)
, k ≤ q. (4)

Based on Equations (2)-(4), we have µn = E(Tn) = n(2n + 1)/6 and γ2
n = Var (Tn) =

(n + 1)(2n2 + 7)/180. We also write νn,k = E(T 2
n,k) = γ2

n,k + µ2
n,k, for 0 ≤ k ≤ n.
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2.3 Exact distribution

The exact distribution of Dn given in Equation (1), –assuming σ and π are chosen in-
dependently at random from Sn– may be obtained by complete enumeration of all n!
elements of Sn. Ury and Kleinecke (1979) tabulated this distribution for n = 2(1)10, also
providing a Monte Carlo approximation for n = 11(1)15. By modifying the complete enu-
meration approach, Franklin (1988) extended the exact tables to n = 18. An intrinsically
different approach was used by Salama and Quade (1990) to further extend the tables to
n = 40. Salama and Quade (2002) showed that the algorithm used can compute the exact
distribution in a O(n4) polynomial time. We outline the algorithm as follows:

(i) For 1 ≤ i ≤ n, let Li = i − Ti, and reexpressed Dn as

Dn

2
=

n(n + 1)

2
−

n
∑

i=1

Ti =
n

∑

i=1

(i − Ti) =
n

∑

i=1

Li.

(ii) By direct substitution in first equation of Lemma 2.3, consider

P(Li+1 = li+1|Li = li) =















[(n−i)−li][(n−i)−li−1]
(n−i)2 , li+1 = li + 1;

[(n−i)−li](2li+1)
(n−i)2 , li+1 = li;

l2
i

(n−i)2 , li+1 = li − 1.

Computations of the exact distribution of Dn is easier using the sequence {Li}.

(iii) Let P
(n)
k be the matrix of dimension (d1(n, k), d2(n, k)) whose (X,Y ) element is

P
(n)
k [X][Y ] = P

( k
∑

i=1

Li = X,Lk = Y

)

,

where 0 ≤ k < n. For every k and n, the minimum values of X and Y are both
0, assumed if (for example) σ = (1, . . . , n) and hence every Li = 0. The maximum
values occur if (for example) σ = (n, n − 1, . . . , 1). In this case, if k ≤ n/2, then
X = k(k + 1)/2 and Y = k. If k > n/2, then Y = n− k; but X = (n2/4)− (1/2)(n−
k)(n− k − 1) if n is even and is smaller by 1/4 if n is odd. Thus for n even and odd,
we have respectively

d1(n, k) =

{

k(k+1)
2 + 1, if k ≤ n

2 ;
n2+4

4 − 1
2 (n − k)(n − k − 1), if k > n

2 ,
and

d1(n, k) =

{

k(k+1)
2 + 1, if k < n

2 ;
n2+3

4 − 1
2(n − k)(n − k − 1), if k > n

2 ,
while

d2(n, k) =

{

k + 1, if k ≤ n
2 ;

n − k + 1, if k ≥ n
2 .

(iv) Obtain P
(n)
k+1 from P

(n)
k using the double loop described in the Appendix and the

algorithm for getting P
(n)
n is as follows:

(a) Let P
(n)
0 be a 1 × 1 matrix with P

(n)
0 [0][0] = 1.

(b) For k = 0, . . . , n − 1, get P
(n)
k+1 from P

(n)
k .
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2.4 Asymptotic normality

The advantage of the approach of Sen and Salama’s (1983) using the Markovian property
and the associated martingale structure is that it allows for a random sample of size n
and it is easily extended to cover the censored ranks situation. We present a brief outline.
We consider the standardized version T ∗

n = (Tn − E(Tn))/γn. For 1 ≤ k ≤ n − 1, we

let dnk = [(n − k + 1)(2k − 1) − (k − 1)]/[(n − k)(n − k + 1)]2, and d∗nk =
∑k

j=1 dnk. If

we write Ynk = Tn,k/(n − k)2 − d∗nk, Bnk = B(Tnj; j ≤ k), then, for k = 0, . . . , n, we
have E(Ynk|Bn,k−1) = Yn,k−1, for 1 ≤ k ≤ n − 1. Now, if we let Znk = Ynk − Yn,k−1, for
1 ≤ k ≤ n − 1, then the Znk’s are martingale differences, and we may write

Tn − E(Tn) =

n−1
∑

k=1

[

1

6
(n − k)(n − k + 1)(2n − 2k + 1)

]

Znk.

If we let cni = (n − i)(n − i + 1)(2n − 2i + 1)/6[(n + 1)(2n2 + 7)/180]1/2 and Uni = cniZni

(setting Un0 = 0), for 1 ≤ i ≤ n − 1, then we have T ∗
n =

∑n−1
k=1 Unk, for 1 ≤ k ≤ n − 1,

E(Unk|Bn,k−1) = 0, and
∑n

i=1 E(U2
ni) = 1, for n ≥ 1.

Thus, T ∗
n relates to a martingale array normalized by

∑n
i=1 E(U2

ni) = 1. To establish the
asymptotic normality we need only to verify the following:

U∗
n =

n−1
∑

i=1

U∗
ni =

n−1
∑

i=1

E(U2
ni|Bn,i−1)

p
→ 1, (5)

and, for every ǫ > 0,

n
∑

i=1

E[U2
niI(|Uni| > ǫ)|Bn,i−1]

p
→ 0, (6)

where
p
→ denotes convergence in probability. Noting that Tn,k are non-negative, it can

be easily seen (for 1 ≤ i ≤ n − 1) that |Uni| ≤ Cn−1/2 with probability 1, where C
(0 < C < +∞) does not depend on n. That ensures that Equation (6) holds for n
adequately large. Further, since

∑n
i=1 E(U2

ni) = 1, to prove Equation (5), it suffices to
show that E(U∗

n − 1)2 → 0 as n → ∞. Towards this, note that, for 1 ≤ i ≤ n − 1,

U∗
ni = E(U2

ni|Bn,i−1) = aniT
2
n,i−1 + bniTn,i−1 + gni,

where ani = O(n−3), bni = O(n−2) and gni = O(n−1), 1 ≤ i ≤ n − 1. Furthermore,

U∗
n − 1 = U∗

n − E(U∗
n) =

n−1
∑

i=1

[ain(T 2
n,i−1 − νn,i−1) + bni(Tn,i−1 − µn,i−1)].

Noting that (for 1 ≤ i ≤ n − 1) E(T 2
n,i−1 − νn,i−1)

2 = O(n3), E(Tn,i−1 − µn,i−1)
2 = O(n),

E(T 2
n,i−1−νn,i−1)(Tn,i−1−µn,i−1) = O(n2) and E(Tn,i−1−µn,i−1)(Tn,j−1−µn,j−1) = O(n),

we obtain E(Ūn − 1)2 = O(n−1), and Equation (5) holds.
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3. Ranking the Top k Objects

In this section, we discuss an extension of Spearman’s footrule to the partial rankings
problem, i.e., ranking the top k items out of n objects.

Let σ be a permutation of Sn (the set of all n! permutations of {1, . . . , n}). Consider the
right-censored case in which, for some k = 1, . . . , n, we observe σk = (σ1k, . . . , σnk), where

σik = σiI(σi ≤ k) + (k + δk)I(σi > k), i = 1, . . . , n,

with I(B) being the indicator function od the set B, and the non-stochastic non-negative
constant δk may be made to depend on k (which is determined as 1 in 3.2 below). Note
that all censored ranks are greater than k. Hence, δk must be bigger or equal than 1. This

situation corresponds to projecting Sn onto subspaces S
(k)
n such that S

(0)
n = 0 ⊆ S

(1)
n ⊆

· · · ⊆ S
(n)
n = Sn. For our subsequent analysis, we take π as the identity permutation

π = (1, . . . , n), so that we may define πk = (π1k, . . . , πnk) by

πik = iI(i ≤ k) + (k + δk)I(i > k), i = 1, . . . , n.

With this notation, for any element σk of S
(k)
n , we define (without any loss of generality)

Dnk(σk) = D(σk, πk) =

n
∑

i=1

|σik − πik|, k = 1, . . . , n.

3.1 Representation

We have the following theorem due to Sen et al. (2003).

Theorem 3.1 For every σ ∈ Sn and k = 0, . . . , n,

Dn,k(σ) = 2

k−1
∑

i=1

Li(σ) + 2δkLk(σ). (7)

3.2 Optimal choice of δk

Theorem 3.1 shows that Dn,k(σ) is an increasing function of δk. In addition, we have
already noted earlier that the δk cannot be smaller than 1. Thus, interpreting Dn,k(·) as a
metric and minimizing it with respect to δk, it produces the normal choice δk = 1, for all
k ≤ n; see Alvo and Cabilio (1995). We remark in passing that the choice δk = (n−k+1)/2
made by Critchlow (1985), though it may seem natural in making the mean rank equal to
(n + 1)/2, does not correspond to the projection principle so that produces stochastically
larger values of Dn,k(σ). Therefore, in what follows, we take δk = 1, hence

Dn,k(σ) = 2

k
∑

i=1

Li(σ), k = 0, . . . , n. (8)
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3.3 Exact properties

Noting that Tk(σ) = k − Lk(σ), for all k ≤ n, we have E(Lk(σ)) = k(n − k)/n, for
k = 1, . . . , n. Hence,

E(Dn,k(σ)) = k(k + 1)

(

1 −
2k + 1

3n

)

, k = 0, . . . , n.

Also, we have

Cov (Lk(σ), Lq(σ)) =
k2(n − q)2

n2(n − 1)
, 1 ≤ k ≤ q ≤ n. (9)

Equation (9) leads to (for 1 ≤ k ≤ q ≤ n)

Vnkq = Cov (Dn,k(σ),Dn,q(σ))

=
4

n2(n − 1)





k
∑

i=1

i
∑

j=1

j2(n − i)2 +

k
∑

i=1

n
∑

j=i+1

(n − j)2i2





=
k(k + 1)

45n2(n − 1)

{

30[q(2k + 1) + 1 − k2]n2 − 6(2k + 1)
[

5q(q + 1)

− (k − 1)(k + 2)
]

n + 5(2k + 1)q(q + 1)(2q + 1)
}

.

Letting k = q, we have

Vnk = V(Dn,k(σ))

=
k(k + 1)

45n2(n − 1)

[

30(k2 + k + 1)n2 − 12(2k + 1)(2k2 + 2k + 1)n + 5k(k + 1)(2k + 1)2
]

.

3.4 Exact and asymptotic distributions

The exact distribution of Dn,k(·) can be easily obtained from the algorithm presented in

Section 2. We construct the matrix P
(n)
k whose elements are P

(n)
k [X][Y ] = P(

∑k
i=1 Li =

X,Lk = Y ). Now, P(
∑k

i=1 Li = X) =
∑

y P
(n)
k [X][Y ]. We write

Yi(σ) =
Ti(σ)

(n − i)2
−

i
∑

j=1

dni, i = 1, . . . , n, (10)

where

dnj =
(n − j + 1)(2j − 1) − (j − 1)

(n − j)2(n − j + 1)2
, j = 1, . . . , n. (11)

Notice that
∑i

j=1 dnj = i2/[n(n − i)2] and that the partial sequence {Yi(σ), 0 ≤ i ≤ n} is

a zero-mean martingale array. Now, expressing the Ti(·) in terms of the Li(·), we have

Li(σ) =
i(n − i)

n
− (n − i)2Yi(σ), i = 1, . . . , n. (12)
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Using Equations (12) and (8), we obtain

Dn,k(σ) = 2

k
∑

i=1

i(n − i)

n
− 2

k
∑

i=1

(n − i)2Yi(σ), k = 1, . . . , n.

To capture the full implication of this representation along with the martingale characteri-
zation, we now formulate a permutational functional limit theorem which yields a stronger
result than the asymptotic normality at fixed k. We consider an integer-valued sequence
{kn(t): t ∈ [0, 1]} by letting

kn(t) =max
k

{

Vnk

Vnn
≤ t

}

, t ∈ [0, 1],

so that kn(t) is a non-decreasing jump function with jumps at each value of Vnk/Vnn,
for k ≤ n (note Vnk is non-decreasing in k). Let us define a stochastic process Wn =

{Wn(t), t ∈ [0, 1]} by letting Wn(t) = V
−1/2
nn [Dn,kn(t)(σ) − E(Dn,kn(t)(σ))], for t ∈ [0, 1]. In

this context, we may note that if n increases with k/n → t and 0 ≤ t ≤ 1, then

E(Dn,k(σ))

n(n2 − 1)
→

1

3
t2(3 − 2t).

Similarly, Vnk/Vnn → t4(15− 24t + 10t3). Also, as n increases with k/n → t, q/n → s, and
0 ≤ t < s ≤ 1, then

Vnkq

Vnn
→ t3(30s − 30s2 + 10s3 − 15t + 6t2).

These expressions are useful in computing the covariance function of Wn(t). Side by side,
we consider a Gaussian function W = {W (t), t ∈ [0, 1]} on [0, 1] which has zero drift and
covariance function

γ(t, s) = E(W (t)W (s)) = t3(30s − 30s2 + 10s3 − 15t + 6t2), 0 ≤ t ≤ s ≤ 1.

As such, using the functional central theorem for martingale arrays (viz. Theorem 2.4.2
of Sen, 1981), as adopted here under Pn (the uniform distribution over Sn), we arrive by
some routine steps at the following result.

Theorem 3.2 Under Pn, as n increases, Wn weakly converges to W , in the Skorokhod-J1

topology on D[0, 1].

As a direct consequence of this result, we claim that as n increases with k/n → t, for
some t ∈ (0, 1], the standardized version of Dn,k(σ) is closely normally distributed. Further,
Wn(·) is tight (as n increases), hence the uniform continuity in probability condition holds.
This enables us to draw conclusions about the asymptotic distribution of Dn,k(σ) when k
itself is random.

4. Weighted Spearman’s Footrule

In this, we include weighted versions of Spearman’s footrule using the same framework
considered in Section 3 where we proposed an extension of the Spearman’s footrule to the
partial rankings case.
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Sometimes it is desirable to assign greater weight to the first ranked item, less to the
second, and so on. For example, consider the following three permutations (rankings) in
S5: π = (1, 2, 3, 4, 5), σ1 = (2, 1, 3, 4, 5), and σ2 = (1, 2, 3, 5, 4). Using Spearman’s rank
correlation, Spearman’s footrule, or Kendall’s tau, the correlation (distance) between π
and σ1 is the same as that between π and σ2. But we notice that σ1 disagrees with π on
the first two positions, while σ2 disagrees with π on the last two positions. Accordingly,
we would like a new version (of these measures) to indicate that σ2 is closer to π than σ1

(or the correlation between π and σ2 is higher than that between π and σ1).
Regular (unweighted) measures of correlation assign the same weights to all observations.

In contrast, weighted measures assign different weights. For example, higher weights to
observations that agree on lower ranks. This notion is gaining more popularity in light
of the increased interest in measures of correlations addressing the agreement between
two rankings dealing with the top k out of n objects (as indicated in the web search
situation, and the top number of genes situation). In some sense, the censored rankings
measures are a form of weighted measure that (sort of) assigns a weight equal to one for
observations that have a rank less than k, assigned by at least one “judge”, and a weight
of zero otherwise. Back to Spearman’s footrule, Jurman et al. (2008) used the Canberra
distance (see Lance and Williams, 1967) given by

Ca(π, σ) =

n
∑

i=1

|π(i) − σ(i)|

π(i) + σ(i)
.

Replacing unranked items (when we have censored data) by k + 1, Jurman et al. (2008)
provided the following version of the Canberra distance under censoring

Ca(k+1)(π, σ) =

n
∑

i=1

|min(π(i), k + 1) − min(σ(i), k + 1)|

min(π(i), k + 1) + min(σ(i), k + 1)
.

They provided its expected value (up to o(1)) term by

E(Ca(k+1)) =
(k + 1)(2n − k)

n
log (4) −

2kn + 3n − k − k2

n
.

Another weighted version is related to the statistic T introduced in Salama and Quade
(1982), where (assuming π = (1, . . . , n)), T (σ) = T (π, σ) =

∑n
i=1 Ti(σ)/i. This was intro-

duced as a weighted version of Spearman’s footrule based on

Dn(σ) = D(π, σ) =
n

∑

i=1

|i − σ(i)| = n(n + 1) − 2
n

∑

i=1

Ti(σ).

Note that T (σ) may be recast as a metric on Sn as

d(π, σ) = n −

n
∑

i=1

Ti(π, σ)

i
,

where (if we drop that π = (1, . . . , n)), then, we may define Ti(π, σ) = #{Ai(π) ∩ Ai(σ)},
where Ai(π) (Ai(σ)) is the set of objects that are ranked i or less by π (σ).
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4.1 A weighted version for a given measure of correlation

In what follows, we discuss a method that provides a weighted version for a given
measure of correlation (distance), both for full or partial (censored) ranking cases. For

σn = (σ1n, . . . , σnn) ∈ Sn, and k = 1, . . . , n − 1, let σ
(k)
n = (σ

(k)
1n , . . . , σ

(k)
nn ), where

σ
(k)
in = σinI(σin ≤ k) + (k + 1)I(σin > k), i = 1, . . . , n.

Now, let S
(k)
n = {σ

(k)
n |σn ∈ Sn}, for k = 1, . . . , n−1. Note that S

(k)
n is the set of all possible

rankings when we only rank the top k out of n(≥ k) objects. This situation corresponds to

projecting Sn onto subspaces S
(k)
n such that S

(0)
n = 0 ⊆ S

(1)
n ⊆ · · · ⊆ S

(n−1)
n = S

(n)
n = Sn.

Let Dnk(·, ·) be an extension of Dn(·, ·) to S
(k)
n (in the case of Spearman’s rank correlation

or Spearman’s footrule, the extension to S
(k)
n is clear. On the other hand, for Kendall’s

tau, we need to accommodate ties). Having defined a measure of correlation Dnk (over

S
(k)
n ) based on Dn (over Sn), we then define a weighted version D

(W )
nk (over S

(k)
n ) as follows

D
(W )
nk (π(k)

n , σ(k)
n ) =

k
∑

i=1

Dni(π
(i)
n , σ(i)

n ).

In what follows, we provide a representation of a weighted version of Spearman’s footrule
based on the previous construction. To this end, we consider (as in Salama and Quade,

1982) the partial sequence {T
(k)
nj : 0 ≤ j ≤ k ≤ n}, where for k = 1, . . . , n, T

(k)
n0 = 0, and

T
(k)
nj =

j
∑

i=1

I(σ
(k)
in ≤ j), j = 1, . . . , k ≤ n.

At this juncture, we note that T
(k)
nj = T

(n)
nj , for 1 ≤ j ≤ k ≤ n. Accordingly, we use Tj to

indicate T
(n)
nj , which is the same as T

(k)
nj , for j = 1, . . . , k ≤ n. Now, if we write Spearman’s

footrule as

Dn(σ) =
1

2

n
∑

i=1

|i − σin|,

then, Dnk admits the following representation (in terms of the Tj ’s)

Dnk(σ) =
k(k + 1)

2
−

k
∑

j=1

Tj ,

with weighted version (based on the successive projection scenario) given by (as mentiond
in Salama and Quade, 2004)

D
(W )
nk (σ) =

k(k + 1)(k + 2)

6
−

k
∑

j=1

(k + 1 − j)Tj(σ).
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4.2 Asymptotic normality

Setting DW
n0 = 0, our interest is to study the distributional behavior of the triangular array

given by {DW
nk: 0 ≤ k ≤ n;n ≥ 1} under the hypothesis of random ranking, i.e., under the

permutational probability measure Pn associated with the discrete uniform distribution of
σ on Sn. Noting that the permutational moments are given by

E(Tj(σ)) =
j2

n
= µj , 1 ≤ j ≤ k ≤ n,

and

E((Ti(σ) − µi)(Tj(σ) − µj)) =
i2(n − j)2

n2(n − 1)
, 1 ≤ i ≤ j ≤ k ≤ n,

we conclude that

E(DW
n,k(σ)) =

k(k + 1)(k + 2)

6

[

1 −
k + 1

2n

]

and

V(DW
n,k(σ)) =

k(k + 1)(k + 2)

5040n2(n − 1)
[84n2(k + 1)(k2 + 2k + 2)

−8n(13k4 + 52k3 + 77k2 + 50k + 18) + 35k(k + 1)3(k + 2)

=
k6

5040n2(n − 1)
[84n2 − 104nk + 35k2] + o

(

k6

n

)

.

Furthermore, for 1 ≤ j ≤ k ≤ n, we have

Vjkn = Cov (DW
n,j(σ),DW

n,k(σ))

=
k4

5040n3
[n2(210k2 − 84jk − 42j2)

−n(140k3 + 84j2k − 120j3) + (35k4 + 60j3k − 60j4)] + o

(

k6

n

)

.

Sen and Salama (1983) studied the stochastic structure of Tk(σ) incorporating a martingale
approach that added convenience to the study of the asymptotic distribution theory. Based
on second equation in Lemma 2.3 and Equations (10) and (11), we express Dnk(σ) in terms
of Yi(σ) as follows

DW
nk(σ) = E(DW

nk(σ)) − 2

n
∑

i=1

(n − i + 1)(n − i)2Yi(σ).

To capture the full implication of the above representation along with the martingale
characterization (of the partial sequence {Yi(σ), 0 ≤ i ≤ n} as a zero-mean martingale
array), we proceed now to formulate a permutational functional central limit theorem. We
consider an integer-valued sequence {hn(t): t ∈ [0, 1]} by letting

hn(t) =max
k

{

Vnk

Vnn
≤ t

}

, t ∈ [0, 1],
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so that hn(t) is a non-decreasing jump function with jumps at each value of Vnk/Vnn,
for k ≤ n (this is because Vnk is non-decreasing in k). Define a stochastic process Wn =
{Wn(t): t ∈ [0, 1]} by letting

Wn(t) = V
−

1

2

nn {DW
n,hn(t)(σ) − E(Dn,hn(t)(σ))}, t ∈ [0, 1].

In this context, we may note that if n increases with k/n → t, 0 ≤ t ≤ 1, then

E(DW
nk(σ))

n3
→

t3(2 − t)

12
.

Similarly,

Vnkk

Vnnn
→

t6(35t2 − 104t + 84)

15
.

Also, as n increases with j/n → s, k/n → t, and 0 ≤ s < t ≤ 1, we have

Vnjk

Vnnn
→

t4(35t4 + 60s3t − 60s4 − 140t3 − 84s2t + 120s3 + 210t2 − 84st − 42s2)

15
.

These expressions are useful in computing the covariance function of Wn(t). We consider
a Gaussian function on the interval [0, 1], W = {W (t): t ∈ [0, 1]}, with zero drift and
covariance function

γ(s, t) = E(W (s)W (t))

=
1

15
t4(35t4 + 60s3t − 60s4 − 140t3 − 84s2t + 120s3 + 210t2 − 84st − 42s2).

Using the functional limit theorem for a martingale array (Theorem 2.4.2 of Sen, 1981),
as adapted here under Pn, we arrive by some routine steps at the following.

Theorem 4.1 Under random ranking, as n increases, Wn weakly converges to W in the
Skorohod J1-topology on [0, 1].

As a direct consequence of this weak convergence result, we claim that as n increases
with k/n → t, for some t ∈ [0, 1], the standardized version of DW

nk(σ) is closely normally
distributed. Further, Wn(·) is tight (as n increases), and hence, the uniform continuity
in probability condition holds. This enables us to derive the asymptotic distribution of
DW

nk(σ) even when k is random.

5. Remarks

We conclude this work with the following remarks.

(i) The importance of asymptotic results in applications stems from the fact that, in
many situations, the number of objects under consideration for ranking becomes
increasingly large. This is clearly apparent in genomics, where the number of genes
under consideration is in the thousands. We also see greater numbers dealing with
the number of items we encounter in a web search problem. Let O = {O1, . . . , On}



16 P. Sen, I. Salama and D. Quade

be the set of objects under consideration for ranking (we may take O = {1, . . . , n}).
Let R be the (m × n) matrix of ranks provided by m sources, where the ith row
Ri = (ri1, . . . , rin), and rij is the rank assigned to object j by source i. We note
that Ri can be a permutation (if all n objects are ranked), or a partial ranking (if
only k out of n objects are ranked).

(ii) One of the problems in genomics is to identify the top k genes for further research.
That is, given the matrix R, we need to identify the top k objects. In doing so, we
encounter what is called the stability problem, meaning the effect of small perturba-
tions of the data on the final result; see Jurman et al. (2008). The stability problem
may be cast in terms of the variability among R1, . . . , Rm, which, in turn, may be
considered as the consistency or internal agreement among R1, . . . , Rm. For ex-
ample: let A1 = {(1, 2, 3), (1, 2, 3), (1, 2, 3)}, and A2 = {(1, 2, 3), (2, 1, 3), (3, 2, 1)}.
Then, it is intuitively clear that set A2 reflects more variability than set A1. In
turn, we can say that set A1 reflects more consistency (or internal agreement) in
ranking (the three objects) than set A2. One way to measure the internal agree-
ment is by means of a measure of correlation (or a metric) between the rows of R.
If we let dk

n(·, ·) be a metric (or its associated measure of correlation) on the set
of objects represented by R1, . . . , Rm, then as a measure of internal agreement we
may use

d∗n,k(R) =

m
∑

i<j

dk
n(Ri, Rj). (13)

Spearman’s footrule (along with Kendall’s tau) is one of the measures used in such
a situation (Quade and Salama, 2006). We can test for internal agreement, and
here asymptotic results can be used to reach such conclusion. The conclusion that
we have internal agreement greatly enhance our confidence in our choice of the top
k objects.

(iii) If the number k is fixed in advance, then, we may test to see if we have internal
agreement with respect to k. If the answer is yes, then we may proceed (using some
score function) to produce the desired top k genes. If k is not fixed in advance, then
we may proceed by searching for the “best” reasonable k that we have internal
agreement upon. This search may be done using the sequence d∗n,k(R) (multiple

inference problem).
(iv) In the web search situation, we need to rank the top k items. Results of different

search engines may be reported as the matrix R. Now, we need to combine these
rankings to produce one single ranking. One of the methods used in this process
is to find a “ranking” R0 such that the sum of the total distances from R0 to
R1, . . . , Rm is minimum. Spearman’s footrule (and Kendall’s tau) is used in this
problem, along with a weighted version of it (see Pihur et al., 2009). It seems
reasonable that before we try to search for one “ranking” that may be used to
represent the entire set of ranks {R1, . . . , Rm}, we test whether we have internal
agreement among the elements of this set. If we can conclude this, then, we can
start our search to produce such a representative. Again, due to the large number of
objects under consideration (large n), the asymptotic theory becomes very relevant
in the testing process.

(v) If we are only looking for the top k (disregarding the internal rankings within the
top k), then, the ranking from each source is nothing but a binary classification
of objects. If (for example) we denote items classified as top k by 1 and others by
2, then we may regard the final ranks as a sequence of on {1, 2}. In this case, we
may use the Kappa statistic (Cohen, 1960) as a measure for agreement between
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two sets of “ranks”, which in turn is equivalent to using Spearman’s footrule (the
L1 norm; and the L2 in this case). Let (r11, . . . , r1n) and (r21, . . . , r2n) represent
the classifications provided by the two sources (rij is 1 or 2). Then, |r1j − r2j | is
equal to 0 if the the two sources agree on classifying object j, and it is equal to 1
if they disagree. Accordingly,

∑n
j=1 |r1j − r2j| is the number of objects on which

the two sources disagree. The equivalence of Spearman’s footrule and the Kappa
statistic is based on the number of disagreements plus the number of agreements
being equal to n. Using Spearman’s footrule as the metric in Equation (13), we
have what is equivalent to extending the Kappa statistic to testing the agreement
among m sources.

(vi) Our discussion is based on m sources ranking (or partially ranking) n objects,
which is similar to the m-ranking case in which the Friedman’s (1937) statistic
is used. If, for j = 1, . . . , n, we let r.,j be the mean ranks for object j, then the
Friedman’s statistic is based on

∑n
j=1(r.,j − (n+1)/2)2, which may be written as a

function of
∑n

i<j(r.,i − r.,j)
2. Accordingly, the emphasis is on the average ranking

of objects instead of inter-rater differences as reflected in the statistic based on
Spearman’s footrule (or other metrics).

Appendix

In this part, we present the algorithm that can be used to generate the matrix P
(n)
k+1 from

P
(n)
k discussed in Section 2.
For(j = 0; j ≤ d2(n, k); j = j + 1)

T [2] =
[(n − k) − j][(n − k) − j − 1]

(n − k)2
;

T [1] =
[(n − k) − j](2j + 1)

(n − k)2
;

T [0] =
j2

(n − k)2
;

for(i = 0; i ≤ d1(n, k); i = i + 1)

P
(n)
k+1[i + j + 1][j + 1] = P

(n)
k [i][j] ∗ T [2] + P

(n)
k+1[i + j + 1][j + 1];

P
(n)
k+1[i + j][j] = P

(n)
k [i][j] ∗ T [1] + P

(n)
k+1[i + j][j];

if(j > 0)

P
(n)
k+1[i + j − 1][j − 1] = P

(n)
k [i][j] ∗ T [0] + P

(n)
k+1[i + j − 1][j − 1].

End of i loop.
End of j loop.
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