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Abstract

In this paper, we correct Lemma 7.2.12 and Theorem 7.2.13 of the book “Aspects of
Multivariate Analysis” by R.J. Muirhead. Then, some generalisations of these results
are considered.
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1. Introduction

Zonal polynomials are of undeniable importance, in both theory and practice. Following
the algorithms proposed by Koev and Edelman (2006), zonal polynomials are increasingly
being used in various areas of knowledge. Undoubtedly, the initial studies by James (1960,
1961a,b, 1964) and Constantine (1963), among others, laid the foundations in this field.
Subsequently, some books such as by Farrell (1985), Takemura (1984) and Forrester (2009)
compiled many of these early results and proposed new theoretical considerations and many
practical applications.

Recently, it was noticed that the real and complex zonal polynomials (see Farrell, 1985;
Takemura, 1984), as well as other polynomials, are particular cases of Jack polynomials; see,
e.g., Kaneko (1993), Koev and Edelman (2006) and Forrester (2009). Also, it was observed
that most of the properties of the real and complex zonal polynomials are satisfied by
Jack polynomials too. In particular, Li and Xue (2009) extended the results proposed by
Muirhead (1982) to zonal polynomials of quaternion matrix argument.
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22 J.A. Dı́az-Garćıa and R. Gutiérrez-Jáimez

However, the book by Muirhead (1982) marked a watershed in these studies and it has
had an undeniable impact on recent generations of mathematicians and statisticians work-
ing in the field of multivariate analysis; see Wijsman (1984). Virtually all recent studies
that bear upon the question of zonal polynomials have cited Muirhead’s book (1982). In
particular, Li (1997) calculated the expectation of zonal and invariant polynomials, mak-
ing use of various results published in Muirhead (1982). Unfortunately, the conclusions
drawn by Li (1997) are incorrect. This is because both Lemma 7.2.12 and the proof of
Theorem 7.2.13 in Muirhead (1982) are incorrect. Due to the undeniable importance and
impact of Muirhead’s book, and its influence on current and future studies, the present
note proposes corrections to the above-mentioned lemma and theorem.

The paper is organized as follows. In Section 2, we present some useful preliminary
aspects. In Section 3, we discuss the main results of this note correcting Lemma 7.2.12
and Theorem 7.2.13 of the book “Aspects of Multivariate Analysis” by R.J. Muirhead,
and providing some generalisations of these results. Finally, in Section 3, we provide some
conclusions.

2. Preliminary Results

In this section, we present some preliminary aspects that are useful for providing the proofs
discussed in Section 3.

The Pochhammer symbol is defined as

(x)q = x(x + 1) · · · (x + q − 1) =

q
∏

i=1

(x + i − 1) =

q
∏

i=1

(x + q − i) =
Γ(x + q)

Γ(x)
, (1)

where Γ(·) is the gamma function. Also, observe that

(−x)q = (−1)q(x − q + 1)q =
(−1)qΓ(x + 1)

Γ(x − q + 1)
. (2)

Similarly

(x)(q) = x(x − 1) · · · (x − q + 1) =

q
∏

i=1

(x − i + 1) =

q
∏

i=1

(x − q + i). (3)

Then, for any function g: ℜ → ℜ,

q
∏

i=1

g(x + i − 1) =

q
∏

i=1

g(x + q − i) (4)

and

q
∏

i=1

g(x − i + 1) =

q
∏

i=1

g(x − q + i). (5)
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Lemma 2.1 Let A be a real m×m positive definite matrix and Re(a) > (m−1)/2. Then,
the multivariate gamma function, denoted by Γm(a), is defined to be

Γm(a) =

∫

A>0
etr(−A)(detA)a−

m+1

2 (dA),

where etr(·) ≡ exp tr(·), the integral is over the space of positive definite (and hence
symmetric) m × m matrices and A > 0 means that A is a positive definite matrix. Then,

Γm(a) = π
m(m−1)

4

m
∏

i=1

Γ

(

a −
i − 1

2

)

= π
m(m−1)

4

m
∏

i=1

Γ

(

a −
m − i

2

)

.

Proof See Muirhead (1982, Theorem 2.1.12, pp. 62-63), Mathai (1997, Example 1.24,
pp. 56-57) and Equation (5). �

In a similar way to Equation (5), it is readily apparent that for ki being a non-negative
integer and i = 1, . . . , q,

q
∏

i=1

g(x ± kq+1−i − i + 1) =

q
∏

i=1

g(x ± ki − q + i). (6)

3. Zonal Polynomials

In this section, we propose the correct version of Lemma 7.2.12 (p. 256) and the correct
proof of Theorem 7.2.13 (pp. 256-258) given in Muirhead (1982).

Lemma 3.1 Let Z = diag{z1, . . . , zm} and Y = (yij) be an m×m positive definite matrix.
Then,

Cκ

(

Y−1Z
)

= dκzk1

1 · · · zkm

m y
−(km−km−1)
11 det

[

y11 y12

y21 y22

]−(km−1−km−2)

· · · (detY)−k1

+ terms of lower weight in the z′s.

where κ = (k1, . . . , km).

Proof If A is a symmetric matrix with latent roots a1, . . . , am, then A−1 is also a sym-
metric matrix with latent roots α1, . . . , αm, such that αi = 1/ai, for i = 1, . . . ,m. Thus,
by Constantine (1966, without proof) and Takemura (1984, Lemma 2, p. 54, with proof),

(detA)n
Cκ(A−1)

Cκ(Im)
=

Cκ∗(A)

Cκ∗(Im)
,
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where n is any integer ≥ k1 and κ∗ = (n − km, . . . , n − k1). Thus,

Cκ

(

A−1
)

= dκαk1

1 · · ·αkm

m + terms of lower weight

= (detA)−nsκ,κ∗Cκ∗(A)

= (detA)−nsκ,κ∗[dκ∗an−km

1 · · · an−k1

m + terms of lower weight].

Denoting

sκ,κ∗ =
Cκ(Im)

Cκ∗(Im)
,

we have

Cκ

(

A−1
)

= (detA)−nsκ,κ∗dκ∗a
n−km−(n−km−1)
1 (a1a2)

n−km−1−(n−km−2) · · · (a1a2 · · · am)n−k1

+ terms of lower weight

= sκ,κ∗dκ∗a
−(km−km−1)
1 (a1a2)

−(km−1−km−2) · · · (a1a2 · · · am)−k1

+ terms of lower weight

= sκ,κ∗dκ∗r
−(km−km−1)
1 r

−(km−1−km−2)
2 · · · r−k1

m

+ terms of lower weight,

where rj = trj(A). From Equations (39) and (40) given in Muirhead (1982, p. 247), we
get

Cκ

(

A−1
)

= sκ,κ∗dκ∗ tr1(A)−(km−km−1) tr2(A)−(km−1−km−2) · · · trm(A)−k1

+ terms of lower weight

= sκ,κ∗dκ∗a
−(km−km−1)
11 det

[

a11 a12

a21 a22

]−(km−1−km−2)

· · · (detA)−k1

+ terms of lower weight.

Now, let A−1 = Y−1Z. Then, A = Z−1Y and aij = z−1
i yij. Thus,

Cκ

(

Y−1Z
)

= sκ,κ∗dκ∗(z−1
1 y11)

−(km−km−1) det

[

z−1
1 y11 z−1

1 y12

z−1
2 y21 z−1

2 y22

]−km−1+km−2

· · · (detZ−1Y)−k1

+ terms of lower weight in the z′s

= sκ,κ∗dκ∗zkm

1 · · · zk1

m y
−(km−km−1)
11 det

[

y11 y12

y21 y22

]−(km−1−km−2)

· · · (detY)−k1

+ terms of lower weight in the z′s.
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Finally, the result is obtained observing that:

i) The Equation (10) given in Constantine (1963) (see also Muirhead, 1982, Equation
(i)(1), p. 228) that appears as

Cκ(Y) = dκyk1

1 · · · ykm

m + terms of lower weight, (7)

is a compact form of the expression

Cκ(Y) = dκ(yk1

1 · · · ykm

m + · · · + symmetric terms) + terms of lower weight,

where “symmetric terms” denote the generic term yk1

i1
· · · ykm

im
, being (i1, . . . , im) a per-

mutation of the m integers, namely 1, . . . ,m, and κ = (k1, . . . , km). Then, for a fixed
permutation (i1, . . . , im), alternately (7) can be written as

Cκ(Y) = dκyk1

i1
· · · ykm

im
+ terms of lower weight,

or in particular, for our purpose as

Cκ(Y) = dκykm

1 · · · , yk1

m + terms of lower weight,

and
ii) Observing that, the constant associated with “zk1

1 · · · zkm

m + · · ·+ symmetric terms” of
Cκ(Y−1Z), in terms of the latent roots of YZ−1, is sκ,κ∗dκ∗ , which is denoted by dκ.

�

Remark 3.1 Also, observe that the “Hint” in problem 7.5 in Muirhead (1982) is also
incorrect.

An application of Lemma 3.1, but in its wrong version, is given by Muirhead (1982,
Theorem 7.2.13). Surprisingly, the correct result is obtained. The following results were
proposed (without proof) by Constantine (1966) and, simultaneously, with an alternative
proof to that given below, by Khatri (1966) and Takemura (1984, Lemma 1, p. 53).

Theorem 3.2 Let Z be a complex symmetric m × m matrix with Re(Z) > 0. Then,

∫

X>0
etr(−XZ)(detX)a−

m+1

2 Cκ =
(−1)lΓm(a)

(−a + (m + 1)/2)κ

(detZ)−aCκ(Z)

=
Γm(a)

(−a + (m + 1)/2)κ

(detZ)−aCκ(−Z),

for Re(a) > k1 + (m − 1)/2, where κ = (k1, . . . , km) and l = k1 + · · · + km.

Proof First suppose that Z > 0 is real. Let f(Z) denote the integral on the left side of

Equation given in Theorem 3.2 and make the change of variable X = Z−1/2YZ−1/2, with
Jacobian (dX) = (detZ)−(m+1)/2(dY). Then we obtain

f(Z) =

∫

Y>0
etr(−Y)(detY)a−

m+1

2 Cκ

(

Y−1Z
)

(dY)(det Z)−a. (8)
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Thus, exactly as in the proof of Theorem 7.2.7 in Muirhead (1982, pp. 256-257), we get

f(Z) =
f(Im)

Cκ(Im)
Cκ(Z)(det Z)−a.

Assuming without loss of generality that Z = diag{z1, . . . zm} and using Definition 7.2.1
(i) given in Muirhead (1982), it follows that

f(Z) =
f(Im)

Cκ(Im)
(detZ)−adκzk1

1 · · · zkm

m + terms of lower weight. (9)

On the other hand, using the result of Lemma 3.1 in Equation (8), we obtain

f(Z) = (detZ)−adκzk1

1 · · · zkm

m

∫

Y>0
etr(−Y)(detY)a−

m+1

2

× y
−(km−km−1)
11 det

[

y11 y12

y21 y22

]−(km−1−km−2)

· · · detY−k1(dY)

+ terms of lower weight in the z′s.

To evaluate the integral above, set Y = T⊤T, where T is upper-triangular with positive
diagonal elements, such that

tr(Y) =

m
∑

i≤j

t2ij , y11 = t211, det

[

y11 y12

y21 y22

]

= t211t
2
22, . . . , detY =

m
∏

i=1

t2ii,

and, from Theorem 2.1.9 given in Muirhead (1982, p. 60),

(dY) = 2m
m
∏

i=1

tm+1−i
ii

m
∧

i≤j

dtij =

m
∏

i=1

(

t2ii
)

m−i

2

m
∧

i=1

dt2ii

m
∧

i<j

dtij .

Hence,

f(Z) = (detZ)−adκzk1

1 · · · zkm

m

m
∏

i<j

(
∫ ∞

−∞

exp
(

−t2ij
)

dtij

)

×
m
∏

i=1

(
∫ ∞

0
exp

(

−t2ii
) (

t2ii
)a−km+1−i−

i−1

2
−1

dt2ii

)

+ terms of lower weight in the z′s

= (detZ)−adκzk1

1 · · · zkm

m π
m(m−1)

4

m
∏

i=1

Γ

(

a − km+1−i −
i − 1

2

)

+ terms of lower weight in the z′s.
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Then, by using Equation (6), we have

f(Z) = (detZ)−adκzk1

1 · · · zkm

m π
m(m−1)

4

m
∏

i=1

Γ

(

a − ki −
m − i

2

)

+ terms of lower weight in the z′s,

which is the result obtained by Khatri (1966, Equation (12)); see also Takemura (1984,
Lemma 1, p. 53). Finally, by Equation (2) and las Equation given in Lemma (2.1), we have

f(Z) = (detZ)−adκzk1

1 · · · zkm

m π
m(m−1)

4

m
∏

i=1

(−1)kiΓ (a − (m − i)/2)

(−a + (m − i)/2 + 1)ki

+ terms of lower weight in the z′s

= (detZ)−adκzk1

1 · · · zkm

m

(−1)l πm(m−1)/4
∏m

i=1 Γ (a − (m − i)/2)
∏m

i=1 (−a + (m − i)/2 + 1)ki

+ terms of lower weight in the z′s

= (detZ)−adκzk1

1 · · · zkm

m

(−1)lΓm(a)
∏m

i=1 (−a + (m + 1)/2 − (i − 1)/2)ki

+ terms of lower weight in the z′s

= (detZ)−adκzk1

1 · · · zkm

m

(−1)lΓm(a)

(−a + (m + 1)/2)κ

+ terms of lower weight in the z′s,

where recall κ = (k1, . . . , km) and l = k1 + · · · + km, and

(b)κ =
m
∏

i=1

(

b −
i − 1

2

)

ki

.

Equating coefficients of zk1

1 · · · zkm

m in Equations (9) and (10), it follows that

f(Im)

Cκ(Im)
=

(−1)lΓm(a)

(−a + (m + 1)/2)κ

.

Finally, we obtain the desired result for real Z > 0, and it follows for complex Z with
Re(Z) > 0 by analytic continuation and recalling that (−1)lCκ(A) = Cκ(−A). �
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Remark 3.2 Observe that Muirhead (1982, penultimate line, p. 257) obtained

f(Z) = (detZ)−adκzk1

1 · · · zkm

m π
m(m−1)

4

m
∏

i=1

Γ

(

a − ki −
i − 1

2

)

+ terms of lower weight in the z′s

= (detZ)−adκzk1

1 · · · zkm

m π
m(m−1)

4

m
∏

i=1

(−1)kiΓ (a − (i − 1)/2)

(−a + (i − 1)/2 + 1)ki

+ terms of lower weight in the z′s

= (detZ)−adκzk1

1 · · · zkm

m

(−1)l πm(m−1)/4
∏m

i=1 Γ (a − (m − i)/2)
∏m

i=1 (−a + (i + 1)/2)ki

+ terms of lower weight in the z′s

= (detZ)−adκzk1

1 · · · zkm

m

(−1)lΓm(a)
∏m

i=1 (−a + (i + 1)/2)ki

+ terms of lower weight in the z′s

6= (detZ)−adκzk1

1 · · · zkm

m

(−1)lΓm(a)

(−a + (m + 1)/2)κ

+ terms of lower weight in the z′s,

where once again recall κ = (k1, . . . , km) and l = k1 + · · · + km.

Corollary 3.3 Let V be a complex symmetric m × m matrix with Re(V) > 0 and W

an arbitrary complex symmetric matrix. Then,

∫

X>0
etr(−XV)(detX)a−

m+1

2 Cκ

(

WX−1
)

(dX) =
(−1)lΓm(a)

(−a + (m + 1)/2)κ

(detV)−aCκ(VW)

=
Γm(a)

(−a + (m + 1)/2)κ

(detV)−aCκ(−VW),

for Re(a) > k1 + (m − 1)/2, where again κ = (k1, . . . , km) and l = k1 + · · · + km.

Proof Observe that if V = Im in Equation given in Corollary 3.3, we obtain Equation
(8). For the general case substitute V1/2XV1/2 for X in Equation (8) with the Jacobian
of the transformation |V|(m+1)/2. �

Remark 3.3 One reviewer of this paper suggested that Lemma 3.1, Theorem 3.2 and
Corollary 3.3 can be generalised to Jack polynomials. In fact, for example, in Corollary
2.4 and Proposition 2.3 of Ratnarajah et al. (2005b) were proposed (without proof) the
versions of Theorem 3.2 and Corollary 3.3, respectively, in the complex case. Similarly,
the generalisation of Lemma 3.1 and Corollary 3.3 for the quaternion case were proposed
(without proof) in Lemma 3.3 and Theorem 3.2 of Li and Xue (2009), respectively. So, these
and many other properties of Jack polynomials, the associated general hypergeometric
functions with one and two matrix argument and invariant polynomials with two matrix
argument for normed division algebras are studied in detail by D́ıaz-Garćıa (2009).
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4. Conclusions

Let us stress that the aim of the present note is not to disparage the importance of
Muirheads book, but rather to correct the certain deficiencies we believe to have identified.
Thus, we help prevent, or minimize, erroneous conclusions being drawn on the basis of this
note, in both current and future work.
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D́ıaz-Garćıa, J.A., 2009. Special functions: Integral properties of Jack polynomials, hy-

pergeometric functions and invariant polynomials. http://arxiv.org/abs/0909.1988
(also submitted).

Farrell, R.H., 1985. Multivariate Calculation: Use of the Continuous Groups. Springer-
Verlag, New York.

Forrester, P.J., 2010. Log-gases and Random Matrices. Princeton University Press, Prince-
ton.

James, A.T., 1960. The distribution of the latent roots of the covariance matrix. The
Annals of Mathematical Statistics, 31, 151-158.

James, A.T., 1961a. Zonal polynomials of the real positive definite symmetric matrices.
The Annals of Mathematics, 74, 456-469.

James, A.T., 1961b. The distribution of noncentral means with known covariance. The
Annals of Mathematical Statistics, 32, 874-882.

James, A.T., 1964. Distributions of matrix variates and latent roots derived from normal
samples. The Annals of Mathematical Statistics, 35, 475-501.

Kaneko, J., 1993. Selberg integrals and hypergeometric functions associated with Jack
polynomials. SIAM Journal on Mathematical Analysis, 24, 1086-1110.

Khatri, C.G., 1966. On certain distribution problems based on positive definite quadratic
functions in normal vector. The Annals of Mathematical Statistics, 37, 468-479.

Koev, P., Edelman, A., 2006. The efficient evaluation of the hypergeometric function of a
matrix argument. Mathematics of Computation, 75, 833-846.

Li, R., 1997. The expected values of invariant polynomials with matrix argument of ellip-
tical distributions. Acta Mathematicae Applicatae Sinica, 13, 64-70.

Li, F., Xue, Y., 2009. Zonal polynomials and hypergeometric functions of quaternion matrix
argument. Communications in Statistics - Theory and Methods, 38, 1184-1206.

Mathai, A.M., 1997. Jacobians of Matrix Transformations and Functions of Matrix Argu-
ment. World Scientific, London.
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