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Abstract

In this article, we attempt the problem of estimation of the change of mean and the
sum of mean in mail surveys. This problem is conducted for current occasion in the
context of sampling on two occasions when there is non-response (i) on both occasions,
(ii) only on the first occasion and (iii) only on the second occasion. We obtain the loss
in precision of all the estimators with respect to the estimator of the change of mean
and the sum of mean when there is no non-response. We derive the sample sizes and the
saving in cost for all the estimators, which have the same precision than the estimator of
the change of mean and the sum of mean when there is no non-response. An empirical
study that allows us to investigate the performance of the proposed strategy is carried
out.

Keywords: Estimator of the change · Estimator of the sum · Non-response
· Successive sampling.

Mathematics Subject Classification: 62D05.

1. Introduction

A fact that cannot be underestimated when samples are analyzed is the moment or spell
in which the sample results refer. There exist two major reasons to explain why the time
factor must be taken into account in this issue, which are (i) the population characteristics,
since these may be modified through time or (ii) the population composition, since this
may be modified due to the fact that individuals can increase it (births) or decrease it
(death). If the composition and characteristics of the sample units remain unchanged, a
single occasion would be enough to perform a sampling, as the results would always be
valid. In practice, the mentioned changes prevent us from that simplification and, at the
same time, give rise to a set of targets –such as cross estimation of population parameters
and net changes, estimations of average values of parameters through time, etc.– that can
be analyzed by means of continuous surveys.

The survey circumstances and the study characteristics are the key to choose the appro-
priate sampling design. These are some of the choices:
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(i) To extract a new sample on every occasion (repeated sampling). To estimate the
sum, the better thing is using a new sample in every occasion.

(ii) To use the same sample in every occasion (panel sampling). To estimate the change,
the better thing is using the same sample in every occasion.

(iii) To perform a partial replacement of units from one occasion to another (sampling
on successive occasions, which is also called rotation sampling when the units are
constructed by the number of stages in which they become part of the sample,
as it happens with the EPA –Spanish survey of working population–, which are
performed quarterly, and most of the family surveys carried out by the INE –
Spanish Statistics Institute–).

If a population unit value in a occasion can be related to the same unit in the next occasion,
then we are enabled to use the information obtained in the preceding occasion in order to
improve current estimation of the population parameter. To this effect, the sample must
be obtained in such a way that the sample units in the two successive occasions have some
common units so that the preceding sampling information is used.

Some of the reasons that explain the use of the partial replacement of sample units are
the following:

(i) Cost reduction (using totally new samples at each time can be unduly expensive).
(ii) Increase of the estimators’ accuracy.

(iii) The evasion of indefinite presence of the same units in the sample, since this can
result in failures and efficiency reduction of the estimators.

For instance, using panel sampling for family surveys are biased due to the lack of coop-
eration of some families that belong to the home panel. For this reason, INE frequently
uses surveys consisting of rotating sampling because it takes advantage of the two other
surveys (repeated and panel surveys).

Jessen (1942), Tikkiwal (1951), Yates (1949), Patterson (1950), Eckler (1955) and Raj
(1968) contributed towards the development of the theory of unbiased estimation of mean
of characteristics in successive sampling. Hansen and Hurwitz (1946) suggested a technique
for handling the non-response in mail surveys. These surveys have the advantage that the
data can be collected in a relatively inexpensive way. Okafor (2001) extended these surveys
to the estimation of the population total in element sampling on two successive occasions.
Later, Choudhary et al. (2004) used the Hansen and Hurwitz (HH) technique to estimate
the population mean for current occasion in the context of sampling on two occasions when
there is non-response on both occasions. More recently, Singh and Kumar (2010) used the
HH technique to estimate the population product for current occasion in the context of
sampling on two occasions when there is non-response on both occasions. However, non-
response is a common problem with mail surveys. Cochran (1977) and Okafor and Lee
(2000) extended the HH technique to the case when the information on the characteristic
under study is also available on auxiliary characteristic.

In this article, we develop the HH technique to estimate the change of mean and the
sum of mean for current occasion in the context of sampling on two occasions when there
is non-response (i) on both occasions, (ii) only on the first occasion and (iii) only on the
second occasion.

The rest of this paper is organized as follows. Section 2 describes the HH technique. Sec-
tion 3 discusses about the estimation of the change of mean. Section 4 is focussed on the
estimation of the sum of mean. In this section, an empirical study that allows us to investi-
gate the performance of the proposed strategy is carried out. Section 5 compares proposed
estimators in terms of the survey cost. Finally, Section 6 sketches some conclusions.
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2. The Technique

Consider a finite population of N identifiable units. Let (xi, yi) be, for i = 1, . . . , N , the
values of the characteristic on the first and second occasions, respectively. We assume that
the population can be divided into two classes, those who respond at the first attempt
and those who not. Let the sizes of these two classes be N1 and N2, respectively. Let on
the first occasion, schedules through mail are sent to n units selected by simple random
sampling. On the second occasion, a simple random sample of m = np units, for 0 < p < 1,
is retained while an independent sample of u = nq = n−m units, for q = 1− p, is selected
(unmatched with the first occasion). We assume that in the unmatched portion of the
sample on two occasions, u1 units respond and u2 units do not. Similarly, in the matched
portion m1 units respond and m2 units do not.

Let mh2
denotes the size of the subsample drawn from the non-response class from the

matched portion of the sample on the two occasions for collecting information through
personal interview. Similarly, denote by uh2

the size of the subsample drawn from the non-
response class in the unmatched portion of the sample on the two occasions. Also, let σ2 and
σ2

2 denote the population variance and population variance pertaining to the non-response
class, respectively. Similarly, ρ and ρ2 denote correlation between units belonging to the
matched portion and the correlation between non-respondents belonging to the matched
portion. In addition, let x̄∗m and x̄∗u denote the estimator for matched and unmatched
portions of the sample on the first occasion, respectively. Let the corresponding estimator
for the second occasion be denoted by ȳ∗m and ȳ∗u. Thus, have the following setup:

1st occasion −→ x̄∗u x̄∗m,
2nd occasion −→ ȳ∗m ȳ∗u,

where

x̄∗m =
m1x̄m1

+m2x̄mh2

m
,

x̄∗u =
u1x̄u1

+ u2x̄uh2

u
,

ȳ∗m =
m1ȳm1

+m2ȳmh2

m
, and

ȳ∗u =
u1ȳu1

+ u2ȳuh2

u
.

It can be easily seen that

Cov(x̄∗m, x̄
∗
u) = Cov(x̄∗m, ȳ

∗
u) = Cov(ȳ∗m, x̄

∗
u) = Cov(ȳ∗m, ȳ

∗
u) = Cov(ȳ∗u, x̄

∗
u) = 0,

Cov(x̄∗m, x̄
∗
m) = Var(x̄∗m) =

σ2

m
+
fN2σ

2
2

Nm
,

Cov(x̄∗u, x̄
∗
u) = Var(x̄∗u) =

σ2

u
+
fN2σ

2
2

Nu
,

Cov(ȳ∗m, ȳ
∗
m) = Var(ȳ∗m) =

σ2

m
+
fN2σ

2
2

Nm
,

Cov(ȳ∗u, ȳ
∗
u) = Var(ȳ∗u) =

σ2

u
+
fN2σ

2
2

Nu
, and

Cov(ȳ∗m, x̄
∗
m) =

ρ σ2

m
+
ρ2fN2σ

2
2

Nm
,

where W2 = N2/N , A = f W2 σ
2, and f = m2/mh2

= u2/uh2
.
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3. Estimation of the Change of Mean

3.1 Estimation of the change of mean for current occasion in the
presence of non-response on both occasions

Consider the following minimum variance linear unbiased estimator of the change:

∆12 = a x̄∗u + b x̄∗m + c ȳ∗m + d ȳ∗u, (1)

which expected value is given by

E(∆12) = aE(x̄∗u) + bE(x̄∗m) + cE(ȳ∗m) + dE(ȳ∗u)

= aX̄∗ + b X̄∗ + c Ȳ ∗ + d1, Ȳ ∗ = (a+ b) X̄∗ + (c+ d) Ȳ ∗ = Ȳ ∗ − X̄∗.

Unbiasedness of ∆12 implies a+ b = −1 and c+ d = 1, so that b = −(a+ 1) an d = 1− c.
Substituting the value of b and d in Equation (1), we obtain

∆12 = a x̄∗u − (a+ 1) x̄∗m + c ȳ∗m + (1− c) ȳ∗u. (2)

The variance of ∆12 is given by

V(∆12) = a2 V(x̄∗u) + (a+ 1)2 V(x̄∗m) + c2 V(ȳ∗m) + (1− c)2 V(ȳ∗u)− 2(a+ 1) cCov(x̄∗m, ȳ
∗
m).

We wish to choose whose values of a and c that minimize V(∆12). Equating the derivatives
of V(∆12) with respect to a and c to zero, it follows that the optimum values are

aopt =
p q (σ2 +A)(ρ σ2 + ρ2A)

(σ2 +A)2 − q2(ρ σ2 + ρ2A)2
− q ((σ2 +A)2 − q (ρ σ2 + ρ2A)2)

(σ2 +A)2 − q2(ρ σ2 + ρ2A)2
and

copt =
p (σ2 +A)2

(σ2 +A)2 − q2(ρ σ2 + ρ2A)2
+

p q (σ2 +A)(ρ σ2 + ρ2A)

(σ2 +A)2 − q2(ρ σ2 + ρ2A)2
.

Substituting the optimum values of a and c in Equation (2), we obtain

∆12 =
q ((σ2 +A)2 − q (ρ σ2 + ρ2A)2)

(σ2 +A)2 − q2(ρ σ2 + ρ2A)2
(ȳ∗u − x̄∗u) +

p (σ2 +A)2

(σ2 +A)2 − q2(ρ σ2 + ρ2A)2
(ȳ∗m − x̄∗m)

+
p q (σ2 +A)(ρ σ2 + ρ2A)

(σ2 +A)2 − q2(ρ σ2 + ρ2A)2
[(x̄∗u − x̄∗m) + (ȳ∗u − ȳ∗m)]

=
p (σ2 +A)

(σ2 +A)− q (ρ σ2 + ρ2A)
(ȳ∗m − x̄∗m) +

q ((σ2 +A)− (ρ σ2 + ρ2A))

(σ2 +A)− q (ρ σ2 + ρ2A)
(ȳ∗u − x̄∗u).

Thus, the optimum variance of ∆12 is given by

V(∆12) =
2

n
(σ2 +A)

(σ2 +A)− (ρ σ2 + ρ2A)

(σ2 +A)− q (ρ σ2 + ρ2A)
. (3)

We note that, for (ρ σ2 + ρ2A)/(σ2 +A) > 0, Equation (3) is minimum for q = 0, i.e., the
variance de ∆12 is minimized if the units on both occasions are identical. In this case,

V(∆12) =
2

n
(σ2 +A)− (ρ σ2 + ρ2A).
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For ρ = ρ2, V(∆12) reduces to

V(∆12) =
2

n
(σ2 +A)

(1− ρ)

(1− q ρ)
,

while if A = 0, i.e., there is non-response, the V(∆12) reduces to

V(∆0) =
2σ2

n

(1− ρ)

(1− q ρ)
,

where ∆0 is the usual estimator of the change for the current occasion in the context of
sampling on two occasions when there is complete response, that is,

∆0 = a x̄u + b x̄m + c ȳm + d ȳu.

3.2 Estimation of the change of mean for the current occasion in the
presence of non-response on the first occasion

When there is non-response only on the first occasion, the minimum variance linear unbi-
ased estimator of the change can be obtained as

∆1 = a x̄∗u + b x̄∗m + c, ȳm + d ȳu, where ȳm =
1

m

m∑
i=1

yi and ȳu =
1

u

u∑
i=1

yi.

Imposing the unbiasedness and minimum variance unbiased conditions, the optimum values
of constants a and c are given by

aopt =
p q σ2ρ

(σ2 +A)− q2 ρ2σ2
− q ((σ2 +A)− q ρ2σ2)

(σ2 +A)− q2 ρ2σ2
and

copt =
p (σ2 +A)

(σ2 +A)− q2 ρ2σ2
+

p q (σ2 +A)ρ

(σ2 +A)− q2 ρ2σ2
.

Thus,

∆1 = a x̄∗u − (a+ 1) x̄∗m + c ȳm + (1− c) ȳu

and its corresponding minimum variance is given by

V(∆1) = a2V(x̄∗u) + (a+ 1)2 V(x̄∗m) + c2 V(ȳm) + (1− c)2 V(ȳu)− 2(a+ 1) cCov(x̄∗m, ȳm)

= a2

(
σ2

q n
+

A

q n

)
+ (a+ 1)2

(
σ2

p n
+

A

pn

)
+ c2

(
σ2

p n

)
+ (1− c)2

(
σ2

q n

)
−2(a+ 1) c

(
σ2ρ

p n

)
.
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3.3 Estimation of the change of mean for the current occasion in the
presence of non-response on the second occasion

When there is non-response only on the second occasion, the minimum variance linear
unbiased estimator of the change can be obtained as

∆2 = a x̄u + b x̄m + c ȳ∗m + d ȳ∗u, where x̄m =
1

m

m∑
i=1

xi and x̄u =
1

u

u∑
i=1

xi.

Imposing the unbiasedness and minimum variance unbiased conditions, the optimum values
of constants a and c are given by

aopt =
p q (σ2 +A)ρ

(σ2 +A)− q2 ρ2σ2
− q ((σ2 +A)− q ρ2σ2)

(σ2 +A)− q2 ρ2σ2
and

copt =
p (σ2 +A)

(σ2 +A)− q2 ρ2σ2
+

p q σ2ρ

(σ2 +A)− q2 ρ2σ2
.

Thus,

∆2 = a x̄u − (a+ 1) x̄m + c ȳ∗m + (1− c) ȳ∗u

and its corresponding minimum variance is given by

V(∆2) = a2V(x̄u) + (a+ 1)2 V(x̄m) + c2 V(ȳ∗m) + (1− c)2 V(ȳ∗u)− 2(a+ 1) cCov(x̄m, ȳ
∗
m)

= a2

(
σ2

q n

)
+ (a+ 1)2

(
σ2

p n

)
+ c2

(
σ2

p n
+

A

pn

)
+ (1− c)2

(
σ2

q n
+

A

q n

)
−2(a+ 1) c

(
σ2ρ

p n

)
.

3.4 Comparison between variances of the estimators of the change, ∆0,
∆12, ∆1 and ∆2

In this subsection, we carry out an analysis based on the loss in precision of ∆12, ∆1 and
∆2 with respect to ∆0. This loss is expressed in percentage and given by

L12 =

[
V(∆12)

V(∆0)
− 1

]
× 100, L1 =

[
V(∆1)

V(∆0)
− 1

]
× 100, and L2 =

[
V(∆2)

V(∆0)
− 1

]
× 100,

respectively. The losses in precision of ∆12, ∆1, ∆2 with respect to ∆0 for different values
of ρ, ρ2, σ2

2, σ2, W2, f , and q are presented in Tables 1-2 and in Figure 1. It is assumed
that N = 300 and n = 50. From these tables, we obtain the following conclusions:

(i) In the majority of the cases, the loss in precision is maximum at ∆2 and minimum
at ∆1. Also, it can be seen that, in the majority of the cases, the loss in precision
of ∆12 is less than that of ∆2.

(ii) For the case σ2 < σ2
2, the loss in precision of all the estimators with respect to ∆0

increases as the the values of σ2
2 increase; see Figure 1(a).

(iii) For the case σ2 > σ2
2, the loss in precision of all the estimators with respect to ∆0

decreases as the values of σ2 increase; see Figure 1(b).
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(iv) For the case σ2 = σ2
2, the loss in precision of all the estimators with respect to ∆0

remain constant as the values of σ2 and σ2
2 increase; see Figure 1(c).

(v) For the case ρ < ρ2, the loss in precision of all the estimators with respect to ∆0

increases as the values of ρ increase; see Figure 1(d).

(vi) For the case ρ > ρ2, the loss in precision of ∆1 and ∆2 with respect to ∆0 remains
constant as the values of ρ2 increase, whereas the loss in precision of ∆12 with
respect to ∆0 decreases as the values of ρ2 increase; see Figure 1(e).

(vii) For the case ρ = ρ2, the loss in precision of ∆12 with respect to ∆0 remains
constant as the values of ρ and ρ2 increase, whereas the loss in precision of ∆1 and
∆2 with respect to ∆0 increases as the values of ρ and ρ2 increase; see Figure 1(f).

(viii) The loss in precision of ∆12, ∆1, ∆2 with respect to ∆0 increases as the values of
W2 increase; see Figure 1(g).

(ix) The loss in precision of ∆12, ∆1, ∆2 with respect to ∆0 increases as the values of
f increase; see Figure 1(h).

(x) The loss in precision of ∆12, ∆1, ∆2 with respect to ∆0 decreases as the values of
q increase; see Figure 1(i).

Table 1. Loss in precision, expressed in percentage, of ∆12, ∆1, ∆2 with respect to ∆0 for several values of ρ, ρ2,
σ2
2 , σ2.

ρ ρ2 q f W2 σ2
2 σ2 L12 L1 L2

σ2 < σ2
2

0.7 0.2 0.7 2.5 0.8 0.4 0.3 441.1 246.5 419.4
0.7 0.2 0.7 2.5 0.8 0.6 0.3 653.2 361.5 611.3
0.7 0.2 0.7 2.5 0.8 0.9 0.3 970.4 532.7 896.9

σ2 > σ2
2

0.6 0.2 0.3 1.5 0.6 0.2 0.3 108.5 65.8 128.2
0.6 0.2 0.3 1.5 0.6 0.2 0.7 47.0 28.7 55.8
0.6 0.2 0.3 1.5 0.6 0.2 0.9 36.7 22.4 43.5

σ2 = σ2
2

0.8 0.3 0.7 2.0 0.7 0.1 0.1 303.0 189.2 337.9
0.8 0.3 0.7 2.0 0.7 0.3 0.3 303.0 189.2 337.9
0.8 0.3 0.7 2.0 0.7 0.8 0.8 303.0 189.2 337.9

ρ < ρ2

0.1 0.7 0.6 2.5 0.5 0.5 0.4 98.4 81.7 118.4
0.3 0.7 0.6 2.5 0.5 0.5 0.4 103.2 92.6 144.9
0.6 0.7 0.6 2.5 0.5 0.5 0.4 130.3 134.4 237.0

ρ > ρ2

0.8 0.1 0.3 2.0 0.5 0.5 0.4 474.3 261.2 530.5
0.8 0.4 0.3 2.0 0.5 0.5 0.4 336.7 261.2 530.5
0.8 0.9 0.3 2.0 0.5 0.5 0.4 66.1 261.2 530.5

ρ = ρ2

0.2 0.2 0.8 1.5 0.5 0.5 0.5 75 39.6 50.5
0.5 0.5 0.8 1.5 0.5 0.5 0.5 75 47.6 69.0
0.9 0.9 0.8 1.5 0.5 0.5 0.5 75 172.9 298.3
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Table 2. Loss in precision, expressed in percentage, of ∆12, ∆1, ∆2 with respect to ∆0 for different values of W2,
f and q.

ρ ρ2 q f W2 σ2
2 σ2 L12 L1 L2

W2

0.7 0.2 0.6 2.5 0.1 0.4 0.6 34.5 20.8 38.8
0.7 0.2 0.6 2.5 0.3 0.4 0.6 99.0 58.8 108.9
0.7 0.2 0.6 2.5 0.6 0.4 0.6 191.3 111.9 205.7

f
0.8 0.3 0.4 1.0 0.5 0.4 0.6 101.8 70.4 139.9
0.8 0.3 0.4 3.0 0.5 0.4 0.6 292.3 196.7 394.1
0.8 0.3 0.4 3.5 0.5 0.4 0.6 338.8 226.9 455.4

q
0.8 0.2 0.1 1.5 0.4 0.7 0.5 323.4 200.3 404.5
0.8 0.2 0.5 1.5 0.4 0.7 0.5 254.9 154.0 302.1
0.8 0.2 0.7 1.5 0.4 0.7 0.5 203.7 121.2 219.2
0.8 0.2 0.9 1.5 0.4 0.7 0.5 131.9 74.5 108.2

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Loss in precision, expressed in percentage, of ∆12, ∆1, ∆2 with respect to ∆0 for (a)-(b) different values
of σ2

2 and σ2, (c) the case σ2=σ2
2 , (d)-(e) different values of ρ and ρ2, (f) the case ρ=ρ2, (g)-(h) different values of

W2 and f , and (i) different values of q.
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4. Estimation of the Sum of Mean

4.1 Estimation of the sum of mean for current occasion in the presence
of non-response on both occasions

Consider the following minimum variance linear unbiased estimator of the sum

z12 = a x̄∗u + b x̄∗m + c ȳ∗m + d ȳ∗u, (4)

which expected value is given by

E(z12) = aE(x̄∗u) + bE(x̄∗m) + cE(ȳ∗m) + dE(ȳ∗u)

= aX̄∗ + bX̄∗ + cȲ ∗ + dȲ ∗ = (a+ b)X̄∗ + (c+ d)Ȳ ∗ = X̄∗ + Ȳ ∗.

Unbiasedness of z21 implies a + b = 1 and c + d = 1, so that b = 1 − a and d = 1 − c.
Substituting the value of b and d in Equation (4), we obtain

z12 = a x̄∗u + (1− a)x̄∗m + c ȳ∗m + (1− c) ȳ∗u. (5)

The variance of z21 is

V(z12) = a2V(x̄∗u) + (1− a)2 V(x̄∗m) + c2 V(ȳ∗m) + (1− c)2 V(ȳ∗u) + 2(1− a) cCov(x̄∗m, ȳ
∗
m).

We wish to choose whose values of a and c that minimize V(z21). Equating the derivatives
of V(z21) with respect to a and c to zero, it follows that the optimum values are

aopt =
p q (σ2 +A)(ρ σ2 + ρ2A)

(σ2 +A)2 − q2(ρ σ2 + ρ2A)2
+
q ((σ2 +A)2 − q (ρ σ2 + ρ2A)2)

(σ2 +A)2 − q2(ρ σ2 + ρ2A)2
and

copt =
p (σ2 +A)2

(σ2 +A)2 − q2(ρ σ2 + ρ2A)2
− p q (σ2 +A)(ρ σ2 + ρ2A)

(σ2 +A)2 − q2(ρ σ2 + ρ2A)2
.

Substituting the optimum values of a and c in Equation (5), we obtain

z12 =
q ((σ2 +A)2 − q (ρ σ2 + ρ2A)2)

(σ2 +A)2 − q2(ρ σ2 + ρ2A)2
(ȳ∗u + x̄∗u) +

p (σ2 +A)2

(σ2 +A)2 − q2(ρ σ2 + ρ2A)2
(ȳ∗m + x̄∗m)

+
p q (σ2 +A)(ρ σ2 + ρ2A)

(σ2 +A)2 − q2(ρ σ2 + ρ2A)2
[(x̄∗u − x̄∗m) + (ȳ∗u − ȳ∗m)]

=
p (σ2 +A)

(σ2 +A) + q (ρ σ2 + ρ2A)
(ȳ∗m + x̄∗m) +

q ((σ2 +A) + (ρ σ2 + ρ2A))

(σ2 +A) + q (ρ σ2 + ρ2A)
(ȳ∗u + x̄∗u).

Thus, the optimum variance of z21 is given by

V(z12) =
2

n
(σ2 +A)

(σ2 +A) + (ρ σ2 + ρ2A)

(σ2 +A) + q (ρ σ2 + ρ2A)
. (6)

We note that, for (ρ σ2 + ρ2A)/(σ2 +A) > 0, Equation (6) is minimum for q = 0, i.e., the
variance de z12 is minimized if the units on both occasions are independent. In this case

V(z12) =
2

n
(σ2 +A).
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In case ρ = ρ2, V(z21) reduces to

V(z12) =
2

n
(σ2 +A)

(1 + ρ)

(1 + q ρ)
,

while if A = 0, i.e., there is non-response, the V(z21) reduces to

V(z0) =
2σ2

n

(1 + ρ)

(1 + q ρ)
,

where z0 is the usual estimator of the sum for current occasion in the context of sampling
on two occasions when there is complete response, that is,

z0 = a x̄u + b x̄m + c ȳm + d ȳu.

4.2 Estimation of the sum of mean for current occasion in the presence
of non-response on the first occasion

When there is non-response only on the first occasion, the minimum variance linear unbi-
ased estimator of the change can be obtained as

z1 = a x̄∗u + b x̄∗m + c ȳm + d ȳu, where ȳm =
1

m

m∑
i=1

yi and ȳu =
1

u

u∑
i=1

yi.

Imposing the unbiasedness and minimum variance unbiased conditions, the optimum values
of constants a and c are given by

aopt =
p q σ2ρ

(σ2 +A)− q2 ρ2σ2
+
q ((σ2 +A)− q ρ2σ2)

(σ2 +A)− q2 ρ2σ2
and

copt =
p (σ2 +A)

(σ2 +A)− q2 ρ2σ2
− p q (σ2 +A)ρ

(σ2 +A)− q2 ρ2σ2
.

Thus,

z1 = a x̄∗u + (1− a)x̄∗m + c ȳm + (1− c) ȳu

and its corresponding minimum variance is given by

V(z1) = a2V(x̄∗u) + (1− a)2 V(x̄∗m) + c2 V(ȳm) + (1− c)2 V(ȳu) + 2(1− a) cCov(x̄∗m, ȳm)

= a2

(
σ2

q n
+

A

q n

)
+ (1− a)2

(
σ2

p n
+

A

pn

)
+ c2

(
σ2

p n

)
+ (1− c)2

(
σ2

q n

)
+2(1− a) c

(
σ2ρ

p n

)
.
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4.3 Estimation of the sum of mean for current occasion in the presence
of non-response on the second occasion

When there is non-response only on the first occasion, the minimum variance linear unbi-
ased estimator of the change can be obtained as

z2 = a x̄u + b x̄m + c ȳ∗m + d ȳ∗u, where x̄m =
1

m

m∑
i=1

xi and x̄u =
1

u

u∑
i=1

xi.

Imposing the unbiasedness and minimum variance unbiased conditions, the optimum values
of constants a and c are given by

aopt =
p q (σ2 +A)ρ

(σ2 +A)− q2 ρ2σ2
+
q ((σ2 +A)− q ρ2σ2)

(σ2 +A)− q2 ρ2σ2
and

copt =
p (σ2 +A)

(σ2 +A)− q2 ρ2σ2
− p q σ2ρ

(σ2 +A)− q2 ρ2σ2
.

Thus,

z2 = a x̄u + (1− a)x̄m + c ȳ∗m + (1− c) ȳ∗u

and its corresponding minimum variance is given by

V(z2) = a2V(x̄u) + (1− a)2 V(x̄m) + c2 V(ȳ∗m) + (1− c)2 V(ȳ∗u) + 2(1− a) cCov(x̄m, ȳ
∗
m)

= a2

(
σ2

q n

)
+ (1− a)2

(
σ2

p n
+

A

pn

)
+ c2

(
σ2

p n
+

A

pn

)
+ (1− c)2

(
σ2

q n
+

A

q n

)
+2(1− a) c

(
σ2ρ

p n

)
.

4.4 Comparison between variances of the estimators of the sum, z0, z12, z1

and z2

Once again, in this subsection, we carry out an analysis based on the loss in precision of
of z12, z1 and z2 with respect to z0. This loss is expressed in percentage and given by

L12 =

[
V(z12)

V(z0)
− 1

]
× 100, L1 =

[
V(z1)

V(z0)
− 1

]
× 100, and L2 =

[
V(z2)

V(z0)
− 1

]
× 100,

respectively. The losses in precision of z12, z1, z2 with respect to z0 for different values of
ρ, ρ2, σ2

2, σ2, W2, f and q are presented in Tables 3-4 and in Figure 2. It is assumed that
N = 300 and n = 50. From these tables, we obtain the following conclusions:

(i) The loss in precision is maximum at z12 and minimum at z1.

(ii) For the case σ2 < σ2
2, the loss in precision of all the estimators with respect to z0

increases as the values of σ2
2 increase; see Figure 2(a).

(iii) For the case σ2 > σ2
2 the loss in precision of all the estimators with respect to z0

decreases as the values of σ2 increase; see Figure 2(b).
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(iv) For the case σ2 = σ2
2 the loss in precision of all the estimators with respect to z0

remains constant as the values of σ2 and σ2
2 increase; see Figure 2(c).

(v) For the case ρ < ρ2, the loss in precision of all the estimators with respect to z0

decreases as the values of ρ increase; see Figure 2(d).

(vi) For the case ρ > ρ2 the loss in precision of z1 and z2 with respect to z0 remains
constant as the values of ρ2 increase, whereas the loss in precision of z12 with
respect to z0 increases as the values of ρ2 increase; see Figure 2(e).

(vii) For the case ρ = ρ2 the loss in precision of z12 with respect to z0 remains constant
as the values of ρ and ρ2 increase, whereas the loss in precision of z1 and z2 with
respect to z0 decreases as the values of ρ and ρ2 increase; see Figure 2(f).

(viii) The loss in precision of z12, z1, z2 with respect to z0 increases as the values of W2

increase; see ; see Figure 2(g).

(ix) The loss in precision of z12, z1, z2 with respect to z0 increases as the values of f
increase; see Figure 2(h).

(x) The loss in precision of z12 and z1 with respect to z0 increases as the values of q
increase and the loss in precision of z2 with respect to z0 first decreases and after
increase as values of q increase; see Figure 2(i).

Table 3. Loss in precision, expressed in percentage of z12, z1, z2 with respect to z0 for different values of ρ, ρ2, σ2
2

and σ2.

ρ ρ2 q f W2 σ2
2 σ2 L12 L1 L2

σ2 < σ2
2

0.7 0.2 0.7 2.5 0.8 0.4 0.3 247.6 118.1 128.5
0.7 0.2 0.7 2.5 0.8 0.6 0.3 370.8 176.6 191.7
0.7 0.2 0.7 2.5 0.8 0.9 0.3 555.5 264.3 286.3

σ2 > σ2
2

0.6 0.2 0.3 1.5 0.6 0.2 0.3 50.7 22.9 33.7
0.6 0.2 0.3 1.5 0.6 0.2 0.7 21.8 9.9 14.6
0.6 0.2 0.3 1.5 0.6 0.2 0.9 16.9 7.7 11.4

σ2 = σ2
2

0.8 0.3 0.7 2.0 0.7 0.1 0.1 131.4 61.8 66.4
0.8 0.3 0.7 2.0 0.7 0.3 0.3 131.4 61.8 66.4
0.8 0.3 0.7 2.0 0.7 0.8 0.8 131.4 61.8 66.4

ρ < ρ2

0.1 0.7 0.6 2.5 0.5 0.5 0.4 182.9 75.3 102.0
0.3 0.7 0.6 2.5 0.5 0.5 0.4 170.7 71.3 90.9
0.6 0.7 0.6 2.5 0.5 0.5 0.4 159.0 67.5 79.6

ρ > ρ2

0.8 0.1 0.3 2.0 0.5 0.5 0.4 94.7 44.7 63.0
0.8 0.4 0.3 2.0 0.5 0.5 0.4 108.4 44.7 63.0
0.8 0.9 0.3 2.0 0.5 0.5 0.4 128.9 44.7 63.0

ρ = ρ2

0.2 0.2 0.8 1.5 0.5 0.5 0.5 75 36.3 41.6
0.5 0.5 0.8 1.5 0.5 0.5 0.5 75 35.4 38.4
0.9 0.9 0.8 1.5 0.5 0.5 0.5 75 34.5 35.6
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Table 4. Loss in precision, expressed in percentage of z12, z1, z2 with respect to z0 for different values of W2, f
and q.

ρ ρ2 q f W2 σ2
2 σ2 L12 L1 L2

W2

0.7 0.2 0.6 2.5 0.1 0.4 0.6 15.2 7.3 8.6
0.7 0.2 0.6 2.5 0.3 0.4 0.6 45.5 21.6 25.2
0.7 0.2 0.6 2.5 0.6 0.4 0.6 90.7 42.9 49.6

f
0.8 0.3 0.4 1.0 0.5 0.4 0.6 28.9 13.0 16.9
0.8 0.3 0.4 3.0 0.5 0.4 0.6 86.3 38.2 49.5
0.8 0.3 0.4 3.5 0.5 0.4 0.6 100.6 44.4 57.5

q
0.8 0.2 0.1 1.5 0.4 0.7 0.5 60.0 25.9 45.2
0.8 0.2 0.5 1.5 0.4 0.7 0.5 72.9 34.0 41.1
0.8 0.2 0.7 1.5 0.4 0.7 0.5 77.9 37.3 40.4
0.8 0.2 0.9 1.5 0.4 0.7 0.5 82.1 40.4 41.0

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Loss in precision, expressed in percentage, of z12, z1, z2 with respect to z0 for (a)-(b) different values of
σ2
2 and σ2, (c) the case σ2=σ2

2 , (d)-(e) different values of ρ and ρ2, (f) the case ρ=ρ2, (g)-(h) different values of W2

and f , and (i) different values of q.
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5. Comparing Estimators in Terms of Survey Cost

We give some ideas about how saving in cost through mail surveys in the context of
successive sampling on two occasions for different assumed values of σ2, σ2

2, ρ, ρ2, W2, f
and q. Let N = 300, n = 50, c0 = 1, c1 = 4, and c2 = 45, where c0, c1, and c2 denote
the cost per unit for mailing a questionnaire, processing the results from the first attempt
respondents, and collecting data through personal interview, respectively. In addition, C00

is the total cost incurred for collecting the data by personal interview from the whole
sample, i.e., when there is no non-response. The cost function in this case is given by
(assuming the cost incurred on data collection for the matched and unmatched portion of
the sample are same and cost incurred on the data collection on both occasions is same)

C00 = 2nc2. (7)

Substituting the values of n and c2 in Equation (7), the total cost work out to be 4500.
Let n1 denotes the number of units which respond at the first attempt and n2 denotes

the number of units which do not respond. Thus,

(i) The cost function for the case when there is non-response on both occasions is

C12 = 2
[
con+ c1n1 + c2n2

f

]
.

The expected cost is given by

E(C12) = 2n
[
c0 + c1W1 + c2W2

f

]
,

where W1 = N1/N and W2 = N2/N , such that W1 +W2 = 1.

(ii) The cost function for the case when there is only non-response on the second
occasion is

C2 = 2c0n+ c1n+
[
c1n1 + c2n2

f

]
and the expected cost is given by

E(C2) = n
[
2c0 + c1(W1 + 1) + c2W2

f

]
.

(iii) The cost function for the case when there is non-response on first occasion only is

C1 =
[
c1n1 + c2n2

f

]
+ 2c0n+ c1n,

which expected cost is expressed as

E(C1) = n
[
2c0 + c1(W1 + 1) + c2W2

f

]
.

By equating the variances ∆12, ∆1, and ∆2, respectively, to ∆0 and using the assumed
values of different parameters, the values of the sample size for the three cases and the
corresponding expected cost of survey were determined with respect of ∆12, ∆1 and ∆2.
The sample sizes associated with the three estimators which provide equal precision to the
estimator V(∆0) are denoted by n′, n′1 and n′2. The results of this exercise are presented
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in Tables 5-6 and in Figures 3-4. The sample sizes associated with the three estimators,
which have the same precision than ∆0, is maximum at ∆12 and minimum at ∆1. It can
be seen that in the majority of the cases the sample sizes for ∆12 is less than that of ∆2.
From these tables, we obtain the following conclusions:

(i) For the case σ2 < σ2
2, the saving in cost for all the estimators decreases as the

values of σ2
2 increase; see Figure 3(a).

(ii) The sample sizes for the three estimators, which have the same precision than ∆0,
increase as the values of σ2

2 increase; see Figure 3(b).

(iii) For the case σ2 > σ2
2, the saving in cost for all the estimators increases as the

values of σ2 increase; see Figure 3(c).

(iv) The sample sizes for the three estimators, which have the same precision than ∆0,
decrease as the values of σ2 increase; see Figure 3(d).

(v) For the case σ2 = σ2
2 the saving in cost for all the estimators remains constant as

the values of σ2 and σ2
2 increase; see Figure 3(e).

(vi) The sample sizes for all the estimators, which have the same precision than ∆0,
remain constant; see Figure 3(f).

(vii) For the case ρ < ρ2, the saving in cost for all the estimators decreases as the
values of ρ increase; see Figure 3(g).

(viii) The sample sizes for the three estimators, which have the same precision than ∆0,
increases as the values of ρ increase; see Figure 3(h).

(ix) For the case ρ > ρ2, the saving in cost for ∆1 and ∆2 remains constant as the
values of ρ2 increase, whereas for ∆12 the saving in cost increases as the values of
ρ2 increase; see Figure 3(i).

(x) The sample sizes for ∆1 and ∆2, which have the same precision than ∆0, remain
constant, whereas the sample size for ∆12, which have the same precision than
∆0, decreases; see Figure 3(j).

(xi) For the case ρ = ρ2, the saving in cost for ∆12 remains constant as the values of ρ
and ρ2 increase, whereas for ∆1 and ∆2 the saving in cost decreases as the values
of ρ and ρ2 increase; see Figure 3(k).

(xii) The sample sizes for ∆1 and ∆2, which give equal precision to ∆0 increase,
whereas the sample size for ∆12, which has the same precision than ∆0, remains
constant; see Figure 3(l).

(xiii) The saving in cost for all the estimators decreases as the values of W2 increase;
see Figure 4(a).

(xiv) The sample sizes associated with the three estimators, which have the same
precision than ∆0, increase as the values of W2; see Figure 4(b).

(xv) The saving in cost increases as the values of f increase; see Figure 4(c).

(xvi) The sample sizes associated with the three estimators, which have the same
precision than ∆0, increase as the values of f increase; see Figure 4(d).

(xvii) The saving in cost increases as the values of q increase; see Figure 4(e).

(xviii) The sample sizes associated with the three estimators, which give equal precision
to ∆0, decreases as the values of q increase; see Figure 4(f).
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Table 5. Sample sizes and corresponding expected cost of survey, which have the same precision than ∆12, ∆1 and
∆2, with respect to ∆0 for different values of ρ, ρ2, σ2

2 and σ2.

ρ ρ2 q f W2 σ2
2 σ2 n′ n′1 n′2 E(C12) E(C1) E(C2)

σ2 < σ2
2

0.7 0.2 0.5 2.5 0.4 0.4 0.3 187 130 204 3958.8 2036.3 3179.9
0.7 0.2 0.5 2.5 0.4 0.7 0.3 285 186 310 6031.6 2907.9 4844.3
0.7 0.2 0.5 2.5 0.4 0.8 0.3 317 205 346 6718.5 3195.1 5392.8

σ2 > σ2
2

0.6 0.2 0.3 1.5 0.3 0.2 0.3 77 67 82 1981.1 1187.1 1467.7
0.6 0.2 0.3 1.5 0.3 0.2 0.6 64 58 66 1632.8 1040.1 1181.3
0.6 0.2 0.3 1.5 0.3 0.2 0.9 59 56 61 1515.8 990.5 1084.9

σ2 = σ2
2

0.8 0.3 0.7 2.0 0.5 0.2 0.2 161 120 177 4587.8 2320.4 3407.6
0.8 0.3 0.7 2.0 0.5 0.6 0.6 161 120 177 4587.8 2320.4 3407.6
0.8 0.3 0.7 2.0 0.5 0.9 0.9 161 120 177 4587.8 2320.4 3407.6

ρ < ρ2

0.1 0.7 0.6 2.5 0.5 0.4 0.6 77 72 82 1856.5 1220.4 1387.4
0.5 0.7 0.6 2.5 0.5 0.4 0.6 81 81 103 1952.1 1377.5 1748.2
0.8 0.7 0.6 2.5 0.5 0.4 0.6 107 119 181 2565.4 2021.9 3077.4

ρ > ρ2

0.8 0.2 0.3 2.0 0.4 0.5 0.3 279 189 332 6917.1 3286.4 5780.1
0.8 0.6 0.3 2.0 0.4 0.5 0.3 175 189 332 4350.4 3286.4 5780.2
0.8 0.9 0.3 2.0 0.4 0.5 0.3 85 189 332 2114.3 3286.4 5780.2

ρ = ρ2

0.3 0.3 0.8 1.5 0.3 0.6 0.4 84 68 75 2144 1220.8 1328.4
0.5 0.5 0.8 1.5 0.3 0.6 0.4 84 71 81 2144 1272.6 1445.4
0.8 0.8 0.8 1.5 0.3 0.6 0.4 84 91 120 2144 1629.9 2139.6

Table 6. Sample sizes and corresponding expected cost of survey, which have the same precision than ∆12, ∆1 and
∆2, with respect to ∆0 for different values of W2, f and q.

ρ ρ2 q f W2 σ2
2 σ2 n′ n′1 n′2 E(C12) E(C1) E(C2)

W2

0.7 0.2 0.6 2.5 0.2 0.4 0.6 84 70 87 1304.6 897.5 1118.5
0.7 0.2 0.6 2.5 0.6 0.4 0.6 146 106 153 3903.7 1949.7 2812.5
0.7 0.2 0.6 2.5 0.8 0.4 0.6 176 123 184 5696.3 2608.6 3898.1

f
0.8 0.3 0.4 1.0 0.5 0.4 0.6 101 85 120 5146.6 2598.5 3658.5
0.8 0.3 0.4 1.5 0.5 0.4 0.6 125 101 153 4508.0 2336.0 3513.1
0.8 0.3 0.4 3.0 0.5 0.4 0.6 196 148 247 4119.2 2299.5 3829.5

q
0.8 0.2 0.2 1.5 0.4 0.7 0.5 205 145 243 6303.3 2959.1 4951.4
0.8 0.2 0.7 1.5 0.4 0.7 0.5 152 111 160 4676.5 2256.70 3256.6
0.8 0.2 0.9 1.5 0.4 0.7 0.5 116 87 104 3570.6 1780.3 2124.3

By equating the variances of z12, z1, and z2 to V(z0) and using the assumed values of
different parameters, the values of the sample size for the three cases and the corresponding
expected cost of survey were determined with respect of z12, z1 and z2. The sample sizes
associated with the three estimators, which provide the same precision of the estimator of
the V(z0), are denoted by n′, n′1 and n′2. The results of this exercise are presented in Tables
7-8 and in Figures 5-6. The sample sizes associated with the three estimators, which give
the same precision of z0, is maximum at z12 and minimum at z1. From these tables, we
obtain the following conclusions:
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(i) For the case σ2 < σ2
2, the saving in cost for all the estimators decreases as the

values of σ2
2 increase; see Figure 5(a).

(ii) The sample sizes for the three estimators, which have the same precision than z0,
increase as the values of σ2

2 increase; see Figure 5(b).

(iii) For the case σ2 > σ2
2, the saving in cost for all the estimators increases as the

values of σ2 increase; see Figure 5(c).

(iv) The sample sizes for the three estimators, which have the same precision than z0,
decrease as the values of σ2 increase; see Figure 5(d).

(v) For the case σ2 = σ2
2 the saving in cost for all the estimators remains constant as

the values of σ2 and σ2
2 increase; see Figure 5(e).

(vi) The sample sizes for all the estimators, which have the same precision than z0,
remain constant; see Figure 5(f).

(vii) For the case ρ < ρ2, the saving in cost for all the estimators increases as the values
of ρ increase; see Figure 5(g).

(viii) The sample sizes for the three estimators, which have the same precision than z0,
decreases as the values of ρ increase; see Figure 5(h).

(ix) For the case ρ > ρ2, the saving in cost for z1 and z2 remains constant as the
values of ρ2 increase, whereas for z12 the saving in cost decreases as the values of
ρ2 increase; see Figure 5(i).

(x) The sample sizes for z1 and z2, which have the same precision than z0, remain
constant, whereas the sample size for z12, which has the same precision than z0,
increases; see Figure 5(j).

(xi) For the case ρ = ρ2, the saving in cost for z12 remains constant as the values of ρ
and ρ2 increase, whereas for z1 and z2 the saving in cost increases as the values of
ρ and ρ2 increase; see Figure 5(k).

(xii) The sample sizes for z1 and z2, which have the same precision than z0, decrease,
whereas the sample size for z12, which has the same precision than z0, remains
constant; see Figure 5(l).

(xiii) The saving in cost for all the estimators decreases as the values of W2 increase;
see Figure 6(a).

(xiv) The sample sizes associated with the three estimators, which have the same
precision than z0, increase as the values of W2 increase; see Figure 6(b).

(xv) The sample sizes associated with the three estimators, which have the same
precision than z0, increase as the values of f increase; see Figure 6(c).

(xvi) The saving in cost for all the estimators increases as the values of f increase; see
Figure 6(d).

(xvii) The saving in cost for all the estimators decreases as the values of q increase.
The saving in cost for z2 increases and after decreases as q increases; see Figure 6(e).

(xviii) The sample sizes associated with the three estimators, which have the same pre-
cision than z0, increase as the values of q increase, except the sample sizes for z2

that give equal precision to z0 first decreases and after increases as the values of q
increase; see Figure 6(f).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3. Sample sizes and corresponding expected cost of survey, which have the same precision than ∆12, ∆1

and ∆2 with respect to ∆0 for (a)-(b) different values of σ2
2 , (c)-(d) different values of σ2, (e)-(f) the case σ2=σ2

2 ,
(g)-(h) different values of ρ, (i)-(j) different values of ρ2, and (k)-(l) the case ρ=ρ2.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Sample sizes and corresponding expected cost of survey, which have the same precision than ∆12, ∆1 and
∆2, with respect to ∆0 for (a)-(b) different values of W2, (c)-(d) different values of f , and (e)-(f) different values of
q.

Table 7. Sample sizes and corresponding expected cost of survey, which have the same precision than z12, z1, z2
with respect to z0 for different values of W2, f and q.

ρ ρ2 q f W2 σ2
2 σ2 n′ n′1 n′2 E(C12) E(C1) E(C2)

W2

0.7 0.2 0.6 2.5 0.2 0.4 0.6 65 57 58 1017.2 732.8 748.7
0.7 0.2 0.6 2.5 0.6 0.4 0.6 95 71 75 2555.9 1314.4 1376.5
0.7 0.2 0.6 2.5 0.8 0.4 0.6 110 78 83 3576.5 1663.4 1756.4

f
0.8 0.3 0.4 1.0 0.5 0.4 0.6 64 56 58 3288.4 1723.4 1784.0
0.8 0.3 0.4 1.5 0.5 0.4 0.6 72 60 63 2580.3 1372.8 1440.1
0.8 0.3 0.4 3.0 0.5 0.4 0.6 93 69 75 1956.5 1071.0 1158.6

q
0.8 0.2 0.2 1.5 0.4 0.7 0.5 82 62 72 2521.5 1260.2 1467.6
0.8 0.2 0.7 1.5 0.4 0.7 0.5 89 69 70 2739.0 1400.5 1431.8
0.8 0.2 0.9 1.5 0.4 0.7 0.5 91 70 71 2804.3 1432.3 1438.5
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Sample sizes and corresponding expected cost of survey, which have the same precision than z12, z1 and
z2 with respect to z0 for (a)-(b) different values of σ2

2 , (c)-(d) different values of σ2, (e)-(f) the case σ2=σ2
2 , (g)-(h)

different values of ρ, (i)-(j) different values of ρ2, and (k)-(l) the case ρ=ρ2.
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(a) (b) (c)

(d) (e) (f)

Figure 6. Sample sizes and corresponding expected cost of survey, which have the same precision than z12, z1 and
z2 with respect to z0 for (a)-(b) different values of W2, (c)-(d) different values of f , and (e)-(f) different values of q.

Table 8. Sample sizes and corresponding expected cost of survey, which have the same precision than z12, z1, z2,
with respect to z0 for different values of ρ, ρ2, σ2

2 and σ2.

ρ ρ2 q f W2 σ2
2 σ2 n′ n′1 n′2 E(C12) E(C1) E(C2)

σ2 < σ2
2

0.7 0.2 0.5 2.5 0.4 0.4 0.3 109 77 83 2301.5 1203.9 1301.1
0.7 0.2 0.5 2.5 0.4 0.7 0.3 152 97 108 3223.7 1515.9 1680.4
0.7 0.2 0.5 2.5 0.4 0.8 0.3 167 104 116 3530.8 1619.6 1806.4

σ2 > σ2
2

0.6 0.2 0.3 1.5 0.3 0.2 0.3 63 56 58 1605.7 992.5 1041.3
0.6 0.2 0.3 1.5 0.3 0.2 0.6 56 53 54 1443.1 941.5 966.1
0.6 0.2 0.3 1.5 0.3 0.2 0.9 54 52 53 1388.8 924.4 940.8

σ2 = σ2
2

0.8 0.3 0.7 2.0 0.5 0.2 0.2 97 72 74 2764.2 1388.9 1423.0
0.8 0.3 0.7 2.0 0.5 0.6 0.6 97 72 74 2764.2 1388.9 1423.0
0.8 0.3 0.7 2.0 0.5 0.9 0.9 97 72 74 2764.2 1388.9 1423.0

ρ < ρ2

0.1 0.7 0.6 2.5 0.5 0.4 0.6 99 70 77 2378.3 1191.7 1312.8
0.5 0.7 0.6 2.5 0.5 0.4 0.6 93 68 72 2239.4 1162.6 1229.2
0.8 0.7 0.6 2.5 0.5 0.4 0.6 91 68 70 2184.7 1151.0 1192.2

ρ > ρ2

0.8 0.2 0.3 2.0 0.4 0.5 0.3 103 74 83 2554.1 1284.0 1453.8
0.8 0.6 0.3 2.0 0.4 0.5 0.3 112 74 83 2786.7 1284.0 1453.8
0.8 0.9 0.3 2.0 0.4 0.5 0.3 119 74 83 2944.5 1284.0 1453.8

ρ = ρ2

0.3 0.3 0.8 1.5 0.3 0.6 0.4 84 66 68 2144 1178.0 1213.5
0.5 0.5 0.8 1.5 0.3 0.6 0.4 84 65 67 2144 1173.5 1198.2
0.8 0.8 0.8 1.5 0.3 0.6 0.4 84 65 66 2144 1168.5 1180.9
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6. Conclusions

In this article, we have used the HH technique for estimating the change of mean and the
sum of mean in mail surveys. This problem has been conducted for current occasion in the
context of sampling on two occasions when there is non-response (i) on both occasions, (ii)
only on the first occasion and (iii) only on the second occasion. The obtained results have
revealed that the loss in precision is maximum for the estimation of the sum of mean when
there is non-response on both occasions. However, it is minimum for the estimation of the
sum of mean when there is non-response only on the first occasion. In the majority of
the cases, the loss in precision (expressed in percentage of the estimation of the change of
mean), when there is non-response on both occasions, is less than that from the estimation
of the change of mean when there is non-response only on the second occasion. Also, we
have derived the sample sizes and the saving in cost for all the estimators that have the
same precision than the estimator of the change of mean and sum of mean when there is
no non-response.
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