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(Received: 12 April 2010 · Accepted in final form: 01 September 2010)

Abstract

Using the concept of reduction by sufficiency of a Bayesian model, the issue of Bayesian
identifiability is discussed. Various statements given in the literature on Bayesian iden-
tifiability are revised. Particular attention is put on the possibility of updating uniden-
tified parameters. This issue is discussed under a general framework and also carefully
illustrated in a fully discrete Bayesian model.

Keywords: Minimal Sufficient Parameter · Statistical Model · Sufficient Parameter
· Unidentified Parameter · Updating Process.

Mathematics Subject Classification: Primary 62B05 · Secondary 62B15.

1. Introduction

Identifiability is often treated as a necessary condition for a rigorously well specified sta-
tistical model. When structural modeling is being considered, that is, when the model for-
malizes a certain phenomenon, the identification condition is more than a simple technical
assumption but covers a more fundamental aspect, namely, the adequacy of a theoretical
statistical model for an observed process.

In the sampling approach, a statistical model is defined as an indexed family of distribu-
tions on the sample space, whereas the Bayesian approach considers a unique probability
measure on the product space “parameters × observations”; see Caillot and Martin (1972),
Mart́ın et al. (1973), Florens et al. (1990) and Gourieroux and Monfort (1995). The sam-
pling theory framework of identifiability has been extensively discussed in the literature;
see, e.g., Prakasa Rao (1992), Manski (1995), Manski (2007) and references therein. Under
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the Bayesian approach, however, the concept of identifiability and, particularly, noniden-
tifiability (Dawid, 1979) has not been free from controversies, polemics and confusion.
The famous sentence “In passing it might be noted that unidentifiability causes no real
difficulty in the Bayesian approach” quoted by Lindley (1971) is a remarkable example.

Depending on whether the problem is in the prior, the likelihood or the posterior dis-
tribution, different views on the issue of identifiability have been given in the literature.
Poirier (1998) argued that “A Bayesian analysis of a nonidentified model is always possible
if a proper prior on all the parameters is specified”. In the same line, Eberly and Carlin
(2000) pointed out that “in some sense identifiability is a non-issue for Bayesian analy-
ses, since given proper prior distributions the corresponding posteriors must be proper as
well, hence every parameter can be well estimated”. Gelfand and Sahu (1999) stated that
too informative priors will dominate the inference and priors near to be improper will
produce ill-behaved posteriors, yet on the other hand they argued that nonidentifiability
would not depend on the nature of the prior specification but on lack of identifiability in
the likelihood. In this sense, Dawid’s (classical) definition of Bayesian nonidentifiability is
equivalent with what a Bayesian would call likelihood identifiability; see Eberly and Carlin
(2000, p. 2280) and Ghosh et al. (2000). An unified thought is given by Kadane (1975)
who stated that “identification is a property of the likelihood function and is the same
whether considered classically or from the Bayesian approach.” The issue has also been
discussed when simulation-based techniques are used for model fitting and inferences. It
is commonly argued that nonidentifiability does not preclude Bayesian inference as long
as a suitable informative prior is specified. Kass et al. (1998) pointed out that provided
the posterior is proper, there is no problem for MCMC methods, assuming that one has
determined that the nonidentifiability “isn’t due to a bug”.

In addition to these views, there exist a perspective in which not only the advantage of
the Bayesian approach over the sampling approach in making inferences on unidentified
parameters is emphasized (Neath and Samaniego, 1997), but also in this perspective it is
acknowledged that “the lack of identifiability cannot be minimized” (Paulino, 1994, p.149),
specially in the prior elicitation process; see Paulino et al. (2003), Swartz et al. (2004),
Jiang and Dickey (2008) and Poleto et al. (2010).

The above-mentioned perspectives motivate the following questions: (i) How can a ge-
nuinely Bayesian identification concept be defined? (ii) To what extent is the unidentified
parameter updated by the data? (iii) In which sense a precise prior elicitation ensures a
correct Bayesian inference on unidentified parameters? This paper develops a conceptual
discussion leading to some answers to these questions.

The paper is organized as follows. In Section 2, we introduce the Bayesian model together
with the definitions of some basic concepts necessary to define Bayesian identifiability. In
Section 3, we explain the construction of a fully discrete Bayesian model and characterize
the Bayesian identifiability in this context. Also, in this section, we discuss the updating
process of unidentified parameters. Finally, we conclude the paper with a discussion.

2. Bayesian Model

2.1 General construction of a Bayesian model

In a sampling theory framework, a statistical model is formally defined as

E = {(S,S), P a: a ∈ A}, (2.1)

where (S,S) is a measurable space, the sample space and {P a: a ∈ A} is a family of
probability measures on the sample space indexed by a parameter a belonging to a pa-
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rameter space A; see Fisher (1922), Basu (1975), Barra (1981) and McCullagh (2002). The
probabilities {P a: a ∈ A} are called sampling probabilities as they describe the sampling
or data generating process. The parameter space A might be either a Euclidean space, a
functional space, or a product of both as it is the case in parametric, non-parametric and
semi-parametric models, respectively. Note that the statistical model given in (2.1) can
be considered as an extension of a probability space (S,S, P ) in the sense that a unique
probability measure P is replaced by a family of probability measures P a, a ∈ A.

A Bayesian model is defined as a unique probability measure Q on the product space
“parameters × observations”, denoted as A× S. Taking as a starting point the statistical
model given in (2.1), a probability measure Q on A × S is constructed by endowing the
parameter space A with a probability measure µ on (A,A), where the σ-field A of subsets
of A makes P a(X) measurable for all X ∈ S and by extending to A⊗S (in a unique way)
the function Q defined on A× S as

Q(E ×X) =
∫
E
P a(X) dµ, E ∈ A, X ∈ S. (2.2)

The measure constructed from Equation (2.2) is denoted as the Markovian product Q =
µ⊗ PA. Thus, a Bayesian model is defined by the following probability space:

E = (A× S,A ∨ S, Q = µ⊗ PA). (2.3)

Remark 2.1 In this paper, we shall systematically relate the sub-σ-field B ⊂ A (resp.,
T ⊂ S) to the sub-σ-field1 of the corresponding cylinders B × S (resp. A × T ). Thus, in
Equation (2.3), we relate the product A⊗S to A∨ S, the σ-field generated by (A× S) ∪
(A× S). This is to alleviate the notation.

By construction, P a in Equation (2.2) becomes a probability transition representing a
regular version of PA, the restriction to S of the conditional probability Q given A and
this is so for whatever probability µ on (A,A). Moreover, the so-called prior probability
µ corresponds to the marginal probability of Q on (A,A), namely µ(E) = Q(E × S)
for E ∈ A. Similarly, the marginal probability P on the sample space (S,S) given by
P (X) = Q(A×X) for X ∈ S is called the predictive probability.

In addition to the decomposition Q = µ⊗ PA, the probability Q is decomposed, under
the usual hypotheses (Rao, 1993), into a marginal probability P , and a regular conditional
probability given S, represented by a probability transition denoted as µS ; this is the so-
called posterior distribution. When Q is decomposed as Q = µ⊗PA = P⊗µS , the Bayesian
model given in (2.3) is said to be regular. For more details, see Mart́ın et al. (1973) and
Florens et al. (1990). In the remaining of this paper we assume that the Bayesian model
given in (2.3) is regular.

2.2 Family of Bayesian models

The main difference between models given in (2.1) and (2.3) is that the first is a family
of sampling distributions, whereas the second is a unique probability measure defined
on the product space “parameters × observations”. It should be emphasized that in a
Bayesian model, the prior distribution µ is fixed. However, when the interest is focused
on the sensitivity of Bayesian procedures with respect to changes on the prior distribution
(Macci and Polettini, 2001), or on the Bayesian inference using inter-subjective models

1A sub-σ-field is a subset of a σ-field which in turn is a σ-field.
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(Dawid, 1979, Section 9), we are dealing with a family of Bayesian models indexed by
prior distributions defined on the parameter space (A,A), that is,

E = {(A× S,A ∨ S), Qµ = µ⊗ PA, µ ∈ P(A,A)}, (2.4)

where P(A,A) denotes the space of probability measures defined on the parameter space.
It can be seen therefore that Equations (2.1) and (2.4) share a common mathematical
structure.

2.3 σ-algebraic perspective of this paper

In the following subsections we define the concepts of statistic, parameter, sufficient pa-
rameter, minimal sufficient parameter, sampling information and Bayesian identification,
based on the Bayesian model given in (2.3). These definitions are developed using a σ-
algebraic perspective, because this is a powerful tool to define a genuinely Bayesian concept
of identification (see later). In a sampling theory framework, the data generating process
can be reduced either by marginalizing or by conditioning on a statistic; a sufficient reduc-
tion means, therefore, that conditionally on a sufficient statistic the sampling process does
not provide any useful information on the parameters indexing the sampling probabilities;
see Basu (1975).

In the Bayesian model given in (2.3), parameters and statistics play a symmetric role in
the sense that A could be interpreted as a statistic and S as a parameter. This is due to the
fact that a Bayesian model is fully characterized by a unique probability measure defined on
the product space “parameters × observations”. Taking advantage on that, sufficiency can
also be defined at the parameter space level. Bayesian identifiability will, consequently,
be defined through minimal sufficiency; see Section 2.7. However, in a sampling theory
framework, minimal sufficiency can be defined in a dominated statistical model only, that
is, when the sampling process can be described in terms of densities; see Pitcher (1957,
1965) and Barra (1981, Chapter II, Section 5). Therefore, it should be asked whether a
concept of Bayesian identifiability based on the idea of minimal sufficiency is as general as
possible.

A σ-algebraic approach provides us with the necessary tools leading to conclude that,
in a Bayesian model, minimal sufficiency is a well defined concept either in dominated or
undominated structures. This ensures a Bayesian concept of identifiability useful in para-
metric, semi-parametric and non-parametric contexts. Furthermore, as shown in Section
2.7, this perspective allows us to understand the role of the prior distribution in Bayesian
identifiability.

2.4 Statistics and parameters in a Bayesian model

Consider the Bayesian model given in (2.3). A function T : (S,S) 7→ (U,U) is called a
statistic if and only if T .= T−1(U) ⊂ S. Here, (U,U) is a measurable space (typically, a
Borel space), and T , also denoted as σ(T ) –the σ-field generated by T–, is the smallest
σ-field which makes measurable the function T . Therefore, a statistic should be viewed not
only as a function with values in U , but also as the set of events that may be described in
terms of that random variable; see (Florens and Mouchart, 1982, p. 588). Consequently,
T represents the information provided by the random variable T . This information does
not depend on the coordinate system chosen to represent T (namely, the measurable space
(U,U)) since σ(T ) = σ[h(T )] for all bi-measurable1 and bijective function.

1A bijective function h: (N,N ) 7→ (U,U) is bi-measurable if, and only if, h is U-measurable, and h−1 isN -measurable.
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Taking into account the previous considerations, a statistic is a sub-σ-field T of S. The
sub-σ-field T can heuristically be read as a function T and all bijective and bi-measurable
functions of it: they represent the same information.

Example 2.1 Let T ∼ N(0, 1) and Y = exp(T ). It is known that ln(Y ) is distributed
according to a log-normal distribution. Although the probability distributions of T and Y
are different, the information provided by them is the same because the transformation
exp(·) is a bijective and bi-measurable function. Such an information is represented by the
σ-field T = σ(T ) = σ(Y ).

Similarly, a subparameter, or more simply a parameter, is a sub-σ-field B of A. The sub-
σ-algebra B can heuristically be read as a function b and all bijective and bi-measurable
functions of it.

2.5 Sufficiency in a Bayesian model

2.5.1 Sufficient statistics

Let T ⊂ S be a statistic and B ⊂ A be a parameter. A statistic T is sufficient if, condi-
tionally on it, the sampling process is independent of the parameter. Using properties of
conditional independence (see Appendix A), the last statement can be written as S ⊥⊥ A|T
which is read as “S is independent of A given T ”. Thus, a statistic T is sufficient for the
parameter A if, for all S-measurable function s, E(s|A∨ T ) = E(s|T ); that is, the process
generating the observations conditionally on A∨T only depends on the statistic T . Equiv-
alently, for all A-measurable function a, E(a|S) = E(a|T ), so that the posterior process is
fully characterized by the sufficient statistic, the observations S being redundant once T
is “given”. Thus, the original Bayesian model given in (2.3) can be replaced, without any
loss of information, by

Ẽ = (A× S,A ∨ T , QT ), (2.5)

where QT is the restriction of Q on T , that is, QT (E ×X) .= Q(E ×X) for E ∈ A and
X ∈ T . Following Basu (1975)’s and Florens et al. (1990)’s terminology, Ẽ corresponds
to a reduction by sufficiency of the Bayesian model given in (2.3). The Bayesian learning
process on the parameter A is unaffected by this reduction.

2.5.2 Sufficient parameter

Taking advantage of the symmetric role of observations and parameters in a Bayesian
model, it is possible to define a sufficient parameter in a way similar to that of a sufficient
statistic. As a matter of fact, a parameter B is sufficient with respect to S if and only
if A ⊥⊥ S|B, which means that, for all S-measurable function s, E(s|A) = E(s|B); that
is, the sufficiency of B means that B is “sufficient” to describe the sampling process.
Equivalently, A ⊥⊥ S|B means that for all A-measurable function a, E(a|S ∨ B) = E(a|B);
that is, conditionally on B, the observation S does not bring information on A.

Using the properties of conditional independence, it can be verified that if B ⊂ A is
a sufficient parameter for S and C ⊂ A is a parameter, then A ⊥⊥ S|B ∨ C, that is, the
parameter B ∨ C is also sufficient. This means that the sampling process is described not
only by B, but also by B ∨ C for all C ⊂ A. In other words, once we have a sufficient
description of the sampling process, then such a process can be described using redundant
information at the parameter level, which in turn is sufficient. Consequently, it makes sense
to look for the minimal sufficient parameter describing the sampling process.
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2.6 Minimal sufficient parameter

Let ΣA be the class of sufficient parameters B ⊂ A for S, namely ΣA = {B ⊂ A: A ⊥⊥ S|B}.
It is clear that ΣA is not empty since A ∈ ΣA. Take therefore B1, B2 ∈ ΣA. Using both the
definition of parametric sufficiency and the characterization of conditional independence
in terms of a measurability condition (see Appendix A), it follows that the sufficiency of B1

implies that, for all A-measurable function a, E(a|A) is B1-measurable; and the sufficiency
of B2 implies that, for all A-measurable function a, E(a|A) is B2-measurable. Here, Bj
(j = 1, 2) denotes the measurable completion Bj = Bj ∨ {E ∈ A: µ(E)2 = µ(E)}, where
{E ∈ A: µ(E)2 = µ(E)} is the set of the prior null sets, i.e., the set of all the events
whose prior probability is 0 or 1. Then, for all A-measurable function a, E(a|A) is B1∩B2-
measurable, that is, A ⊥⊥ S|B1 ∩ B2; thus, B1 ∩ B2 ∈ ΣA. This argument is used to define
a minimal sufficient parameter Bmin, as follows

Bmin =
⋂
B∈ΣA

B. (2.6)

Bmin ∈ ΣA always exists. By construction, the minimal sufficient parameter Bmin contains
all the prior null sets. Once the minimal sufficient parameter has been constructed, the
original Bayesian model given in (2.3) should be replaced by

Emin = (A× S,Bmin ∨ S, QBmin
), (2.7)

where QBmin
is the restriction of Q on Bmin, that is, QBmin

(E × X) .= Q(E × X) for
E ∈ Bmin and X ∈ S.

The Bayesian model given in (2.7) does not contain redundant information at the pa-
rameter level because there is not a sufficient description of the sampling process (i.e. a
B ∈ ΣA) better than the description provided by the minimal sufficient parameter Bmin.
Thus, the minimal sufficient parameter corresponds to the greatest possible parameter
reduction for which the prior information is updated by the sample, that is, for all A-
measurable function a, E(a|Bmin ∨ S) = E(a|Bmin). Consequently, the learning process
underlying a Bayesian model is fully concentrated on the minimal sufficient parameter.

2.7 Minimal sufficient parameter, sampling information and Bayesian
identification

It can be proved that the minimal sufficient parameter Bmin is equal to the σ-field generated
by every version of the sampling expectations, namely

Bmin = σ{E(s|A): s ∈ [S]+}, (2.8)

where [S]+ denotes the set of non-negative S-measurable functions; see Appendix B for
a proof of this result. Thus, the minimal sufficient parameter Bmin coincides with all the
information provided by the sampling process. Additionally, this information contains all
the prior null sets.

In summary, we have described the sampling process in terms of the information it
provides. Using the concept of sufficiency, it has also been clarified how this information
is updated by the learning-by-observing process. These considerations allow us to define
Bayesian identifiability.
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Definition 2.2 In the context of the Bayesian model given in (2.3), the parameter A is
Bayesian identified by S, which is denoted by A ≺ S, if A is a minimal sufficient parameter;
that is, A = Bmin. More generally, let Mi ⊂ A ∨ S, for i = 1, 2, 3, a function of either
the parameters, the observations or both. It is said thatM1 is Bayesian identified byM2

conditionally on M3 if M1 ∨M3 is Bayesian identified by M2 ∨M3, i.e.,

σ{E(f |M1 ∨M3): f ∈ [M2 ∨M3]+} = M1 ∨M3.

This relationship is denoted as M1 ≺M2|M3, which by definition is equivalent to M1 ∨
M3 ≺M2 ∨M3.

In Bayesian statistics, this concept was introduced by Florens and Mouchart (1977) and
further developed by Florens and Rolin (1984), Mouchart and Rolin (1984) and, mainly,
by Florens et al. (1990, chapter 4); see also Van Putten and Van Schuppen (1985) (for a
table of the correspondence between their results and those contained in Mouchart and
Rolin (1984), see Mouchart and Rolin (1985)) and Gourieroux and Monfort (1995). In any
case, this concept can be traced back to McKean (1963), although there it is defined using
the Lebesgue completion instead of the measurable completion.

From Definition 2.2, there are five features that are worth explaining in more detail.
First, what steps should be considered in a Bayesian identification analysis; second, the
learning-by-observing process is only based on the Bayesian identified parameter; third,
the fact that we have a genuinely Bayesian concept of identifiability; fourth, the given
definition yields a relation with Bayesian consistency; and fifth, the concept defined can
be related to the sampling identification concept. We summarize these five issues in the
following subsections.

2.7.1 A Bayesian identification analysis scheme

The way in which Bayesian identification has been defined allow us to propose a Bayesian
identification scheme composed with two main steps: (i) the sufficient parameters describ-
ing the data generating process should be made explicit. (ii) Check whether the sufficient
parameter found in (i) is the minimal sufficient parameter.

For expository purposes, suppose that a Bayesian model is specified as

p(X, a) = p(X|a)m(a),

where a is a sufficient parameter. The question now is whether a is the minimal sufficient
parameter; that is, if a is a sufficient description of the data generating process, and if there
exists other sufficient description, namely a sufficient parameter b, such that a is a function
of b. By the Dynkin-Doob Lemma (see Appendix A), this is equivalent to σ(a) ⊂ σ(b).

Suppose now that a is Bayesian identified by X and that we are interested in defining
the Bayesian identifiability of a parameter c, which is a function of the Bayesian identified
parameter a. According to the strategy mentioned above, the first step is to check whether
c is a sufficient parameter. However, c is a function of the minimal sufficient parameter a.
Therefore, if the function is not one-to-one then c does not describe the data generating
process and, consequently, its Bayesian identifiability is not well defined. Evidently, it is
possible to obtain the Bayesian model p(X, c) from the Bayesian model p(X, a) as

p(X|c) =
∫
p(X|a) dm(a|c),
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where m(a|c) is the conditional prior density of a given c. By so doing, c is a sufficient
parameter of the data generating process characterized by p(X|c), so the Bayesian iden-
tifiability of c should be studied with respect to the “new” Bayesian model p(X, c), and
not with respect to the “old” Bayesian model p(X, a). In particular, this means that the
Bayesian identifiability of c is not inherited from the Bayesian identifiability of a, as the
following example (taken from San Mart́ın et al. (2009)) shows.

Example 2.3 Let Xi = (Xi1, Xi2)>, Σ be an unknown positive definite 2× 2 symmetric
matrix and α 6= 0. Suppose that, for each i = 1, . . . , n,

(Xi|θi, α,Σ) i.i.d.∼ N2

((
θi

αθi

)
, Σ

)
, (2.9)

where the prior distribution is specified by the following two conditions:

(i) (θi|α,Σ) ind.∼ N(0, 1);
(ii) (α,Σ) have a prior distribution absolutely continuous with respect to the Lebesgue

measure.

Taking into account that

θi = E(Xi1|θi, α,Σ), α θi = E(Xi2|θi, α, σ) and Σ = V(Xi|θi, α,Σ),

it can be verified that, for each i = 1, . . . , n, the parameters (α, θi,Σ) are Bayesian identified
by Xi. Suppose now that we are interested in analyzing the data generating process
conditionally on (α,Σ). This process is obtained from Equation (2.9) after marginalizing
with respect to θi, namely

(Xi|α,Σ) i.i.d.∼ N2

((
0
0

)
,

(
σ11 + 1 σ12 + α

σ12 + α σ22 + α2

))
, (2.10)

It can be verified that, although (α,Σ) is a sufficient parameter for Xi, it is not the
minimal sufficient parameter; i.e., (α,Σ) is not identified by Xi, even though (α, θi,Σ) is
identified by Xi. This is due to the marginalization of the original Bayesian model defined
on (Xi, θi, α,Σ) into the Bayesian model defined on (Xi, α,Σ).

2.7.2 Bayesian identifiability and the learning-by-observing process

The Bayesian identified parameter fully concentrates the learning-by-observing process.
To show the validity of this statement, let us consider a parameter C ⊂ A in which we are
interested to make inferences. By definition of the identified parameter Bmin, A ⊥⊥ S|Bmin;
this relationship implies that

C ⊥⊥ S|Bmin, ∀ C ⊂ A. (2.11)

Here the parameter C, although non-identified by S, might be of interest and, consequently,
it should be updated by the observations. Since the posterior expectation E(c|S) exists
for all C-measurable function c, this updating is possible, however, the question is whether
we are actually learning about the unidentified parameter C. The answer is not: although
we compute the posterior distribution of C, what we are actually updating is always the
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identified parameter, nothing more. Indeed, for all C-measurable function c,

E(c|S) = E[E(c|S ∨ Bmin)|S] (by iterating the conditional expectation)

= E[E(c|Bmin)|S] (by using Equation (2.11)).

By definition of conditional expectation, E(c|Bmin) only depends on the identified param-
eter Bmin; this and only this is updated by the observations.

From a practical point of view, this means that if an unidentified parameter is estimated
by its posterior distribution, the users should be warned that this estimates does not
provide any updating of the unidentified parameter, but only of the identified parameter.
This is more relevant when the unidentified parameter is a parameter of interest. In this
case, if such a warning is not explicit, erroneous conclusions can be drawn from the analysis,
namely, it can be concluded that information about the unidentified parameter has been
obtained, when in reality the only information that is obtained is about the identified
parameter. We illustrate this point in the following example.

Example 2.4 Consider the problem of estimating the prevalence, the sensitivity and
the specificity of a diagnostic test in the absence of a gold-standard. Let Zi ∈ {0, 1}
be a binary random variable indicating the true state of a subject i, that is, Zi = 1 if
subject i is diseased, and Zi = 0 otherwise. Let Yi ∈ {0, 1} be a binary random variable
indicating the classification of a subject i through a diagnostic test, that is, Yi = 1 if
subject i is classified as diseased by the diagnostic test, and Yi = 0 otherwise. Note that
Yi is an observed variable, whereas Zi is unobservable. Taking into account that this is
a problem of misclassification, the parameters of interest are the sensitivity of the test,
α = P (Yi = 1|Zi = 1); the specificity of the test, β = P (Yi = 0|Zi = 0); and the true
prevalence, ω = P (Zi = 1). The sampling process is given by a sequence of mutually
independent random variables Yi conditionally on p(α, β, ω), where

p(α, β, ω) = P (Yi = 1|α, β, ω) = αω + (1− β)(1− ω). (2.12)

If it is assumed that α+ β > 1, then p(α, β, ω) is an increasing function of ω. The model
is completed by specifying a prior probability distribution on (α, β, ω). The σ-field of the
sample space is given by S = σ(Y1, . . . , Yn), and the one of the parameters is given by
A = σ(α) ∨ σ(β) ∨ σ(ω). Now, p(α, β, ω) = E(Yi|A), so

σ{p(α, β, ω)} ⊂ σ{E(f |A): f ∈ [S]+} ⊂ A.

Moreover, σ(α) 6⊂ σ{p(α, β, ω)}, σ(β) 6⊂ σ{p(α, β, ω)}, and σ(ω) 6⊂ σ{p(α, β, ω)}, because
there not exist measurable functions such that α is a function of p(α, β, ω), β is a function
of p(α, β, ω), and ω is a function of p(α, β, ω): it is enough to consider relationship given
in Equation (2.12), in which there is one equation and three unknowns.

Therefore A is not Bayesian identified, and neither are α, β and ω. Furthermore, from the
equality E(Yi|A) = E(Yi|p(α, β, ω)), it follows that the sampling process is fully described
by p(α, β, ω). In other words, p(α, β, ω) is Bayesian identified by Yi. Now, in this example,
it is always possible to compute the posterior expectation of the parameters of interest.
However, these expectations does not provide any information about them, but only on
the apparent prevalence p(α, β, ω).
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2.7.3 The role of the prior distribution in Bayesian identifiability

The concept of identification as introduced in Definition 2.2 is genuinely Bayesian be-
cause it depends on the prior distribution through the prior null events. This means that
if, additionally to the Bayesian model given in (2.3), a second model is specified in such a
way that

E ′ = (A× S,A ∨ S, Q′ = µ′ ⊗ PA),

then Bmin is still the Bayesian identified parameter in the context of E ′ if and only if µ
and µ′ are equivalent probability measures (i.e., they have the same null sets. Thus, the
Bayesian identifiability property (in the context of the Bayesian model given in (2.3)) can
be lost if the prior null sets change; for more details, see Florens et al. (1990, Proposition
4.6.8). This means that an unidentified parameter does not become identified once a proper
prior distribution is specified on it, even if it is “well concentrated” on the unidentified
parameter, unless prior null sets are defined –which is equivalent to introduce dogmatic
constraints. The point is illustrated in the following example.

Example 2.5 Let A = R and A be the Borel sets of R. Assume that the sampling process
is specified as (Xi|a) ∼ N(|a|, 1), where X1, . . . .Xn are mutually independent conditionally
on A. Let µ be a prior probability distribution. Since |a| = E(Xi|A), it follows that the
corresponding minimal sufficient parameter is given by

σ{|a|} ∨ {E ∈ A: µ(E) = 0 or 1},

where σ{|a|} = {E ∈ A: −E = E}. If µ is equivalent to the Lebesgue measure (i.e., µ has
the same null sets as the Lebesgue measure on R), then the parameter a is not identified
because σ{a} 6⊂ σ{|a|}, that is, by the Dynkin-Doob Lemma (see Appendix A), there
exists no measurable function h such that a = h(|a|). However, if µ is equivalent to the
Lebesgue measure on R+ and µ(R−) = 0, then the parameter a is identified.

2.7.4 Bayesian identifiability and convergence of posterior expectations

In an i.i.d. process conditionally on a parameter A, the corresponding Bayesian identified
parameter is not only Bayesian consistent (in the sense that it is the limit of its posterior
expectation as n → ∞), but also concentrates, in the limit, the posterior expectation of
any other parameter. In this sense, Bayesian identification is related to consistency, just
as (in a pure sampling theory framework) identification is related to consistency; see San
Mart́ın and Quintana (2002). For details, see Appendix C.

2.7.5 Bayesian identification and sampling identification

In a pure sampling theory framework, parameter identifiability is defined as the injectiv-
ity of the mapping a 7→ P a, where {P a: a ∈ A} is a family of sampling distributions. This
identification concept (which we call sampling identification or s-identification) is related
with Bayesian identification as introduced in Definition 2.2. More precisely, if A is a Black-
well σ-field1 and S is separable2, then s-identification implies Bayesian identification for

1A σ-field M is a Blackwell σ-field if M is separable and if, for all M-measurable function m and for all A ∈ M,
m(A) is an analytic set of R; see Blackwell (1956) and Florens et al. (1990, Chapter 0). An example of a Blackwell
σ-field is the Borel σ-field defined on the real line.
2A σ-field S is separable if there exist a countable family of events C such that S = σ(C).
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all prior probability measure on (A,A); for details and proofs of these results, see Florens
et al. (1985) and Florens et al. (1990, chapter 4).

It should be emphasized that this relationship between s-identification and Bayesian
identification depends on the separability of both the sample space and the parameter
space. Since we use measurable completion (see Appendix A), we avoid the danger of
losing the separability and, consequently, we may use identification results established in
a pure sampling theory approach.

3. Identification in a Fully Discrete Bayesian Model

The preceding sections explain, in a general way, the concepts of Bayesian model and
Bayesian identifiability. The σ-fields A and S could have been either uncountable or finite,
or a mixture of both. In this section we illustrate these concepts for the particular case in
which both A and S are σ-fields of finite subsets, yielding a fully discrete Bayesian model.

3.1 Model construction

Let S = {s1, . . . , sn} be a finite set of observations and A = {a1, . . . , am} be a finite set of
parameters. The corresponding σ-fields are the power sets of S and of A, respectively. Let
µ be a prior probability defined on (A,A) and let Aµ = {a ∈ A: µ(a) > 0}. The parametric
support of an observation s ∈ S is defined as As = {a ∈ A: p(s|a) > 0}. The sampling
probabilities are defined as

p(si|a) =
∑
aj∈Aµ

p(si|aj)11{a=aj}

=
∑

aj∈Aµ∩Asi

p(si|aj)11{a=aj}, i = 1, . . . , n.

When a /∈ Aµ, the sampling probabilities are arbitrarily defined as p(s|a) = c (for s ∈ S),
with c 6= 0. Therefore, Acµ ⊂ As for each s ∈ S, and

q(s, a) =


p(s|a)µ(a), s ∈ S, a ∈ Aµ ∩As,

0, s ∈ S, a ∈ Acµ ∪ (Aµ ∩Acs).

The predictive distribution is defined as

p(s) =
∑

aj∈Aµ∩As

p(s|aj)µ(aj) =
∑
aj∈A

p(si|aj)µ(aj), s ∈ S.

It should be remarked that for s ∈ S

p(s) > 0 ⇐⇒ Aµ ∩As 6= ∅.
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Therefore the joint probability q(s, a) can be decomposed as
q(a1, s1) · · · q(a1, sn)

...
. . .

...
q(am, s1) · · · q(am, sn)

 =


µ(a1) · · · 0

...
. . .

...
0 · · · µ(am)



p(s1|a1) · · · p(sn|a1)

...
. . .

...
p(s1|am) · · · p(sn|am)



=


µ(a1|s1) · · · µ(a1|sn)

...
. . .

...
µ(am|s1) · · · µ(am|sn)



p(s1) · · · 0

...
. . .

...
0 · · · p(sn)

 . (3.1)

These equalities illustrate the difference between a probability measure (the prior and
the predictive) and a probability transition (the sampling and the posterior): the first one
corresponds to a diagonal matrix, whereas the second corresponds to a rectangular matrix.
It can also be verified the dominance property of the posterior transition with respect to
the prior distribution; see Mouchart (1976). In other words, the prior null events are still
posterior null events. More precisely,

(i) If µ(aj) = 0, then µ(aj |s) = 0 for all s ∈ S;

(ii) If µ(aj) = 1, then µ(ak) = 0 for each k 6= j and, therefore, µ(ak|s) = 0 for each
k 6= j and for s ∈ S. Hence µ(aj |s) = 1 for each s ∈ S.

It can also be grasped that the converse relationship (namely, the dominance of the prior
distribution with respect to the prior distribution) is not necessarily true. In fact, it could
exists a s ∈ S such that µ(a|s) = 0 for a ∈ Acs ∩Aµ; note that this intersection is equal to
Acs since Acµ ⊂ As.

3.2 Statistics and parameters in a discrete Bayesian model

In the discrete Bayesian model described in the previous section, a parameter b(a) is
characterized by the partition it induces on the parameter space A, namely

Ab = {a ∈ A: b(a) = b} ⊂ A.

Thus, the information provided by the parameter b(a) corresponds to Ab. Similarly, a
statistic t(s) is characterized by the partition it induces on the sample space, namely

St = {s ∈ S: t(s) = t} ⊂ S,

and the information provided by the statistic t(s) corresponds to St.

3.3 Bayesian identification in the discrete case

In this section, Bayesian identification is characterized for a fully discrete Bayesian model.
More specifically, the idea is to characterize the relationshipX1 ≺ X2|X3, whereX1, X2, X3

are discrete random variables defined on a common probability space (M,M, P ) such that
Xr: M 7→ Nr, where Nr, for r = 1, 2, 3, are finite sets. These random variables can be
interpreted differently. For example, X1 can be interpreted as a parameter, X2 as an
observation, and X3 as a latent variable or as a parameter. X3 can also be assumed to be
a constant a.s. In this case, the generated σ-field is given by {E ∈M: P (E) = P 2(E)}.
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Let us define

(i) K = {k ∈ N3: P (X3 = k) > 0}.

(ii) Nk
1 = {i ∈ N1: P (X1 = i|X3 = k) > 0} for k ∈ K.

(iii) Nk
2 = {j ∈ N2: P (X2 = j|X3 = k) > 0} for k ∈ K.

(iv)
(
P k
)
ij

= P (X1 = i,X2 = j|X3 = k), a |Nk
1 | × |Nk

2 | matrix for k ∈ K.

By Definition 2.2, X1 is Bayesian identified by X2 conditionally on X3 (i.e. X1 ≺ X2|X3)
if and only if

σ
{
P (X2 = j,X3 = k|X1, X3): k ∈ K, j ∈ Nk

2

}
= (3.2)

σ
{
{X1 = i} ∩ {X3 = k}: k ∈ K, i ∈ Nk

1

}
∨ σ

{
{X1 = i} ∩ {X3 = k}: k ∈ N3, i ∈ (Nk

1 )c
}
.

As a matter of fact, recalling the definition of Bayesian identification, the σ-field of
the left-side of Equation (3.2) contains all the null sets of (X1, X3). This class corresponds
to the σ-field

σ
{
{X1 = i} ∩ {X3 = k}: k ∈ N3, i ∈ (Nk

1 )c
}

because

P (X1 = i,X3 = k)


= P (X1 = i|X3 = k)P (X3 = k), i ∈ (Nk

1 )c, k ∈ K;

≤ P (X3 = k), k ∈ Kc.

Thus, P (X1 = i|X3 = k) = 0 since i ∈ (Nk
1 )c and k ∈ K, whereas P (X3 = k) = 0 since

k ∈ Kc. Therefore, P (X1 = i,X3 = k) = 0 for i ∈ (Nk
1 )c and k ∈ N3.

By this same fact –that all the null sets of (X1, X3) are contained into the σ-field of
the left-side of Equation (3.2)–, equality in Equation (3.2) is equivalent to the following
relationship:

σ
{
{X1 = i} ∩ {X3 = k}: k ∈ K, i ∈ Nk

1

}
⊂ σ

{
P (X2 = j,X3 = k|X1, X3): k ∈ K, j ∈ Nk

2

}
.

(3.3)
Now, let us characterize the generators of

σ
{
P (X2 = j,X3 = k|X1, X3): k ∈ K, j ∈ Nk

2

}
.

For each k ∈ K,

P (X2 = j,X3 = k|X1, X3) =
∑
i∈Nk

1

pj|ik 11{X1=i,X3=k}
.= Yj .

Then, for each j ∈ Nk
2 ,

Y −1
j

[
{pj|ik}

]
= {X1 ∈ Iij , X3 = k},
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where Iij ⊂ Nk
1 is a set which depends on (i, j) ∈ Nk

1 × Nk
2 . Moreover, Y −1

j

[
{pj|ik}

]
contains {X1 = i,X3 = k}. It follows that

{X1 = i,X3 = k} ⊂
⋂
j∈Nk

2

Y −1
j

[
{pj|ik}

]
= {X1 ∈ Ii, X3 = k},

where

Ii =
⋂
j∈Nk

2

Iij .

Thus, {X1 ∈ Ii, X3 = k} is the smallest set in

σ
{
P (X2 = j,X3 = k|X1, X3): k ∈ K, j ∈ Nk

2

}
containing {X1 = i,X3 = k}. Therefore, X1 is Bayesian identified by X2 conditionally on
X3 –which is equivalent to relation given in Equation (3.3)– if and only if, for each k ∈ K,

Ii = {i} ∀ i ∈ Nk
1 ,

which is equivalent to

⋂
j∈Nk

2

{
ω:

∑
l∈Nk

1

pj|lk11
(ω)
{X1=l,X3=k} = pj|ik

}
= {X1 = i, X3 = k} ∀ i ∈ Nk

1 .

This last condition is equivalent to the following one: for each k ∈ K, 6 ∃ i, i′ ∈ Nk
1 such

that pj|ik = pj|i′k ∀ j ∈ Nk
2 , which in turn can be written as 6 ∃ i, i′ ∈ Nk

1 such that
pij|k = cii′ pi′j|k ∀ j ∈ Nk

2 . Summarizing, we obtain the following theorem.

Theorem 3.1 Let (Ω,M, P ) be a probability space and Xr: Ω 7→ Nr, for r = 1, 2, 3, be
random variables, where Nr (r = 1, 2, 3) are finite sets. The following are equivalent:

(i) X1 ≺ X2|X3, that is, X1 is Bayesian identified by X2 conditionally on X3.

(ii) For each k ∈ K, any two rows of P k are linearly independent.

(iii) For each k ∈ K and for each i, i′ ∈ Nk
1 , there not exists a cii′ such that

P (X1 = i,X2 = j|X3 = k) = cii′P (X1 = i′, X2 = j|X3 = k) ∀ j ∈ Nk
2 .

3.4 Relationships between Bayesian and sampling identification

As pointed out in Section 2.7.5, sampling identification implies Bayesian identification
for all prior distribution provided the parameter space is Blackwell and the sample space
is separable. This implication can be verified in the fully discrete Bayesian model. As a
matter of fact, consider the fully discrete Bayesian model as specified in Section 3.1. By
Theorem 3.1, the parameter a is Bayesian identified by s if and only if any two rows of
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the matrix 
q(a1, s1) · · · q(a1, sn)

...
. . .

...
q(am, s1) · · · q(am, sn)


are linearly independent. Considering decomposition given in Equation (3.1), this is equiv-
alent to the following property: any two rows of the matrix representing the sampling
transition are linearly independent; that is, the mapping a 7→ p(·|a) is injective, for all
a ∈ Aµ ⊂ A. Now, if Aµ = A, then Bayesian identification and sampling identification
are equivalent concepts. The property Aµ = A means that the prior distribution µ puts
a positive mass on each element of A. Let us summarize this relationship in the following
theorem.

Theorem 3.2 Consider the fully discrete Bayesian model as specified in Section 3.1. If
Aµ = A, then Bayesian identification and sampling identification are equivalent.

3.5 Updating unidentified parameters

As pointed out in Section 2.7.2, the posterior distribution of an unidentified parameter
can be computed. However, from a modeling point of view, the statistical meaning of this
posterior distribution is of interest. Let us consider, therefore, a fully discrete Bayesian
model defined by the following components: S = {s1, s2}, A = {a1, a2, a3}, the sampling
process characterized by

p(s1|a1) =
1
2
, p(s1|a2) = p(s1|a3) =

1
3
,

and the prior distribution satisfying that µ(ai) > 0 for i = 1, 2, 3. All these components
imply the following joint distribution of (a, s), with a ∈ A and s ∈ S:

s1 s2

a1
1
2 µ(a1) 1

2 µ(a1)
a2

1
3 µ(a2) 2

3 µ(a2)
a3

1
3 µ(a3) 2

3 µ(a3)

By Theorem 3.1, the Bayesian identified parameter is characterized by the partition
{{a1}, {a2, a3}}. The posterior distribution of a1 is given by

p(a1|s) =
1
2µ(a1)

1
2µ(a1) + 1

3 [µ(a2) + µ(a3)]
11{s=s1} +

1
2µ(a1)

1
2µ(a1) + 2

3 [µ(a2) + µ(a3)]
11{s=s2};

the posterior distribution of (a2, a3) is given by

p(a2, a3|s) =
1
3 [µ(a2) + µ(a3)]

1
2µ(a1) + 1

3 [µ(a2) + µ(a3)]
11{s=s1} +

2
3 [µ(a2) + µ(a3)]

1
2µ(a1) + 1

3 [µ(a2) + µ(a3)]
11{s=s2}.
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The posterior distribution of a2 and of a3 –which are unidentified parameters– are respec-
tively given by

p(a2|s) =
1
3µ(a2)

1
2µ(a1) + 1

3 [µ(a2) + µ(a3)]
11{s=s1} +

2
3µ(a2)

1
2µ(a1) + 1

3 [µ(a2) + µ(a3)]
11{s=s2},

p(a3|s) =
1
3µ(a3)

1
2µ(a1) + 1

3 [µ(a2) + µ(a3)]
11{s=s1} +

2
3µ(a3)

1
2µ(a1) + 1

3 [µ(a2) + µ(a3)]
11{s=s2}.

It follows that

p(a2|s) =
µ(a2)

µ(a2) + µ(a3)
p(a2, a3|s), p(a3|s) =

µ(a3)
µ(a2) + µ(a3)

p(a2, a3|s). (3.4)

That is, the posterior distribution of the unidentified parameter a2 coincides with a function
of the posterior distribution of the identified parameter (a2, a3). It occurs similarly for the
posterior distribution of a3. It is also clear from (3.4) that the prior distribution does not
have any impact in repairing the lack of identifiability of a2 and of a3. Therefore, it is not
worth calculating the posterior probability of these unidentified parameters, but rather
replace the original Bayesian model with the following:

s1 s2

a1
1
2 µ(a1) 1

2 µ(a1)
a2, a3

1
3 [µ(a2) + µ(a3)] 2

3 [µ(a2) + µ(a3)]

In this case, the σ-field A of the parameter space is given by {∅, {a1}, {a2, a3}, A}. It can
be noted that the events {a2} and {a3} are not measurable, that is, they are not events of
interest; their prior probabilities can not be computed, neither their posterior probabilities.

4. Discussion

The identification problem arose as a consequence of a reformulation of the specification
problem as stated by Fisher (1922). Such a reformulation establishes that “the investiga-
tor’s inquisitiveness is not just a population in the sense of a distribution of observable
variables, but a physical structure projected behind this distribution, by which the latter
is thought to be generated”; see Koopmans and Reiersøl (1950, p.165) and also Hurwicz
(1950). The identification problem consists, therefore, in investigating whether one and
only one structure explains the observed phenomenon.

These considerations explain why identifiability was considered as a pre-statistical prob-
lem (McHugh, 1956) and, consequently, more related to statistical modeling than statistical
inference. In spite of that, identifiability has been traditionally considered as a necessary
condition to ensure a coherent inference –that is, the existence of unbiased estimators and
consistent estimators; see San Mart́ın and Quintana (2002) and the references therein. In
a pure sampling theory approach, this constitutes a limitation in the sense that it is not
possible to compute estimators of unidentified parameters. Bayesian statistics seems to
be a way out to this limitation. As a matter of fact, it is always possible (if not, some
hypotheses can be introduced) to compute the posterior distribution of unidentified pa-
rameters. However, from a modeling point of view, the problem is to know what is the
statistical meaning of these estimators. In order to provide an answer to this question,
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an identifiability analysis is unavoidable: once a parameter of interest has been identified,
its statistical meaning becomes explicit. In practice, this is the issue which matters; for
an example in psychometrics, see San Mart́ın et al. (2009). Therefore, in problems where
parameters have a substantive meaning, Bayesian statistics will be useful if identifiability
is warranted. Otherwise, the analysis will only provide illusory solutions.

Let us mention another debate, related to the identifiability of complex hierarchical
models. This type of models is specified by means of a marginal latent model generating
the unobservable variables (or random effects), and a conditional model generating the
observable variables conditionally on the unobservable ones. For instance, in the class of
generalized linear mixed models, the marginal latent model corresponds to the process
generating the random effects, whereas the conditional model is specified as a generalized
linear model; see Verbekee and Molenberghs (2000). The statistical model, bearing on the
observable variables only, is obtained after integrating out the latent variables or random
effects; this model is indexed by two type of parameters: those indexing the marginal latent
model, and those indexing the conditional model. In the statistical literature, there exists
some rules relating the identifiability of the statistical model to the identifiability of the
marginal latent model and/or the identifiability of the conditional model. For instance,
in the psychometric literature dealing with structural equation models, it has been pro-
posed (without formal proof) that the identification of both the marginal latent and the
conditional models are sufficient to ensure the identification of the statistical model; see
Jöreskog (1981, pp. 89-90), Bollen (1989, p. 328) and Maruyama (1998, p. 191). In the
literature dealing with Generalized Linear Mixed Models, similar examples can be found.
For instance, Chen and Dey (1998) point out that, when the distribution of the random
effects is a normal N(0, ϕ2), the variance ϕ2 “is nearly not identified” (p. 325), although
such a concept is not well defined neither in a Bayesian approach, nor in a sampling theory
framework. Although this type of results may appear to be intuitive, it is possible to offer
counterexamples to this type of rules. As an illustration, consider Example 2.3, where θi
can now be viewed as a random effect; after integrating out θi, the identifiability of the
parameters indexing the conditional model is lost when its identifiability is considered in
the statistical model; for more details, see San Mart́ın (2003), San Mart́ın and Mouchart
(2007) and San Mart́ın et al. (2009). Other counter examples based on the fully discrete
Bayesian model of Section 3 are being considered by the authors as future work.

Last, but not least, Bayesian identification is always implied by sampling identifica-
tion. This means that (some) identification results established in a pure sampling theory
framework could be useful when models are specified under a Bayesian approach.

Appendix

Appendix A. Conditional Independence

A.1 General definition

The concept of conditional independence becomes relevant in statistical theory, where it
can be used as a basic tool to express many of the important concepts of statistics (such
as sufficiency, ancillarity, identifiability, etc.), unifying many areas that are, at first sight,
different.

Let (M,M, P ) be a probability space and N be a sub-σ-algebra of M. The completed
σ-field N of N is defined as

N = N ∨ {E ∈M: P (A) = P 2(A)},

that is, the σ-algebra generated by the union between N and the completed trivial σ-field.
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Following Florens et al. (1990) (see also Chow and Teicher, 1988), the σ-fields are only
completed by measurable sets and not by subsets of measurable sets as is usually done
in Lebesgue completion. In this way, it is avoided the danger of losing the separability of
σ-field. As mentioned in the main text, the separability of σ-fields is essential to relate
Bayesian and sampling identification.

Definition A.1 Let M1,M2 and M3 be sub-σ-algebras of M. It is said that M1 is
independent of M2 conditionally on M3, denoted as M1 ⊥⊥ M2|M3, if and only if one of
the following equivalent conditions hold:

(i) E(f1 f2|M3) = E(f1|M3) E(f2|M3) a.s. for all positive function fi measurable
with respect to Mi, for i = 1, 2.

(ii) E(f1|M2 ∨ M3) = E(f1|M3) a.s. for all positive function f1 measurable with
respect to M1.

For a proof on the equivalence between (i) and (ii), see Florens et al. (1990, Theorem
2.2.1). WhenM3 is equal to the trivial σ-field {∅,M}, this definition reduces to the usual
independence between σ-fields; in such a case, we write M1 ⊥⊥ M2.

It is clear from condition (i) that the concept of conditional independence is symmet-
ric in M1 and M2, namely M1 ⊥⊥ M2|M3 is equivalent to M2 ⊥⊥ M1|M3. Condition (ii)
provides an heuristic meaning of conditional independence:M1 ⊥⊥ M2|M3 means that the
process generating M1 conditionally on M2 ∨M3 depends on M3 only; or, equivalently,
the process generatingM2 conditionally onM1∨M3 depends onM3 only. This heuristic
meaning actually corresponds to a measurability property of conditional independence:
M1 ⊥⊥ M2|M3 if and only if, for all M2-measurable function f2, E(f2|M1 ∨M3) is mea-
surable with respect to M3; for a proof of this result, see Florens et al. (1990, Theorem
2.2.6). For details and properties of conditional independence, the reader is referred to
Mart́ın et al. (1973), Dawid (1979), Döhler (1980) and Florens et al. (1990), among many
others.

A.2 Conditional independence: its meaning in terms of random variables

For a better understanding of the abstract concept of conditional independence we now
present its definition in terms of random variables. this presentation is based on the Lemma
of Dynkin-Doob. This lemma establishes the following: let (M,M), (N,N) and (O,O) be
three measurable spaces and let X: M 7→ N be a measurable function (that is, σ(X) .=
X−1(N) ⊂ M) and let Z: M 7→ O be measurable function with respect to σ(X) (that is,
σ(Z) .= Z−1(O) ⊂ σ(X)). Then there exists a function Y : N 7→ O measurable with respect
to N (that is, σ(Y ) .= Y −1(O) ⊂ N) such that Z = Y ◦X; for a proof of this result, see
Dellacherie and Meyer (1975) and Rao (1984). Figure A1 summarizes these relationships.

-X(M,M) (N,N)

?
(O,O)

Z

�
�

�
�
�

�
�
�

�
�	

Y

Figure A1. Measurability relationships between X and Z.
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As pointed out in the main text (see Section 2.4), the σ-field generated by a random
variable corresponds to the set of events that may be described in terms of that random
variable. In this sense, the Lemma of Dynkin-Doob establishes that when the information
provided by a random variable Z is strictly contained in the information provided by X
(that is, the events described by Z are contained into the events described by X), then Z
is a measurable transformation of X –i.e., Z is a reduction of X.

Let mi: (M,M) 7→ (R,B), i = 1, 2, 3, be three random variables and let Mi = σ(mi).
Now, M1 ⊥⊥ M2|M3 if and only if, for all M2-measurable function f2, E(f2|M2 ∨M3) is
M3-measurable. Using the Lemma of Dynkin-Doob, this is equivalent to say that for all
measurable function h, there exists a measurable function g such that

E(h(m1)|M2 ∨M3) = g(m3) a.s.

That is, the conditional expectation of all measurable transformations of m1 given (m2,m3)
are a.s. a function of m3.

Appendix B. Proof of Equality (2.8)

The σ-field generated by every version of the sampling expectations, namely σ{E(s|A): s ∈
[S]+}, is the smallest sub-σ-field of A that makes the sampling expectations measurable;
here, [S]+ denotes the set of non-negative S-measurable functions. Using the characteriza-
tion of conditional independence in terms of a measurability condition (see Appendix A),
the latter condition is equivalent to

A ⊥⊥ S|σ{E(s|A): s ∈ [S]+}.

Therefore, σ{E(s|A): s ∈ [S]+} ∈ ΣA and, consequently,

σ{E(s|A): s ∈ [S]+} ⊃ Bmin.

On the other hand, Bmin satisfies the condition A ⊥⊥ S|Bmin, which is equivalent to say
that, for all S-measurable function s, E(s|A) is Bmin-measurable. Therefore, by definition
of σ{E(s|A): s ∈ [S]+}, it follows that

σ{E(s|A): s ∈ [S]+} ⊂ Bmin.

Appendix C. Bayesian Identifiability and Consistency

Let {Xn: n ∈ N} be i.i.d. random variables conditionally on A. In the context of the
asymptotic Bayesian model, it can be shown that the minimal sufficient parameter Bmin

.=
σ{E(f |A): f ∈ [X∞1 ]+} satisfies the following condition:

Bmin ⊂ X∞1 , (C1)

where X∞1 = σ(X1, . . . , Xn, . . . ); for a proof of this result, see Florens et al. (1990, Theorem
9.3.2). This means that, in an i.i.d. process, the Bayesian identified parameter is a.s. a
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function of (X1, X2, . . . ). Furthermore, condition (C1) ensures the a.s.-convergence as well
as the Lq-convergence of the following posterior expectations:

(i) E(b|X n1 ) for all Bmin-measurable function b;

(ii) E(a|X n1 ) for all A-measurable function a.

Here X n1 = σ(X1, . . . , Xn) and, for q ∈ [1,∞], Lq(A,A, µ) is the set of the q-integrable A-
measurable functions. As a matter of fact, by the Martingale Theorem, E(b|X n1 ) converges
a.s. Moreover, it converges to E(b|X∞1 ) in Lq for all b ∈ Lq(A,Bmin, µ). Using condition
(C1), it follows that E(b|X∞1 ) = b a.s.

Similarly, let a ∈ Lq(A,A, µ). Taking into account that A ⊥⊥ X n1 |Bmin for all n ∈ N, it
follows that

E(a|X n1 ) = E[E(a|X n1 ∨ Bmin)|X n1 ]

= E[E(a|Bmin)|X n1 ]

→
n→∞

E[E(a|Bmin)|X∞1 ] = E(a|Bmin) a.s. and in Lq,

since E(a|Bmin) is measurable w.r.t. the minimal sufficient parameter Bmin.
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