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Abstract

In this paper, we consider the problem of estimating the systematic risk of stocks
market by using a modeling formulation based on scale normal mixtures comparative
calibration models. In this work, we emphasize the Student-t comparative calibration
model, which is approached by considering the degrees of freedom parameter unknown.
Inference is approached by using the EM algorithm and MCMC methodology. The
results are applied to the stock returns of two Chilean companies.

Keywords: Bayesian inference · Capital asset pricing model · Maximum likelihood
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1. Introduction

The main object of this paper is to estimate the parameters of the capital asset pricing
model (CAPM) by using the comparative calibration model and historical data from the
Chilean stock market, with emphasis on the problem of estimating the systematic risk.
The CAPM specifies that the expected return of an asset (or share) is equal to the free
risk rate plus the price of the risk; see, e.g., Sharpe (1964), Lintner (1965), Fama (1965),
Mossin (1966) and Elton and Gruber (1995). Specifically, let R denotes the random variable
expressing the asset return so that the CAPM model establishes that

E(R) = rf + β(E(Rm)− rf ), (1)
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where R denotes the share return, rf is the risk free return rate, β is the systematic risk
of the asset under study and Rm is the market return generally given as an index.

Much interest on the field of financial economics is focused on the efficient estimation of
the parameters of the return generating process. The estimator of β in the above model is
an important measure of risk for financial analysis and also for risk and portfolio managers.
This parameter is very useful for calculating the capital of equities cost, a key quantity
for evaluation methods. An extension of the model given in (1), which is typically used for
estimating the coefficient β corresponding to an asset, is

E(R)− rf = α+ β(E(Rm)− rf ), (2)

where α is the asset return independent of the market. The estimation of the parameter
β of the model given in (2) has been approached by considering the regression model

rj − rfj = α+ β(rmj − rfj) + εj

or

Yj = α+ βxj + εj ,

where rj denotes the assets’ return at the j-th period, rmj is the market return at the j-th
period and rj corresponds to the risk free return at the j-th period, so that

Yj = rj − rfj

and

xj = rmj − rfj ,

represent the return of an asset in excess of risk free rate and the excess return of the
market portfolio of assets at the j-th period, respectively, for j = 1, . . . , n.

The estimation approach that has been considered in the financial literature is based on
the least squares theory under the assumption that the random errors ε1, . . . , εn are inde-
pendent and identically distributed according to the N(0, σ2), i.e., the normal distribution
with mean zero and variance σ2. It is also known that least squares is highly sensitive
to extreme observations which are typically present in the Chilean stock market. Duarte
and Mendes (1997) presented robust methods for estimating β in Latin American emerg-
ing markets. Cademartori et al. (2003) approached the problem from a classical point of
view of independent Student-t random errors. Using the EM-algorithm, McLachlan and
Krishnan (1997) obtained maximum likelihood (ML) estimators of β for several Chilean
companies. Bayesian solutions to the problem have been considered by Harvey and Zhou
(1990) and Shanken (1987), under the normality assumption, with applications to the US
market.

Along these lines, robust methods are developed by replacing the normal distribution by
symmetrical distributions with heavier tails than the normal, which allows reducing the
influence of outliers on estimators.

The use of heavy tailed distributions such as the Student-t distribution in usual regression
models has been investigated in Lange et al. (1989) and Geweke (1993); see also Polson
and Tew (1999).
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The present paper is different from previous ones in several aspects due to: (i) the
market return is considered as a non-observable random variable, which is expressed as
the sum of the asset’s return with an error term; (ii) the information on the daily returns
of several companies are combined in a comparative calibration model; (iii) heavy tailed
distributions are considered for the error terms; and (iv) a comparative study is reported
comparing classical and Bayesian solutions. Finally, the main results are applied to the
Chilean stock market, where extreme observations are often encountered. Additionally, the
Bayesian approach allows the consideration of informative priors for the model parameters.

Comparative calibration models have been considered to compare measuring instru-
ments, which are used for obtaining measurements from the same unknown quantity. Such
models are special cases of multivariate measurement error models; see, e.g., Fuller (1987).
Some applications in education, industry, medicine and psychology have been considered
in Grubbs (1948, 1973), Barnett (1969), Carter (1981), Dunn (1989), Bolfarine and Galea-
Rojas (1995, 1996), among others.

The comparative calibration model is defined as follows. Let xj denotes the true value of
the unknown quantity corresponding to the j-th individual (sample unit), for j = 1, . . . , n,
and Yij , the measurement that follows by using the i-th instrument, for i = 1, . . . , n. With
a linear relationship between Yij and xj (Barnett, 1969; Kimura, 1992), we consider the
model

Yij = αi + βixj + εij , i = 1, . . . , p, j = 1, . . . , n.

The parameters αi and βi represent the additive and multiplicative bias corresponding to
i-th instrument, for i = 1, . . . , p. Barnett (1969) considered the existence of a reference
instrument (namely instrument 0), which makes unbiased measurements, that is, α0 = 0
and β0 = 1. The reference instrument typically corresponds to the most precise instrument.
Thus, the model we consider can be represented as

Y0j = xj + ε0j (3)

and

Yij = αi + βixj + εij , (4)

for i = 1, . . . , p and j = 1, . . . , n, where xj , as before, represents the true (unobserved)
market return at the j-th period, corrected for the free rate of return, Yij the return of the
asset corresponding to company i at time j also corrected for the free rate of return. Since
the xj is considered as a random variable, the model that we consider is a structural one;
see, e.g., Bolfarine and Galea-Rojas (1995). As pointed out by a referee, the above model
may be adequate under special market conditions such as market equilibrium. A model
taking into consideration trends in returns is studied in Aguilar and West (2000).

The paper is organized as follows. In Section 2, we present ML estimation of the param-
eters for the comparative calibration model given in (3) and (4), under the assumption of
Student-t random errors (normal model as a limiting case), with fixed degrees of freedom.
In Section 3, we consider a Bayesian approach for normal mixtures comparative calibra-
tion model including the Student-t model with known and unknown degrees of freedom as
special cases. In Section 4, we discuss applications to the Chilean stock market, including
also a comparative study between classical and Bayesian approaches. Finally, we provide
some conclusions in the final part.
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2. Maximum Likelihood Estimation

As discussed in the introduction part, the general comparative calibration model is defined
by (3) and (4). The normal structural model, where xj

i.i.d.∼ N(µx, σ2
x) and εij

i.i.d.∼ N(0, σ2
i ),

with xj independent of εij , for j = 1, . . . , n and i = 0, . . . , p, has been considered in, e.g.,
Barnett (1969) and Bolfarine and Galea-Rojas (1996). In this case, it is possible to obtain
explicit expressions for the ML estimator of θ = (α1, . . . , αp, β1, . . . , βp, µx, σx, σ0, . . . , σp)>

when p = 2. For p > 2, we need numerical algorithms to find the solutions. For p = 1,
some additional conditions on θ are required in order to avoid identifiability problems; see
Barnett (1969) and Fuller (1987). For a more compact representation of this model, let
Yj = (Y0j , Y1j , . . . , Ypj)>, for j = 1, . . . , n. Thus, the normal structural model is defined by

Yj
ind.∼ Np+1 (µ,Σ) , j = 1, . . . , n, (5)

where µ = µ(θ) and Σ = Σ(θ) are given by

µ =


µx

α1 + β1µx
...

αp + βpµx

 (6)

and

Σ =


βpσ

2
x + σ2

0 β1σ
2
x . . . βpσ

2
x

β1σ
2
x β2

1σ
2
x + σ2

1 · · · β1βpσ
2
x

...
...

. . .
...

βpσ
2
x β1βpσ

2
x · · · β2

pσ
2
x + σ2

p

 , (7)

respectively. Under the normal structural model given in (5) with p ≥ 2, the ML estimator
of µ and Σ are the sample mean vector

Ȳ =
1
n

n∑
j=1

Yj

and sample covariance matrix

S =
1
n

n∑
j=1

(Yj − Ȳ )(Yj − Ȳ )>,

respectively. Hence, the ML estimator of θ is the solution (contained in the parametric
space of θ) to the equations:

µ(θ̂) = Ȳ and Σ(θ̂) = S. (8)

We consider in this section a more general situation than model given in (5) by assuming
that

Yj
i.i.d.∼ tp+1 (µ,Σ; ν) , j = 1, . . . , n, (9)
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where µ = µ(θ) and Σ = Σ(θ) are as in Equations (6) and (7) and tp+1 (µ,Σ; ν) denotes
the (p+ 1)-dimensional Student-t distribution with location vector µ, dispersion matrix Σ
and ν degrees of freedom. The model given in (9) is equivalent to considering, in (3) and
(4), that the random vectors

(xj , ε0j , ε1j , . . . , εpj)>
i.i.d.∼ tp+1(ξ,Ω, ν), j = 1, . . . , n,

where ξ = (µx, 0, 0, . . . , 0)> and Ω = diag{σ2
x, σ

2
0, σ

2
1, . . . , σ

2
p}. As is well known, the normal

structural model given in (5) can be obtained as a limiting case of the Student-t structural
model given in (9) by letting ν →∞.

From model given in (9) and considering the degrees of freedom known, the likelihood
function L(θ) = f (Y1, . . . , Yn | θ) is such that

L(θ) ∝ |Σ|−n/2
n∏
j=1

{
1 +

1
ν

(Yj − µ)>Σ−1 (Yj − µ)
}−(ν+p+1)/2

, (10)

where θ is defined above, with µ = µ(θ) and Σ = Σ(θ) defined in Equations (6) and (7),
respectively. Expression given in (10) is analytically complicated to deal with. Hence, to
solve the maximization problem associated with model given in (9), we make use of the
Monte Carlo EM algorithm (Tanner, 1996) using the fact that the model given in (9) can
be alternatively specified in two steps:

(i) Yj |wj ∼ Np+1 (µ,wjΣ) and

(ii) wj
i.i.d.∼ IGa

(
ν
2 ,

ν
2

)
, for j = 1, . . . , n, where IGa(a, b) denotes the inverted gamma

distribution with shape parameter a and scale parameter b.

The model defined in step (i) corresponds to the heteroscedastic normal model, with
variances differing within individuals, i.e., conditionally on the missing vector w =
(w1, . . . , wn)>. The log-likelihood function corresponding to θ is such that

log
(
f (Y1, . . . , Yn | θ, w)

)
=

n∑
j=1

log
(
f(Yj |θ, wj)

)
(11)

∝ −n
2

log(|Σ|)− 1
2

n∑
j=1

log(wj)−
1
2

n∑
j=1

1
wj

(Yj − µ)>Σ−1 (Yj − µ) ,

where, as before, µ = µ(θ) and Σ = Σ(θ) are defined in Equations (6) and (7). The Monte
Carlo EM algorithm (Tanner, 1996) is applied to the situation consisting of computing
initial values θ0 from expressions given in (11) using the initial values w0 = (w0

1, . . . , w
0
n)>

for the missing vector w = (w1, . . . , wn)>. From this stage, we proceed as follows. At step
i,

(a) Generate wi1, . . . , w
i
n from the distribution of w|Y1, . . . , Yn, θ

i and

(b) Find θi+1 =argmax
θ

{
1
n

∑n
t=1 log

(
f(Yj |θ, wij)

)}
,

iterating until convergence, which is checked by looking at the difference |θi+1
j − θij |.
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To implement the E-step of the algorithm, it is required to obtain the conditional dis-
tribution of wj given Y1, . . . , Yn, θ. Straightforward computations lead to

wj |Yj , θ
ind.∼ IGa

(
ν + p+ 1

2
,
(Yj − µ) Σ−1 (Yj − µ) + ν

2

)
, j = 1, . . . , n. (12)

To compute standard deviations for the ML estimators, the inverse of minus the Hes-
sian matrix that follows from the likelihood function Equation (10), evaluated at the ML
estimates, will be used. This evaluation can also be done numerically.

Remark 2.1 The above results can be applied without additional difficulties to other
representable models such as mixtures of normal distributions. It suffices to specify a
distribution G for wi as considered in Arellano-Valle et al. (2000) and Branco et al. (2000).
Furthermore, in the case of the Student-t model, the approach can be made more robust
by considering the degrees of freedom ν as an unknown parameter. An approximation to
the ML estimator can be computed by varying ν over a grid of values and considering, as
an estimator of ν, the value in the grid that maximizes the likelihood function.

3. Bayesian Analysis

In this section, we consider a Bayesian solution for the inference problem associated with
model given in (3) and (4) under the hypothesis of mixtures of normally distributed errors,
which has as a special case the normal and Student-t distributions. For the Student-t
model, we consider the two situations where the degrees of freedom are considered known
and unknown. More specifically, we consider the model given in (3) and (4) under the
following assumptions:

xj |wj
ind.∼ N(µx, wjσ2

x), εij |wj
ind.∼ N(0, wjσ2

i ), wj
i.i.d.∼ G, (13)

for i = 0, . . . , p and j = 1, . . . , n, all of them conditionally independent given wj , where G
represents the mixing distribution. For the Student-t structural model, G corresponds to
the gamma distribution with parameters ν/2 and ν/2, denoted by Ga(ν/2, ν/2).

To perform the Bayesian analysis, we implement the MCMC type approach since a
full Bayesian approach is difficult to carry out on such models. One special MCMC type
approach which requires only the specification of the conditional posterior distributions for
each parameter is the Gibbs sampler. In situations where those distributions are simple to
sample from, as in the present case, the approach is easily implemented. In other situations,
the more complex Metropolis-Hastings approach needs to be considered; see Gamerman
and Lopes (2006). Thus, to implement the Gibbs sampler approach, we need to obtain the
conditional posterior distributions. Considering that αi, βi and σ2

i are a priori independent,
the following prior distributions are considered:

αi
ind.∼ N(a0i, v1i), βi

ind.∼ N(b0i, v2i) and σ2
i

ind.∼ IGa
(
di
2
,
di
2

)
, i = 0, . . . , p,

where α0 = 0 and β0 = 1. Also, if model given in (13) we consider µx and σ2
x known, then

by letting x = (x1, . . . , xn)> and y = (Y1, . . . , Yn)>, we obtain the following conditional
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distributions:

αi|α(i), β, σ
2, x, w, y ∼ N

∑n
j=1

(Yij−βixj)
wj

+ a0iσ2
i

v1i∑n
j=1

1
wj

+ σ2
i

v1i

,
σ2
i∑n

j=1
1
wj

+ σ2
i

v1i

 ,

βi|α, β(i), σ
2, x, w, y ∼ N

∑n
j=1

(Yij−αi)xj

wj
+ b0iσ2

i

v2i∑n
j=1

x2
j

wj
+ σ2

j

v2i

,
σ2
j∑n

j=1
x2

j

wj
+ σ2

j

v2i

 ,

σ2
i |α, β, σ2

(i), x, w, y ∼ IGa

n+ di
2

,

∑n
j=1

(Yij−(αi−βixj))2

wj
+ di

2


and

xj |α, β, σ2, x(j), w, y ∼ N

∑p
i=1

σ2
x

σ2
i
(Yij − αi)βi + µx∑p
i=1

σ2
x

σ2
i
β2
i + 1

,
wjσ

2
x∑p

i=1
σ2

x

σ2
i
βi + 1

 ,

for i = 0, . . . , p and j = 1, . . . , n, where α = (α1, . . . , αp)>, β = (β1, . . . , βp)>, and for any
vector, say u = (u1, . . . , um)>, with u(i) = (u1, . . . , ui−1, ui+1, . . . , um)>.

Thus, if we consider wj = 1 for all j = 1, . . . , n, then the normal model follows. On the
other hand, if

wj
i.i.d.∼ IGa

(ν
2
,
ν

2

)
, j = 1, . . . , n,

then the Student-t model with ν degrees of freedom follows. In this case, the conditional
posterior distribution of wj is

wj |α, β, σ2, x, w(j), y ∼ IGa

(
p+ ν

2
,

p∑
i=1

(Yij − αi − βixj)2

σ2
j

)
, j = 1, . . . , n.

In the case where ν is unknown with ν ∼ Exp(a), the conditional posterior is given by

ν|w, y ∝ exp


n∑
j=1

(
ν

wj
+
(ν

2
+ 1
)

log
(
ν

wj

)
− aν

) .

The algorithm starts with initial values for α(i) and x (all zeros, say), and β, σ2 and
w (all ones, say) and cycles, generating samples from the above conditional distributions,
until convergence. This could be verified using the approach developed, e.g., by Gelman
and Rubin (1992), which requires running several parallel chains. It is also worth noticing
that the Bayesian approach does not involve matrix inversion and hence it can deal more
adequately with a greater number of assets.
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4. Application to the Chilean Stock Market Dataset

In this section, we apply the theory and methods developed earlier to the series of monthly
stock returns from two Chilean companies, for the January’ 83 - December’ 92 period. The
first one is COPEC, the Chilean oil company, of big impact in the Chilean stock market.
The second is Concha y Toro, a wine manufacturer, with a relatively smaller weight in
the financial market. We also have the corresponding set of values of IPSA, the Chilean
version of the Dow-Jones index. In this case, p = 2 and

Y0j = IPSA return in month j,

Y1j = Concha y Toro return in month j,

Y2j = COPEC return in month j,

for j = 1, . . . , 120.

4.1 Maximum likelihood estimation

Table 1 presents the ML estimate of the parameters of the Student-t structural likelihood
function given in Equation (10) for some given values of ν. This table suggests that a
Student-t structural model with ν = 5 degrees of freedom is the most adequate model to
fit the data. This is close to the value ν that maximizes the likelihood function when a
simple Student-t regression model for each company is considered (see Table 2).

Table 1. ML estimates for the Student-t structural model, for some given values of ν.

Parameters ν = 2 ν = 4 ν = 5 ν = 6 ν = 10 ν = 50
α1 -0.01077 -0.01049 -0.01024 -0.01012 -0.01010 -0.00838
α2 -0.01769 -0.01845 -0.01829 -0.01826 -0.01908 -0.01952
β1 0.47466 0.53600 0.56551 0.57899 0.64147 0.82198
β2 1.20649 1.26012 1.28813 1.29442 1.33970 1.37656
µx 0.01819 0.02100 0.02148 0.02202 0.02340 0.05820
σx 0.00378 0.00427 0.00437 0.00452 0.00473 0.00555
σ0 0.00101 0.00124 0.00132 0.00137 0.00154 0.00170
σ1 0.00375 0.00533 0.00588 0.00638 0.00780 0.01280
σ2 0.00220 0.00270 0.00287 0.00301 0.00330 0.00424

Likelihood 348 352 353 351 346 329

Table 2 shows ML estimates of β for different degrees of freedom when a simple Student-
t regression model is considered for each company. For Concha y Toro the value of ν
producing the highest likelihood is ν = 1; while for COPEC, the highest likelihood values
is obtained for ν = 3 degrees of freedom. It can also be noted that the estimate of β
presents the greatest change for Concha y Toro company, as ν goes from 1 to 200. This
effect seems somewhat less pronounced when the Student-t structural model is considered;
see Table 1. The estimates of β still increases, but at a less pronounced rate. Summarizing
the above, there is strong indication that Concha y Toro presents heavy tails. Similar
findings were also reported in Cademartori et al. (2003).
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Table 2. ML estimates with standard errors in parenthesis for simple Student-t regression models.

Concha y Toro COPEC
ν β L(θ) β L(θ)

(standard error) (standard error)
1 0.17802 112.1241 0.88161 123.0125

(0.0310) (0.0395)
2 0.26736 111.5709 0.92612 130.4801

(0.0413) (0.0467)
3 0.31447 107.7606 0.95346 131.3884

(0.0470) (0.0502)
4 0.35156 104.3123 0.97194 131.1957

(0.0509) (0.0523)
5 0.38146 101.4412 0.9853 130.7718

(0.0537) (0.0537)
10 0.47103 92.47642 1.01958 128.9223

(0.0617) (0.0569)
50 0.63549 78.77003 1.05704 126.0199

(0.0758) (0.0604)
100 0.67422 76.41305 1.06241 125.5357

(0.0788) (0.0609)
200 0.69611 75.18724 1.06515 125.2819

(0.0805) (0.0612)

4.2 A Bayesian analysis

The Bayes estimates were obtained using the WinBUGS software and the following prior
specifications:

αi ∼ N(0, 1/16), βi ∼ N(1, 1/16), i = 1, 2 and σ2
i ∼ IGa(0.01, 0.01), i = 0, 1, 2,

all they assumed to be independent. The choice of the priors for the α and β parameters was
guided to assessments made from market analysis; see Polson and Tew (1999). However, the
prior distributions considered for the dispersion parameters are essentially non-informative.

The results for the normal structural model are presented in Tables 3 and 4 for different
lags using Gibbs Sampling. For this model, we consider

xj
i.i.d.∼ N

(
0,

1
16

)
, j = 1, . . . , n.

To avoid correlation problems in the generated chains, different lag values were considered.
For some chains, the lag values were taken to be 15, for others 20, and so on. However, the
values of the posterior means do not seem to experience significant changes. We also point
out the fact that risk estimates are smaller than those obtained with the ML approach
in the normal comparative calibration model, which is the special case of the Student-t
model with large degrees of freedom.

Comparing the estimates above, particularly for the systematic risk β, with estimators
for each company computed under the simple normal regression models given in Table 4,
one can notice that they are quite close.

The results for the Student-t structural model for different degrees of freedom are pre-
sented in Table 5. When a simple Student-t regression model for each company was con-
sidered, we obtain similar results as presented in Table 6.
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Notice that, in this case and under both models, the systematic risk estimation for
Concha y Toro experiments important changes compared to the corresponding estimation
for COPEC. This may be caused by the fact that, for COPEC, linearity may be less
pronounced under a Student-t model.

The results when we consider a prior distribution ν ∼ Exp(0.01) are presented in Table
8 for the Student-t structural model, and in Table 9 when a separate simple Student-t
regression model for each company is considered. Differences between separate and joint
situations may be caused by the more concentration of the later.

Notice that, for the Student-t structural, the Bayesian and classical (maximum likeli-
hood) estimators for the degrees of freedom parameter ν are close, which is expected since
non-informative priors were used. The same does not occur with the simple Student-t
regression models, particularly for COPEC. In fact, while the classical estimate of ν ob-
tained by fitting a simple Student-t regression model for COPEC (see Table 2) indicates a
strong evidence against the normality of this company, the posterior mean of ν obtained
under the same simple regression model for COPEC indicates that this company is not
necessarily non-normal. However, it is important to recall that the classical estimators for
ν considered here are not exactly the maximum likelihood ones.

Table 3. Posterior means and standard deviations for the normal structural model (lag = 1).

Parameters Posterior mean Standard deviation
α1 -0.0010 0.0123
α2 -0.0099 0.0083
β1 0.7854 0.1195
β2 1.0840 0.0881
σ0 0.0510 0.0075
σ1 0.1281 0.0088
σ2 0.0706 0.0089

Table 4. Posterior means and standard deviations for the normal structural model (lag = 15).

Parameters Posterior mean Standard deviation
α1 -0.0019 0.0125
α2 -0.0109 0.0084
β1 0.7920 0.1182
β2 1.0870 0.0865
σ0 0.0512 0.0076
σ1 0.1281 0.0088
σ2 0.0706 0.0086

Table 5. Posterior means for the simple normal regression models.

Parameters Concha y Toro COPEC
α -0.0027 -0.0112
β 0.7863 1.0600
σ 0.5063 0.0875
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Table 6. Posterior means and standard deviations for the Student-t structural model (lag = 15).

Posterior mean
Parameters ν = 2 ν = 10 ν = 50

α1 -0.0090 -0.0073 -0.0037
(0.0065) (0.0093) (0.0115)

α2 -0.0122 -0.0113 -0.0106
(0.0073) (0.0079) (0.0084)

β1 0.3667 0.5673 0.7226
(0.0787) (0.1020) (0.1142)

β2 0.9828 1.0700 1.0870
(0.0801) (0.0876) (0.0852)

σ0 0.0382 0.0485 0.0505
(0.0052) (0.0069) (0.0074)

σ1 0.0549 0.0909 0.1173
(0.0060) (0.0081) (0.0086)

σ2 0.0428 0.0596 0.0677
(0.0055) (0.0078) (0.0085)

Table 7. Posterior means for the simple Student-t regression model.

Concha y Toro COPEC
ν α β σ α β σ
2 -0.0098 0.3541 0.0575 -0.0134 0.9388 0.0549
10 -0.0087 0.5659 0.0943 -0.0119 1.0200 0.0754
50 -0.0045 0.7160 0.1215 -0.0109 1.0500 0.0847
200 -0.0032 0.7639 0.1299 -0.0111 1.0560 0.0867

Table 8. Posterior means and standard deviations for the Student-t structural model (lag = 20).

Parameters Posterior mean Standard deviation
α1 -0.0081 0.0081
α2 -0.0113 0.0078
β1 0.4824 0.0977
β2 1.0450 0.0837
σ0 0.0446 0.0065
σ1 0.0753 0.0089
σ2 0.0531 0.0074
ν 5.0780 1.2470

Table 9. Posterior means for the simple Student-t regression models (lag = 20).

Parameters Concha y Toro COPEC
α -0.0102 -0.0124
β 0.3480 1.0040
σ 0.0561 0.0713
ν 1.9150 12.4300
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5. Conclusions

The paper considered Bayesian and classical approaches for estimating the systematic risk
using simple regression and structural comparative calibration models under Student-t
errors. The main idea was to consider market returns as latent variables, incorporating
information from different companies using a comparative calibration model. To control
for external effects that may affect the market, specially in the case of small companies, we
considered heavy tailed distributions for the error terms, with emphasis on the Student-t
distribution. Inference for the proposed models was based on classical (maximum likeli-
hood) and Bayesian approaches. Both approaches can be computationally implemented
by using simple and accessible software such as S-Plus and WinBUGS. The results were
applied to the Chilean stock market where the main objective was to make inference on the
parameter β (the slope of the regression model) for each company and also make inference
on the degrees of freedom ν of the Student-t model with the objective of selecting the best
model. With the classical approach, the degrees of freedom considered was ν = 5, which
was obtained by choosing the value of ν providing the highest value for the Student-t struc-
tural likelihood function given in Equation (10). A similar results was obtained from the
Bayes estimator of ν (with squared error loss) for the Student-t structural model. However,
when separate simple Student-t regression models were considered for each company, the
Bayes estimator obtained for ν suggested that the simple normal model regression model
(ν large) could be appropriate for COPEC company, but not for Concha y Toro company.
Finally, the Bayesian approach provided a posterior distribution for β (systematic risk)
that is useful in making investment decisions using a utility function associated with the
problem.
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