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Abstract

The product partition model (PPM) is a powerful tool for clustering and change point
analysis mainly because it considers the number of blocks or segments as a random vari-
able. We apply the PPM to identify multiple change points in linear regression models
extending some previous works. In addition, we provide a predictivistic justification for
the within-block linear model. This way of modeling provides a non ad-hoc procedure
for treating piecewise regression models. We also modify the original algorithm proposed
by Barry and Hartigan (1993) in order to obtain samples from the product distributions
–posteriors of the parameters in the regression model, say– in the contiguous-block case.
Consequently, posterior summaries (including the posterior means or product estimates)
can be obtained in the usual way. The product estimates are obtained considering both
the proposed and Barry and Hartigan’s algorithms, which are compared to least square
estimates for the piecewise regression models. To illustrate the use of the proposed
methodology, we analyze some financial data sets.

Keywords: de Finetti type-theorem · Least square estimates · Orthogonal invariance
· Product partition model.
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1. Introduction

Hartigan (1990) proposed a powerful model, named product partition model (PPM), de-
signed to analyze change point problems. Firstly, the PPM was so innovative because it
unified many models previously developed, such as those introduced by Menzefricke (1981),
Hsu (1984), Smith (1975) and Holbert (1982). Secondly, the PPM assumes the number of
change points as well as their positions as random variables. Since then, the PPM has been
considered for cluster and outlier detection by many authors. Barry and Hartigan (1993)
and Crowley (1997), for instance, successfully applied the PPM for change point detection
in normal means. Lately, Quintana et al. (2005) used the PPM for cluster analysis in the
measurement error model and Quintana and Iglesias (2003) applied it to outlier detection
in normal linear models. Later, Loschi and Cruz (2005) extended the PPM by providing
a method to obtain the posterior distributions for the positions and number of change
points as well as the posterior probability of each instant being a change point. Another
approach to obtain such posteriors was provided by Fearnhead (2006) and Fearnhead and
Liu (2007) with algorithms based on filtering for multiple change point problems.
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An important extension of the PPM is provided by Quintana and Iglesias (2003) which
presented a decision-theoretic formulation to specific change point problems, such as outlier
detection, using the PPM. They also proved that PPM generalizes the Dirichlet process,
which has been intensively used for clustering analysis (Müller and Quintana, 2010) and
density estimation (Escobar and West, 1995). The PPM was also used by Tarantola et
al. (2008) for row effects models. Quintana (2006) establishes connections between the
PPM and other models that induce a partition structure, e.g, species sampling models.
More recently, Hegarty and Barry (2008) used the PPM in the spatial context for Bayesian
disease mapping, Demarqui et al. (2008) applied it in survival analysis to estimate the time
grid in piecewise exponential models and Bormetti et al. (2010) present an approach to the
value-at-risk (VaR) computation using the PPM to introduce the cluster structure in the
mean, whenever the volatility is fixed, and in the volatility, whenever the mean return is
a fixed and known value. Ruggeri and Sivaganesan (2005) and Booth et al. (2008) suggest
other approaches on multiple change point identification. In the spatio-temporal setting,
Majumdar et al. (2005) introduced a change point model attempting to capture changes
in both the temporal and spatial associations.

Barry and Hartigan (1993) proposed a computationally intensive algorithm, based on
a Gibbs sampling scheme (Barry and Hartigan’s algorithm), for computing the product
estimates (or posterior means) in the contiguous-block case. In spite of its efficiency, the
product estimates is the only posterior information we could get from that method. Similar
algorithms can be found in Yao (1984) and Loschi and Cruz (2005). However, posterior
mean may not be the best posterior summary if, for instance, the posterior is asymmetric
or else if it has two or more modes. In these cases other posterior summaries (modes and
quantiles, for instance) can provide a better idea of the posterior behavior.

This paper aims at applying the PPM to identify multiple change points in normal linear
regression models, which is an extension of some previous works (Diniz et al., 2003) by con-
sidering the possibility of changes in all regression parameters. We provide a predictivistic
characterization to the model which follows as a consequence of judgment of orthogonal
invariance on the observable response variables. We also modify the Barry and Hartigan’s
original algorithm in order to sample from the product distributions or the posteriors of
the parameters in the regression model. Consequently, an improvement in the analysis is
reached since other posterior summaries besides the posterior means or product estimates
can be obtained in the usual way. A comparison among the least square estimates and the
product estimates obtained by using both Barry and Hartigan’s algorithm and the algo-
rithm proposed here, is performed for two real data sets including the Brazilian Industrial
Production Index (BIP) and the Brazilian Employment Index (BEI), as well as the Dow
Jones Industrial Average (DJIA) and the BOVESPA Index (IBOVESPA), which is the São
Paulo stock exchange broad-based stock index, the most representative indicator of the
performance of the prices of the Brazilian stock market. The ultimate goal is to analyze
the linear behavior of BIP and BEI throughout time and evaluate if it experiences changes
in the period analyzed. A similar study is performed considering the indexes DJIA and
BOVESPA.

The paper is organized as follows. In Section 2, we present a full Bayesian approach for
analyzing piecewise linear regression models. In Section 3, we introduce the computational
procedures to handle the problem of change point identification in regression models.
Barry and Hartigan’s algorithm to obtain the product estimates is briefly reviewed and
we provide a modification of such algorithm in order to obtain samples from the posterior
of the regression parameters. In Section 4, we discuss a comparison between Bayesian and
least square estimates for the piecewise linear regression model. Finally, in Section 5, we
sketch some concluding remarks.
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2. Change Point Analysis for the Multiple Linear Regression Model

Some challenges related to the use of piecewise regression models are the identification of
the number of clusters to be considered in the model and their positions. Ad-hoc choices for
these parameters are the usual practice in classical procedures such as least square meth-
ods. GAM and splines are alternative procedures to accommodate the clustered structure
in the data. Here, we consider the PPM to model the uncertainty about such parameters
and to handle piecewise regression models in a full Bayesian context.

2.1 The PPM for linear regression model

Let us denote by Xk the 1 × l vector (1, Xk,1, . . . , Xk,l−1), for k = 1, . . . , n. Let (X1, Y1),
. . . , (Xn, Yn) be a sequence of vectors of observations. Assume that vector (Xk, Yk) obeys
the usual regression model specifications, that is,

Yk = Xkβk + εk, k = 1, . . . , n,

where βk ∈ IRl denotes the l × 1 vector of parameters (βk,0, . . . , βk,l−1)> at position (or
instant) k and A> denotes the transpose of vector A. Assume also that the errors are
independent and such that εk ∼ N(0, σ2

k). Consequently, conditionally on Xk, βk, and σ2
k,

for k = 1, . . . , n, we have that the variables Y1, . . . , Yn are independent and such that

Yk|Xk,βk, σ
2
k

ind.∼ N(Xkβk, σ
2
k).

Let us consider θ = (θ1, . . . , θn) where θ>k = (β>k , σ2
k). Following Quintana et al. (2005),

the cluster structure can be introduced into the model by rewriting the vector θ as follows

θ =
b∑

j=1

(
θ[ij−1ij ]1{ij−1 < 1 ≤ ij}, . . . , θ[ij−1ij ]1{ij−1 < n ≤ ij}

)
,

where {i0, . . . , ib} is a particular value of the random partition ρ that denotes the instants
when changes occur and satisfies the condition 0 = i0 < · · · < ib = n; B = b denotes the
number of blocks in ρ; 1{A} is the indicator function of event A; and θ>[ij] = (β>[ij], σ

2
[ij])

denotes the common value for θk, for i < k ≤ j.
Assuming that data are sequentially observed and that only contiguous blocks are pos-

sible, we construct the prior distributions for ρ and θ as follows. Assume that p de-
notes the probability of a change taking place at any instant. Define the Markov chain
{Zk: k ∈ IN} generated by the instants when the changes occurred. Consequently, assum-
ing that P(Z0 = i0|p) = 1, the prior distribution of ρ, given p, is

P(ρ = {i0, . . . , ib}|p) = pb−1(1− p)n−b, (1)

for all b ∈ I = {1, . . . , n}. As a consequence, the prior for B, given p is

P(B = b|p) =
(

n− 1
b− 1

)
pb−1(1− p)n−b, b ∈ I.
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The prior in Equation (1) and the objective one considered by Girón et al. (2007) belong
both to the following general class of product prior distributions for ρ introduced by
Hartigan (1990) expressed as

P(ρ = {i0, . . . , ib}) =
Πb

j=1c[ij−1ij ]∑
C Πb

j=1c[ij−1ij ]

,

where C is the set of all possible partitions of the set I into b contiguous blocks, and
c[ij] denotes the prior cohesion for the block [ij]. The prior cohesions are subjectively
chosen and should disclose the similarity among the observations within the same block.
Particularly, if the Yao’s prior cohesions (Yao, 1984) are assumed, the prior for ρ is the
one given in Equation (1). If c[ij] = 1 for all blocks, we have the objective prior assumed
by Girón et al. (2007), that is, P(ρ = {i0, . . . , ib}) = 2−(n−1).

Remark 2.1 If p ∼ Beta(α, β), the prior distributions for ρ and B are given, respectively,
by

P(ρ = {i0, . . . , ib}) =
Γ(α + β) Γ(α + b− 1) Γ(n + β − b)

Γ(α) Γ(β) Γ(n + α + β − 1)
(2)

and
P(B = b) =

(
n− 1
b− 1

)
Γ(α + β)Γ(α + b− 1)Γ(n + β − b)

Γ(α)Γ(β)Γ(n + α + β − 1)
. (3)

It is noticeable from Equation (3) that B
d= Y +1, where “ d= ” means equal in distribution,

Y is a random variable which has a binomial-beta distribution with parameters n − 1, α
and β, α > 0, β > 0. Thus, the prior mean and variance of B are given, respectively, by

E(B) =
(n− 1) α

α + β
+ 1

and
Var(B) =

(n− 1) α β (α + β + n− 1)
(α + β)2 (α + β + 1)

.

If α = β, this prior stimulates a large number of clusters (around 50% of the observations)
since its mean is (n + 1)/2. If α is constant and β → 0, then E(B) → n and Var(B) → 0,
that is, in the prior evaluation all the observations are in different clusters with probability
one. If β is constant and α → 0, then E(B) → 1, say, and we are expecting no changes in
the data sequence.

Remark 2.2 Girón et al. (2007) proposed a joint objective prior for B and ρ assigning
first a uniform prior for B, and then eliciting a uniform prior for ρ = {i0, . . . , ib}, given
B = b. Thus, it follows that

P(B = b, ρ = {i0, . . . , ib}) =
[
n

(
n− 1
b− 1

)]−1

.

Similarly to what is observed for the prior in Equation (2), assuming this joint prior for
B and ρ, all partitions with B = b blocks have the same probability which, for the prior
considered by Girón et al. (2007), is given by

P(ρ = {i0, . . . , ib}|B = b) = (b− 1)!(n− b)![(n− 1)!]−1.
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We should notice, however, that there is no choice of α and β in Equation (2) that leads
to the same probability but we can obtain a close result assuming α = β = 1.

In order to assign the joint prior distribution for θ, given ρ and p, we assume that:

(i) the common parameters θ>[i0i1] = (β>[i0i1], σ
2
[i0i1]

), . . . , θ>[ib−1ib]
= (β>[ib−1ib]

, σ2
[ib−1ib]

)
are independent and independent from p; and

(ii) for all i, with j = 1, . . . , b and i < j, we consider the following prior distributions
for the common parameters:

β[ij]|σ2
[ij] ∼ Nl(m[ij], σ

2
[ij]V),

σ2
[ij] ∼ IGa(ν[ij]/2, d[ij]/2),

where IGa(a, b) denotes the inverse gamma distribution with parameters a and b,
ν[ij] and d[ij] are positive real values, m[ij] is an l× 1 real vector and V is an l× l
definite positive constant matrix.

Let us consider Y[ij] = (Yi+1, . . . , Yj)> and denote by X[ij] the (j − i)× l matrix given by

X[ij] =




1 Xi+1,1 . . . Xi+1,l−1

1 Xi+2,1 . . . Xi+2,l−1
...

...
. . .

...
1 Xj,1 . . . Xj,l−1


 .

Under these assumptions and considering results presented in Barry and Hartigan (1993)
it follows that the posteriors for βk and σ2

k, for k = 1, . . . , n, are mixtures of posterior-by-
block distributions, which in our case are the l-variate Student-t distributions in Equation
(4) and the inverse gamma distributions in Equation (5), respectively. The mixing measure
is the posterior relevance r∗[ij] of block [ij] that denotes the posterior probability of block [ij]
being into the partition ρ, that is, the posterior distributions for βk and σ2

k, for k = 1, . . . , n,
respectively, are

f(βk|X[0n],Y[0n]) =
k−1∑

i=0

n∑

j=k

r∗[ij]f(βk|X[ij], Y[ij]),

f(σ2
k|X[0n],Y[0n]) =

k−1∑

i=0

n∑

j=k

r∗[ij]f(σ2
k|X[ij], Y[ij]),

where

f(βk|X[ij],Y[ij]) =
(ν∗[ij])

d∗[ij]/2Γ
(

d∗[ij]+l

2

)

π1/2|V∗|1/2Γ
(

d∗[ij]

2

)

×
{

ν∗[ij] + (βk −m[ij])
>(V)−1(βk −m[ij])

}−(d∗[ij]+l)/2
, (4)

f(σ2
k|X[ij],Y[ij]) =

(ν∗[ij])
d∗[ij]/2

Γ
(

d∗[ij]

2

) (σ2
k)
−(d∗[ij]+2)/2 exp

{
−

ν∗[ij]
2σ2

k

}
, (5)
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d∗[ij] = d[ij] + j − i,

V∗
[ij] =

(
V−1 + (X[ij])

>X[ij]

)−1
,

m∗
[ij] = V∗

[ij]

(
V−1m[ij] + (X[ij])

>X[ij]

)
,

ν∗[ij] = ν[ij] + (m[ij])
>V−1m[ij] + (Y[ij])

>Y[ij] − (m∗
[ij])

>(V∗)−1m∗
[ij].

Consequently, the product estimates (or posterior means) for θk = (βk, σ
2
k), for all k =

1, . . . , n, can be obtained by means of the expectations

β̂k = E(βk|X[0n],Y[0n]) =
k−1∑

i=0

n∑

j=k

r∗[ij]m
∗
[ij],

σ̂2
k = E(σ2

k|X[0n],Y[0n]) =
k−1∑

i=0

n∑

j=k

r∗[ij]
ν∗[ij]

d∗[ij] − 2
.

Since the prior for ρ, given p, is a product distribution and the likelihood is based on
conditional independence of the observations, the posteriors of ρ and B are, respectively,

P(ρ = {i0, . . . , ib}|X[0n],Y[0n]) =
b∏

j=1

f(Y[ij−1ij ]|X[ij−1ij ])
∫ 1

0
pb(1− p)(n−b)π(p)dp,

P(B = b|X[0n],Y[0n]) =
(

n− 1
b− 1

) b∏

j=1

f(Y[ij−1ij ]|X[ij−1ij ])
∫ 1

0
pb(1− p)(n−b)π(p)dp,

where π is the prior for p and f(Y[ij]|X[ij]) is the following (j − i)-variate Student-t
distribution, denoted by Y[ij]|X[ij] ∼ tj−i(X[ij]m[ij],C[ij]; ν[ij], d[ij]), which density is

f(Y[ij]|X[ij]) =
ν

d[ij]/2
[ij] Γ

(
d∗[ij]

2

)

π(j−i)/2Γ
(

d[ij]

2

)
|C[ij]|1/2

×
{

ν[ij] + (y[ij] −X[ij]m[ij])
>(C[ij])

−1(y[ij] −X[ij]m[ij])
}−d∗[ij]/2

, (6)

where C[ij] = I(j−i) + X[ij]VX>
[ij] and I(j−i) denotes the identity matrix of order (j − i).

Although we can consider the posterior means as the estimates for ρ and B –as we
have done for the regression parameters– for discrete parameters, the posterior modes
are commonly preferred since they have a more intuitive interpretation in terms of most
probable values. Besides they are the Bayes estimators for ρ and B whenever the 0-1 loss
function is assumed as the penalty function.
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2.2 Predictivistic justification for liner regression model

Quoting from Arellano-Valle et al. (1994, p. 221) “De Finetti type theorems characterize
models in terms of invariance. The idea is to take observables, postulate symmetry and then
represent the model as a mixture of standard parametric models.”. Parameters involved in
this representation have an operational interpretation which can make easy the construc-
tion of appropriate priors. This approach for inference is named operational Bayesian or
predictivistic approach. From the predictivistic point of view, there is no distinction be-
tween prior and likelihood – both are equally important components of the model and
are a consequence of judgments (invariance, uniformity, and so on) about quantities that
could be observed. More details can be found in Iglesias et al. (2009), Iglesias et al. (1998),
Iglesias (1993), Wechsler (1993), Diaconis et al. (1992), Daboni and Wedlin (1982), de
Finetti (1975) and de Finetti (1937) among many others.

However, judgment of invariance only is usually insufficient to have the mixing measure
involved in de Finetti type theorems completely specified. For a full predictivistic approach,
additional conditions on the observable quantities - such as linearity of the expectation –
are needed and some results by Diaconis and Ylvisaker (1979) are used to obtain the prior.

In this section, using results obtained by Loschi et al. (2003), we provide a predictivis-
tic characterization for the linear model that was considered in the previous section to
model data behavior within blocks. Sometimes it is easier to get prior information about
observable quantities. In this case, the predictivistic approach provide an alternative way
of modeling; see also Loschi et al. (2007). Let us start defining orthogonal invariance.

Let On be the group of all n×n real orthogonal matrices and let M be a p-dimensional
subspace of IRn. Denote by On(M) = {Γ ∈ On: Γx = x,x ∈M} the subgroup of On that
preserves the elements of M. Thus, a random n × p matrix Y is On(M)-invariant if Y
and ΓY are identically distributed for all Γ ∈ On(M). Moreover, an infinite sequence of
p× 1 random vector Y1,Y2, . . . is O(M)-invariant if, for each n ≥ 1, the random matrix
Y(n) = (Y1, . . . ,Yn)> is On(M)-invariant (Diaconis et al., 1992).

For the linear model considered here, let M be the column space of X[0k], where X[0k] is
a k×l matrix with rank l and such that limk→∞(X>

[0k]X[0k])−1 = 0. The first stage in model
construction, which corresponds to the specification of the likelihood for the normal linear
model, is replaced by the judgment of O(M)-invariance on the Y ’s, say, we assume that
the infinite sequence of response variables Y1, Y2, . . . is O(M)-invariant, which means that
for each k > l, the random vector Y[0k] is Ok(M)-invariant. As established by Diaconis
et al. (1992), under this assumption the distribution of any k-dimensional vector Y[0k] is
represented as a

f(Y[0k]|X[0k]) =
∫

IRl×(0,∞)
N(X[0k]β, σ2Ik) π(β, σ2) dβ dσ2, ∀k > l.

Under the assumption of O(M)-invariance, there is an operational interpretation for
the parameter (β, σ2). It can be interpreted as limk→∞ (Bk, Ek/(k − l)) (a.s.), where
Bk = (X>

[0k]X[0k])−1X>
[0k]Y[0k] and Ek = (Y[0k] −X[0k]Bk)>(Y[0k] −X[0k]Bk). Thus, the

mixing measure π(β, σ2) can be interpreted as the prior distribution for the operational
parameter (β, σ2). It is remarkable that the likelihood becomes known from the O(M)-
invariance assumption. However, for a full predictivistic approach for the modeling, we need
additional assumptions on the observable quantities. Let us assume that different vectors
of response variables tend to be similar if the same matrix of covariates are observed. Such
condition reveals that the second stage in model construction, which corresponds to the
prior elicitation for the operational parameters, is replaced by additional conditions on the
expectation of observable response quantities.
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Let Y(i)
[0k] = (Y(i−1)k+1, . . . Yik), where Y1, Y2, . . . is an infinite sequence of O(M)-

invariant random variables. Loschi et al. (2003) established that if P(Y(1)
[0k] ∈ M) = 0

and

E
(
Y(2)

[0k]|X[0k],Y
(1)
[0k]

)
= aY(1)

[0k] + b1,

E
((

Y(2)
[0k]

)>
Y(2)

[0k]|X[0k],Y
(1)
[0k]

)
= a

(
Y(1)

[0k]

)>
Y1

[0k] + b2,

for some real constants a and b2 and constant vector b1 ∈ IRk, then it can be proved that
a ∈ (0, 1), b1 = X[0k]b for any b ∈ IRp, b2 > b>X>

[0k]X[0k]b/(1 − a) and, for each n ≥ 1
and k > l, it follows that the predictive distribution of Y[0k] is

Y[0k]|X[0k] ∼ tk

(
1

1− a
X[0k]b, Ik +

a

1− a
P(k);

b2

a
−

b>X>
[0k]X[0k]b

a(1− a)
,
k(1− a) + (l + 2)a

a

)
,

where P(k) = X[0k](X>
[0k]X[0k])−1X>

[0k].

It follows from Theorem 3 in Diaconis and Ylvisaker (1979) that the joint prior density
of (β, σ2) is

π(β, σ2|X[0k]) ∝
{

1
2σ2

} k(1−a)+(p+2)a

2a
+1

exp

{
− 1

2σ2

(
b2

a
−

b>X>
[0k]X[0k]b

a(1− a)

)}

×
(

1
σ2

) p

2

exp

{
− 1

2a(1− a)−1σ2

(
β − 1

1− a
b
)>

X>
[0k]X[0k]

(
β − 1

1− a
b
)}

,

which is a normal-inverted-gamma distribution and can be hierarchically specified as fol-
lows

β|X[0k], σ
2 ∼ N

(
1

1− a
b,

aσ2

1− a
(X>

[0k]X[0k])
−1

)
(7)

and

σ2|X[0k] ∼ IGa

(
b2

2a
−

b>X>
[0k]X[0k]b

2a(1− a)
,

k(1− a) + (l + 2)a
2a

)
. (8)

Notice that the priors in Equations (7) and (8) are particular members of the prior family
elicited in Section 2.1. Moreover, the conditional prior for β is the same used in Zellner’s
prior for linear models (Marin and Robert, 2007), although Zellner’s proposal assumes an
improper prior for σ2.

3. Computational Procedures for the PPM in the Regression Model

This section introduces the algorithm to obtain the posteriors (product distributions) of
βk and σ2

k at each instant k = 1, . . . , n and describes the algorithm proposed by Barry
and Hartigan (1993) to obtain the product estimates for such parameters. The posterior
distribution of p, B, and ρ can be estimated by using the algorithm in Loschi and Cruz
(2005).
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Assuming that, given ρ, s ∈ [ij], for s = 1, . . . , n and i, j ∈ I, i < j, we notice that the
full conditional distributions of ρ and θs = (βs, σ

2
s), for s = 1, . . . , n are given, respectively,

by

π(ρ|θ,Y[0n],X[0n]) ∝ Πb
j=1f(Y[ij−1ij ]|X[ij−1ij ])c[ij−1ij ],

f(θs|ρ, θ−s,Y[0n],X[0n]) ∝ f(θs|Y[0n],X[ij]),

where X[0n] = (X1, . . . , Xn), θ = (θ1, . . . , θn), θ−s denotes the vector (θ1, . . . , θs−1, θs+1,
. . . , θn), f(θs|Y[0n],X[ij]) is obtained from Equations (4) and (5) and f(Y[ij]|X[ij]) is the
block predictive distribution of Y[ij]. Thus, it is noticeable that using MCMC techniques
we can sample from the posteriors of θs improving the original algorithm proposed by
Barry and Hartigan (1993).

3.1 Generating a partition

Let us consider the auxiliary random quantity Ui, suggested by Barry and Hartigan (1993),
which reflects whether or not a change point occurs at time i, that is, Ui = 0 if θi 6= θi+1,
and Ui = 1, otherwise, for i = 1, . . . , n − 1. Notice that knowing the random vector
U = (U1, . . . , Un−1) is equivalent to knowing the random partition ρ. The s-th partition
ρs, s ≥ 1, is thus generated by using Gibbs sampling considering the full conditional
distributions Ur|U s

1 , . . . , U s
r−1, U s−1

r+1 ,θs−1
[0n] , Y[0n],X[0n]). Since the Ui’s are binary random

variables, each component Ur of U is generated by considering the following ratio

Rr =
P(Ur = 1|U s

1 , . . . , U s
r−1, U

s−1
r+1 , θs−1

[0n] ,Y[0n],X[0n])

P(Ur = 0|U s
1 , . . . , U s

r−1, U
s−1
r+1 , θs−1

[0n] ,Y[0n],X[0n])

=
f(Y[xy]|X[xy])

∫ 1
0 pb−2(1− p)n−b+1dπ(p)

f(Y[xr]|X[xr])f(Y[ry]|X[ry])
∫ 1
0 pb−1(1− p)n−bdπ(p)

,

for r = 1, . . . , n− 1, in which x denotes the last change point before r, y denotes the next
change point following r, and, for the linear regression model, the joint density f(Y[ij]|X[ij])
is the (j − i)-variate Student-t distribution given in Equation (6). For more details, see
Loschi and Cruz (2005).

3.2 Sampling from the product distributions: the proposed algorithm

To sample from the product distributions of the parameter in the regression model consider
the following algorithm. For s = 1, . . . , T ,

• Step 1: generate a partition ρs from π(ρ|βs−1
k , (σ2

k)
s−1,Y[0n],X[0n]); see Section 3.1.

• Step 2: find the block [ij] in ρs such that k ∈ [ij], for i, j = 1, . . . , n and i < j;
• Step 3: generate a sample (βs

k, (σ
2
k)

s) from the block posterior distributions of (βk, σ
2
k)

as follows:

(σ2
k)

s ∼ IGa(ν∗[ij]/2, d∗[ij]/2),

βs
k ∼ Nl(m∗

[ij], (σ
2
k)

sV∗
[ij]).
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Notice that after T steps, we have a sample from the posterior distributions of βk and σ2
k.

Then, the product estimates can be approximated by the averages

β̂k =
∑T

s=1 βs
k

T
,

σ̂2
k =

∑T
s=1(σ

2
k)

s

T
.

3.3 Barry and Hartigan’s algorithm

Consider Steps 1 and 2 of the proposed algorithm. Step 3 of Barry and Hartigan’s algorithm
consists of calculating

β̄
s
k = m[ij]

∗ and σ̄2s
k =

ν∗[ij]
d∗[ij] − 2

,

for each generated sample ρs, s = 1, . . . , T . Thus, the product estimates of βk and σ2
k,

for k = 1, . . . , n, are approximated, respectively, by

β̂k =
∑T

s=1 β̄
s
k

T
,

σ̂2
k =

∑T
s=1(σ̄

2
k)

s

T
.

Notice that, in this case, the product estimates are the averages of the posterior means by
blocks.

In spite of introducing more variability in the computation of the product estimates as
compared with that of Barry and Hartigan, the modified algorithm introduced here should
be preferred since complete posterior information about regression parameters is available
from it and, consequently, some other posterior summaries (besides the posterior means)
can be obtained. For similar algorithms based on particle filtering, see Fearnhead and Liu
(2007) and Fearnhead (2006).

Remark 3.1 Notice that both algorithms can be adapted for the general PPM introduced
by Hartigan (1990). The only thing that we have to take into consideration is the generation
from the posterior distribution of ρ. For the contiguous-block case, Barry and Hartigan
(1993) propose a Gibbs sampling scheme to generate from such posterior distribution,
which is also considered here. A generalization of such a Gibbs sampling scheme for the
general PPM (non contiguous-block case) can be found in Crowley (1997). For the general
PPM, algorithms to sample from the Dirichlet process (DP) can also be used. Quintana and
Iglesias (2003) proved that the DP reduces to the particular case of the general parametric
PPM in which the prior cohesion of the set S is given by c(S) = c(|S| − 1)! and c is
the weight parameter of the DP. For such particular case, algorithms like those in Bush
and MacEachern (1996), MacEachern and Müller (1998) or Neal (2000) can be used to
obtain the posterior distributions. However, these algorithms are not applicable for the
PPM considered in this paper since, as a consequence of Quintana and Iglesias (2003)
statements, we can conclude that there is no association between the DP and the PPM in
the contiguous-block case.
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4. Case Studies

In this section, the goal is to analyze if the linear relationship between two variables changes
throughout time. That is, we initially consider a linear model such that

Y = αk + ψkX + εk, εk
ind.∼ N(0, σ2

k),

where αk, ψk and σ2
k denote, respectively, the intercept, slope and variance at time k,

k = 1, . . . , n. We consider three data sets to illustrate the previous methodology. Firstly,
we analyze the Brazilian industrial production index (BIP) and the Brazilian employment
index (BEI). Also analyzed is the Dow Jones industrial average index (DJIA) and the
BOVESPA index (IBOVESPA), an indicator that shows the behavior of the principal
shares trade on the São Paulo stock exchange.

We compare the least square estimates with the product estimates obtained by applying
both Barry and Hartigan’s and the proposed algorithms. The least square estimates were
computed assuming the blocks pointed out by the posterior most probable partition. The
block information is included in the model through dummy variables. We consider R2 as
the goodness of fit measure. The results for the least square method may be obtained by
using any basic statistical software.

All algorithms were coded in C++ and for all cases, 11,000 samples of 0-1 values were
generated by the Gibbs sampling scheme, with the dimension of the time series, starting
from a sequence of zeros. Since the convergence was reached before the 3,000th step, the
initial 3,000 iterations were discarded as burn-in. In order to avoid correlation among the
vectors a lag of 10 was selected.

According to some expert’s opinion, changes in the economy behavior of emerging mar-
kets countries are mainly consequence of crises or events that occur in other countries.
These important events are country specific. However, they can spread out across coun-
tries with a similar economy eventually producing changes in their behavior. Three great
financial crises involving emerging markets occurred in the period we are considering for
analysis: Mexico’s crisis in January, 1995, Asia’s crisis in August, 1997, and Russia’s crisis
in July, 1998. Also, policies adopted by the local governments can also produced changes
in the behavior of the economy. From 1964 through 1994, Brazil used to experience huge
inflation rates and to combat it, the Federal Government felt the necessity of adopting
more extreme measures against it. One effective measure was the Real Plan launched in
June 1993. The key elements of the Real Plan was a fiscal strategy creating the Social
Emergency Fund, a monetary reform and the opening of the economy with trade liberal-
ization and a new foreign exchange policy. It is well-known that Real Plan brought some
stability for the Brazilian economy. Thus, we are expecting few changes in the data and
in their relationship. Because we do not have much information about the relationship
between BEI and BIP, as well as between the Down Jones and BOVESPA indexes, we also
consider flat conjugate priors –that is, we assume priors with large variance– to describe
the uncertainty about the intercept, slope and variance. For these reasons, in both case
studies we assume the following prior specifications:

α[ij]|σ2
[ij] ∼ N(0.0, σ2

[ij]),

ψ[ij]|σ2
[ij] ∼ N(0.0, σ2

[ij]),

σ2
[ij] ∼ IGa(0.001/2, 0.001/2),

p ∼ Beta(5.0, 50.0).



104 R. H. Loschi, J. G. Pontel and F. R. B. Cruz

4.1 Case study 1: Brazilian Industrial Production Index (BIP) versus
Brazilian Employment Index (BEI)

Here, we consider the Brazilian industrial production index (BIP) and the Brazilian em-
ployment index (BEI), recorded monthly from January, 1985, to April, 2001; see Figure 1.
The data sets are available at http://www.ipeadata.gov.br.

time

1985 1987 1989 1991 1993 1995 1997 1999 2001

0
.6

0
.8

1
.0

1
.2

BIP
BEI

Brazilian Industrial Production x Brazilian Employment Index

Figure 1. BIP × BEI

In this case, we analyze if the linear relationship given by

BEI = αk + ψkBIP + εk, εk
ind.∼ N(0, σ2

k)

changes throughout time. As a consequence of the above it follows that, a priori, the
expected probability of a change taking place at any instant is close to 9.0% and the
expected number of change points, B − 1, is 17.7.

The posterior most probable partition indicates changes at instants 102 (June, 1993) and
149 (May, 1997) with posterior probability equal to one. We also observe in the posterior
analysis that p and B − 1 are smaller than in the prior evaluation (the posterior means
are 2.8% and 2, respectively). The posterior mass function indicates that the instants 102
and 149 are change points with probability one. The other instants have probability equal
to zero of being a change point.

From Figure 2, it is noticeable that the estimates by the Bayesian method and least
squares are different. In contrast, our proposal and Barry and Hartigan’s method provide
similar estimates for all parameters. We can also observe that the three methods indicate
two important changes in the three parameters at the same time. For the intercept all
three methods indicate changes at the same direction, identifying an increase in June,
1993, and a decrease in May, 1997. However, for the slope and the variance the posterior
and least square estimates present different behavior. The posterior estimates indicate
that the slope is decreasing throughout and that the variance has the same behavior we
observed for the intercept, that is, increasing in June, 1993, and decreasing in May, 1997.
On the other hand, the least square estimates point out that the variance is decreasing
throughout whereas the slope decreases in June, 1993, but increases in May, 1997. The
values of R2, for the proposed method, Barry and Hartigan’s, and least squares, are 89.0%,
86.9%, and 87.4%, respectively.
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Figure 3 presents the blocks of observations, corresponding to the posterior most prob-
able partition, along with the fitted models. From this figure, we notice that by using
the proposed method we will have a large number of fitted models (actually, one slightly
different fitted model for each BIP × BEI pair). We can also obtain some other additional
information. From Figure 4, we can observe that the variance for the distribution of the
three parameters tends to be smaller after May, 1997; see also Table 1. The posterior
distributions for the intercept and slope are more symmetric and present less atypical
observations than the posterior distribution for the variance. Table 1 provides some de-
scriptive statistics for the posterior distributions at instants 101 to 103, and 148 to 150. It
can be noticed that the posterior means and medians are very close.

Table 1. Descriptive statistics for the intercept, slope and variance at some particular instants for BIP × BEI.

Intercept Slope Variance

Instant Mean Median Variance Mean Median Variance Mean Median Variance

101 0.3718 0.3724 4.0× 10−3 0.6102 0.6104 3.5× 10−3 0.0099 0.0098 1.0× 10−6

102 0.4124 0.4149 6.1× 10−3 0.3253 0.3259 4.6× 10−3 0.0110 0.0109 2.7× 10−6

103 0.4111 0.4087 5.3× 10−3 0.3291 0.3274 4.6× 10−3 0.0110 0.0108 2.7× 10−6

148 0.4125 0.4118 5.7× 10−3 0.3228 0.3222 4.6× 10−3 0.0110 0.0109 2.7× 10−6

149 0.2643 0.2637 2.7× 10−3 0.2770 0.2763 1.9× 10−3 0.0050 0.0049 0.5× 10−6

150 0.2634 0.2658 2.8× 10−3 0.2789 0.2794 1.9× 10−3 0.0049 0.0049 0.4× 10−6
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Figure 2. Least square and product estimates for BIP × BEI.
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Figure 3. Fitted models for BIP × BEI.

0
.2

0
.4

0
.6

time

a
lp

h
a

0
.0

0
.2

0
.4

0
.6

0
.8

time

p
s
i

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

time

s
ig

m
a

2

Figure 4. Boxplots of the posterior distributions at each instant for BIP × BEI.
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4.2 Case study 2: Dow Jones versus BOVESPA indexes

Changes in the Dow Jones index usually leads to a change in the BOVESPA index.
BOVESPA index tends to increase (decrease) whenever Dow Jones index experiences an
increase (decrease). However, since the Brazilian economy is an emerging one, it can be
affected by international events that do not influence the USA economy. Our interest is
to evaluate how this other events influence the relationship between such indexes. In this
section we analyze the linear relation through time between the returns of the Dow Jones
industrial average (DJIA) and the BOVESPA index (IBOVESPA) recorded fortnightly
from January, 1995, to October, 2000. That is, initially, we consider the model

IBOVESPA = αk + ψkDJIA + εk, εk
ind.∼ N(0, σ2

k).

As can be noticed from Figure 5, the relation between these two indexes could have expe-
rienced a change (at least in the variance) in the middle of 1997. Thus, there is no reason
for not using the same prior specifications as in Case study 1.
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Figure 5. DJIA × IBOVESPA.

The posterior most probable partition indicates a change at the 2nd. fortnight of July,
1997 (instant 42), with low probability (25.6%). We also observe that the 2nd fortnight
of July, 1997, has the highest posterior probability of being a change point (26.3%). Most
probably, with posterior probability of 84.8%, we have a model with two blocks. Here,
we also assume those blocks indicated by the most probable partition, to obtain the least
square estimates shown in Figure 6, from which we notice that the most important change
indicated by all three methods is close to the 2nd. fortnight of July, 1997. For each param-
eter, we also observe that all three methods indicate change in the same direction. The
product estimates for the slope obtained by using the proposed and Barry and Hartigan’s
methods, are closer than those observed for the other parameters.

It can be noticed from Figure 7 that the distribution for the variance presents high
variability and asymmetry for those instants close to the change point; see also Figure 8.
The occurrence of a large number of atypical observations at instants close to the 2nd.
fortnight of July, 1997 (instant 42) is also noticeable. From Figure 8 we can also observe
that the posterior distribution for the variance at instants close to the change point have
two modes.
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Figure 9 presents the fitted models for all three methods. The value of R2 is close to
1.5% for both the proposed and Barry and Hartigan’s methods, and it is 27.2% for the
least square method. Notice that, in this case, besides the Bayesian model being efficient
for change point detection, a piecewise linear regression seems to explain the data poorly.
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Figure 6. Least square and product estimates for DJIA × IBOVESPA.

0
.0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

time

s
ig

m
a

2

Figure 7. Boxplots of the posterior distributions for the variance at each instant for DJIA × IBOVESPA.
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Figure 8. Posterior distributions at instants 41, 42, and 43 for DJIA × IBOVESPA.
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Figure 9. Fitted models for DJIA × IBOVESPA.
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Remark 4.1 We also analyzed the volume of sales on Boston Stock Exchange (BSE) and
the combined New York and American Stock Exchange (NYAMSE), shown in Holbert
(1982), according to whom it was reported in the Business Week (issue of January 3,
1970) that regional stock exchanges were hurt by abolition of give-ups in December 5, 1968.
Then Holbert (1982) identified a change point in November, 1968, with 26.1% of chance.
Using our methodology, the posterior most probably partition indicates that there is no
change points at all in the linear relation between NYAMSE and BSE, with probability of
97.8%. The chance of having two blocks is as low as only 2.3%. We also noticed that the
probability of each month to be a change point is below 1.3%, being November, 1967, the
month with the highest probability of being a change point.

5. Conclusions and Final Comments

In this paper, we applied the well-known PPM to analyze segmented linear regression mod-
els. A predictivistic characterization for the within block distributions was also provided.
The advantage of using such approach is that the number of segments (or blocks) is a
random variable and thus a non ad-hoc modeling for piecewise regression models can be
obtained. We also modify the algorithm proposed by Barry and Hartigan (1993) to obtain
the posterior distributions of the parameter of interest at each instant. By using the mod-
ified algorithm one can have additional information from the posterior distribution other
than the posterior means. We applied the proposed algorithm to analyze two real data sets.
In spite of introducing more variability in the computation of the product estimates than
Barry and Hartigan’s algorithm, we concluded that the new algorithm has good perfor-
mance, providing posterior means –product estimates, say– very close to those obtainable
by Barry and Hartigan’s algorithm. Our algorithm should be preferred, since it provides
samples from the posteriors; thus some other posterior summaries –besides the posterior
means– can be obtained. In fact, this algorithm revealed that the posterior distributions
at each instant can by asymmetric as well as multimodal. That is, the posterior means,
which were the estimators suggested by Barry and Hartigan (1993), may not provide good
estimates for the parameters. For the BIP and BEI data sets, we identified three blocks of
observations and observed that the posterior means and least square estimates differ. For
the DJIA and IBOVESPA data set, a change point was observed at the 2nd fortnight of
July, 1997, and we noticed that the product and least square estimates were similar.
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