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Abstract

In this paper we review a number of results, widely discussed in the literature, concerning
the Bayesian robustness of location-scale models. We underline some specific aspects
which, in our opinion, deserve more attention, and illustrate our remarks by means of
a simple case study.
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1. Introduction

For more than 40 years, the idea of robustness has been explored within the Bayesian
framework. Many authors have contributed to the field using different approaches. A well
defined line of research, however, can be identified which applies to location-scale (regres-
sion) models. There, robustness is investigated in terms of the effect which can be observed
when the sampling distribution is modified. To this end, the corresponding prior is often
taken as improper. Results are quite general and interesting. In this paper, we review
several contributions of this type, underlining some specific aspects which, in our opinion,
deserve more attention. We then illustrate our remarks through a simple case study.

The outline of the paper is as follows. In the next section we discuss the statistical
concept of robustness, both from a frequentist and a Bayesian point of view. In Section 3
we review the standard linear regression model as well as a seminal paper by Zellner (1976)
concerning the robustness of marginal inferences on the regression coefficients when the
assumption of normality is replaced with the assumption that the errors follow a Student-
t distribution. We then discuss several generalizations of this result in Sections 4 and 5.
Section 6 summarizes all of these results and attempts to put them in perspective. Section
7 presents a simple case study which we feel clarifies some aspects of Bayesian robustness
in this setting. Finally, Section 8 contains some concluding remarks. A brief account of
elliptical models is provided in Appendix.
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2. Robustness

2.1 The general idea

Since the introduction of robustness as a statistical concept by Box (1953), a large amount
of contributions dealing with different aspects of the subject have appeared, ranging from
general, theoretical, investigations to specific robustness studies for particular applications.

Many other authors have contributed to the development of robustness as a vigorous
research area in statistics. See, e.g., Andrews et al. (1972), Hampel et al. (1986), Hoaglin
et al. (1983), Huber (1981), Huber (2009), Morgenthaler and Tukey (1991), Tukey (1960),
Tukey (1977), and the references therein.

When a statistical procedure is used to describe a phenomenon, the final inference (opti-
mal according to some criteria) is based both on a data set and on a number of assumptions
which typically take the form of a specific model. Under such circumstances, the purpose
of a robustness study is to:

(i) investigate if the procedure leads to results which are close to the optimal even
when the data is atypical in some sense, or the assumptions are not met to a
reasonable degree;

(ii) develop alternative (robust) procedures with the desired properties.

Several authors refer explicitly to these goals. For example, Morgenthaler (2007) says:
“Robustness of statistical methods in the sense of insensitivity to grossly wrong measure-
ments is probably as old as the experimental science”. Huber (2002), speaking about lack
of robustness, writes: “. . . the extreme sensitivity of some conventional statistical proce-
dures to seemingly minor deviations from assumptions”. More recently, Huber (2009) has
elaborated on this:

“Any statistical procedure should possess the following desirable features:
- Efficiency: It should have a reasonably good (optimal or nearly optimal) efficiency at the

assumed model.
- Stability: It should be robust in the sense that small deviations from the model assump-

tions should impair the performance only slightly. . .
- Breakdown: Somewhat larger deviations from the model should not cause a catastrophe.”

So, in general terms, robustness seeks protection against (a few) large deviations in the
data and relatively small deviations from assumptions. It should be noted, however, that
lack of robustness is not always an undesirable property. In the classical example of a
location parameter (mean versus median), the sample mean is not robust against outliers
and, even so, there are some instances where it is preferable to the sample median as a
summary of the data precisely because of its sensitivity to extreme observations.

On a more technical note, robustness, specially with respect to the sampling model, can
be formulated as a continuity condition (given a suitable topology) of an operator relating
a certain type of inferential result to a class of distributions (Huber, 2009). In any case, it
is interesting to note that, from this point of view, an operator which is constant over a
number of qualitatively different classes of distributions would be classified as robust even
though it might be better called completely insensitive or invariant. Another issue is that
of deciding when and where this type of insensitivity (invariance) can be regarded as a
desirable property. We shall return to this idea in the following sections.

2.2 Bayesian robustness

From a Bayesian point of view, all the information regarding a quantity of interest is
described through a probability distribution, which, together with a loss function, is the
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basis for any inference or decision. Robust Bayesian analysis is thus concerned with the
sensitivity of the results to the inputs (the probability distribution, the loss function, or
some combination thereof).

Specifically, in the usual setting of Bayesian parametric inference, there is a vector of
observations y ∈ IRn with sampling distribution p(y|θ) and a prior distribution p(θ). The
required posterior distribution p(θ|y) is obtained, via Bayes’ theorem, from the sampling
model (likelihood function) and the prior distribution as p(θ|y) = p(θ)p(y|θ)/p(y).

Hence, Bayesian robustness, in this context, can be (and should be) evaluated with
respect to the sampling model (as in the frequentist approach), the prior distribution, and
the loss function. In fact, from a Bayesian perspective the model is p(y, θ), given by

p(y, θ) = p(y|θ)p(θ),

and robustness of the posterior distribution should be assessed with respect to this joint
distribution. It may happen, and we shall come back to this later, that two different sam-
pling models produce the same joint distribution if combined with two suitable (different)
priors. Nevertheless, for the sake of simplicity, most analyses proceed by fixing one of
the components and exploring the robustness with respect to the other. More generally,
robustness with respect to one component (prior/likelihood/loss) must be understood as
conditional on the choice of the others.

As pointed out above, the basic idea is to evaluate the change in the output (e.g.
the posterior distribution or a point estimate) associated with a change in the inputs
(prior/likelihood/loss). Thus, a measure of variation in the output space is required. Dif-
ferent choices for this measure lead to different analyses. On the other hand, one can
envisage several different approaches. The simplest one is an informal analysis where only
a reduced (usually finite) set of alternative inputs is considered. A more general (global)
approach considers the class of all alternative inputs compatible with the available infor-
mation, and then computes the range of the output as the inputs vary over that class.
Yet another (local) approach focuses instead on the output’s rate of change. In addition,
the class of alternative inputs can be regarded either as a parametric or a nonparametric
family. The combination of all these possibilities has led to a rich field of research to which
a large number of authors have contributed, mostly in the 90s. Excellent accounts of this
work can be found, for example, in Berger (1990), Berger (1994) and, more recently, Ŕıos-
Insua and Ruggeri (2000). Apart from the richness of ideas and the diversity of approaches,
this latter volume reflects the relative emphasis that researchers have put on each of the
components prior/likelihood/loss. Most of the contributions therein deal with robustness
with respect to the prior. Only a few authors explore robustness with respect to the loss
function and, remarkably, only one contribution deals with robustness with respect to the
likelihood.

In the remainder of this paper we shall be mainly concerned with global robustness
regarding the likelihood. One of the first such Bayesian robustness studies is due to Zellner
(1976), who examined the problem from both the frequentist and Bayesian approaches for
the linear regression model. We shall discuss his paper and some generalizations in the
next section.

3. Linear Regression

Zellner (1976) explores the impact of replacing the usual normal distribution with a multi-
variate Student-t distribution on the inferential results from the linear multiple regression
model. In order to describe his results more easily and set up the notation, let us briefly
review the analysis of the normal model under the usual assumption.
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3.1 The standard model

The standard, normal linear regression model is defined as

Y = Xβ + ε, ε ∼ Nn(0, σ2In),

where Y = (Y1, . . . , Yn)>, X = [xij ] is a full-rank (n×p) design matrix, β = (β1, . . . , βp)>,
and ε = (ε1, . . . , εn)>. Here In denotes the identity matrix of order n. Then

f(y |β, σ2) = Nn(y |Xβ, σ2In), (1)

and note that

E(Y |β, σ2) = Xβ and Var(Y |β, σ2) = σ2In.

3.2 Frequentist inference

Recall that the maximum likelihood estimators for this model are given by

β̂ = (X>X)−1X>y and σ̂2 =
1
n

(y −Xβ̂)>(y −Xβ̂)

and that the likelihood ratio tests for the usual hypotheses concerning β and σ2 result in t
and χ2 statistics, respectively. For the purpose of investigating robustness, Zellner (1976)
assumes a Student-t distribution for the vector ε, so that

f(y |β, σ2) = Stn(y |Xβ, σ2In, ν0). (2)

Therefore, Y follows a multivariate Student-t distribution with location parameter Xβ,
scale matrix σ2In and ν0 degrees of freedom. It must be noted that, instead of assuming
independent univariate Student-t errors, Zellner (1976) proposes a multivariate Student-t
distribution whose components are uncorrelated but no longer independent. Under these
circumstances,

E(y) = Xβ (ν0 > 1) and Var(y) = {ν0σ
2/(ν0 − 2)}In (ν0 > 2).

Making use of the explicit form of the Student-t density function, Zellner (1976) proves
that β̂ and σ̂2 are, again, the maximum likelihood estimators of the respective parameters.
Here, it must be noted that σ2 is no longer the variance of the observations but a multiple
of that quantity (assuming ν0 > 2). Moreover, Zellner (1976) shows that the usual pivotal
quantity for making inferences regarding σ2 no longer has a χ2 but an F distribution. Using
the representation of the Student-t as a scale-mixture of normal distributions, where the
mixing distribution is an inverted gamma, Zellner (1976) also proves that, in the case of
β, the t and F statistics remain unchanged so that inferences can be carried out exactly
as in the normal case. Therefore, he concludes that the frequentist results are robust (with
the exception of the pivotal quantity for σ2) if the sampling distribution is modified from
a normal to a Student-t model.

3.3 Bayesian inference

For the sake of comparison, let us now briefly describe the usual Bayesian results under
the normal sampling model and two commonly used prior distributions.
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Conjugate prior Let φ = 1/σ2. The standard conjugate prior for Equation (1) is the
normal-gamma distribution, whose density is denoted by

p(β, φ) = p(β |φ) p(φ)

= Np(β | b0, φ
−1B−1

0 ) Ga(φ | d0/2, a0/2). (3)

This distribution is proper provided that a0 > 0, d0 > 0 and B0 is positive-definite.

Posterior distribution The posterior distribution for the parameters of Equation (1)
corresponding to the conjugate prior, Equation (3) is

p(β, φ |y) = Np(β | b1, φ
−1B−1

1 ) Ga(φ | d1/2, a1/2),

where

b1 = (X>X +B0)−1(X>y +B0b0)

B1 = X>X +B0

a1 = (y −Xb1)>(y −Xb1) + (b1 − b0)>B0(b1 − b0) + a0

d1 = n+ d0.

Hence, the marginal posterior for φ is

p(φ |y) = Ga(φ | d1/2, a1/2).

On the other hand, the marginal posterior for β is given by

p(β |y) =
Γ((d1 + p)/2)
Γ(d1/2)πp/2

∣∣∣∣ 1
a1
B1

∣∣∣∣1/2
×
{

1 +
1
a1

(β − b1)>B1(β − b1)
}−(d1+p)/2

.

That is, a Student-t distribution with d1 degrees of freedom. We denote this density by

p(β |y) = Stp(β | b1,T
−1
1 , d1),

where T 1 =
(
d1
a1

)
B1. Finally, recall that

E(β |y) = b1 (if d1 > 1) and Var(β |y) =
a1

d1 − 2
B−1

1 (if d1 > 2).

Reference prior and posterior In strict justice, it must be realized that, at the time
Zellner (1976) was working on his paper, the idea of reference priors as we know it today
was not all that clear. Jeffrey’s rule was certainly already in use but his priors were most
commonly referred to as noninformative. In fact, Zellner (1976) refers to a diffuse prior for
(β, φ) given by

π(β, φ) ∝ φ−1, (4)
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This prior is improper, corresponds to the Jeffrey’s rule assuming independence between
β and φ, and can be formally seen as a limiting case of the conjugate prior, Equation (3),
as a0 → 0, d0 → −p and B0 → O. Consequently, the reference posterior distribution can
also be seen as a limiting case of the corresponding conjugate posterior distribution and
is characterized by

b1 = β̂

B1 = X>X

a1 = (n− p) σ̂2

d1 = n− p.

Hence,

π(φ |y) = Ga(φ | (n− p)/2, (n− p)σ̂2/2)

and

π(β |y) = Stp(β | β̂, σ̂2(X>X)−1, n− p).

Robust analysis Instead of the usual normal assumption, the Student-t model (2), is
adopted as the sampling distribution and then, for the fixed prior, Equation (4), Zellner
(1976) shows that the marginal posterior distribution for β is exactly the same as in the
normal case (a Student-t), whereas the marginal posterior for σ2 is an F distribution. The
overall conclusion is that inferences regarding the regression coefficients are robust (under
both the frequentist and Bayesian approaches) when the sampling distribution is taken to
be a multivariate Student-t instead of normal. This result has been generalized in several
ways. In the next sections we shall review some of the most interesting cases.

4. Generalizations

4.1 Nonlinear regression: other mixing distributions

Osiewalski (1991) generalizes Zellner’s result, within an entirely Bayesian framework, by
dealing with a possibly nonlinear regression model of the form

Y = h(X;β) + ε, ε = ψ(Z)×U , U |β, η, φ ∼ Nn(0, φ−1V (η)),

where V (η) is a known matrix function of the unknown parameter η, ψ(·) is a positive
function, and Z is a continuous positive random variable with density p(z|β, η, φ). Thus,
the vector ε has a distribution given by a general scale mixture of multivariate normal
distributions and the sampling model is not necessarily a multivariate Student-t but a
special type of elliptical distribution (see Appendix for a definition). Under these condi-
tions, Osiewalski (1991) proves that for the rather general family of prior distributions

p(z, φ,β,η) = p(z, φ|β,η) p(β,η),

where

p(z, φ|β,η) =
c

φ
p(z|β,η),
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the marginal posterior distribution of β is the same as for the case where the error is
multivariate normal. An analogous result is obtained for the predictive distribution. The
most noticeable condition here is that of an improper prior density which in terms of φ is
proportional to φ−1.

4.2 Nonlinear regression: general elliptical distributions

In Osiewalski and Steel (1993a), the previous results are generalized to the case of an
arbitrary multivariate elliptical distribution for the vector of errors. Again, the marginal
posterior distribution for the coefficients as well as the prior predictive distribution are the
same as those for the normal case. Once more, the structure includes a common precision
parameter φ whose prior density must be proportional to φ−1. Further, the authors prove
the same result for a sampling distribution defined as a finite mixture of elliptical models
where the elliptical components have the same parameters but differ in both the covariance
and nonlinear structures.

4.3 Marginal equivalence

Osiewalski and Steel (1993b) introduce the idea of marginal equivalence for Bayesian mod-
eling. Given two parametric families of sampling models,

P = {p(y|β, δ): β ∈ B, δ ∈D} and P∗ = {p∗(y|β, φ): β ∈ B, φ ∈ F },

let p(β, δ) = p(δ|β)p(β) and p∗(β, δ) = p∗(δ|β)p∗(β) be the corresponding prior distribu-
tions. If β has the same interpretation in both families, so that p(β) = p∗(β), the Bayesian
models p(y,β, δ) and p∗(y,β, φ) are said to be marginally equivalent if p(y,β) = p∗(y,β).
It is clear that two marginally equivalent models produce the same posterior distribution
for the parameter (of interest) β and the same predictive distribution for Y if the marginal
model p(y,β) is proper. Under these conditions, the authors fix, as the family P∗, a nonlin-
ear normal regression model where the covariance matrix is known up to a scalar precision
factor. For this parameter, they choose a particular form of a gamma distribution as its
conditional prior distribution given β. As for the family P , they keep the same nonlinear
regression structure and consider two different instances of sampling distributions, namely
a Student-t model and a Pearson type II model. In the former case, they find that a beta
conditional prior for the precision parameter yields marginal equivalence, whereas for the
latter case the same results is obtained from an inverted beta.

An interesting idea in this paper is that a model with heavier tails than the normal, such
as the Student-t, can produce the same results as the normal if, taking advantage of the
fact that the scale factor is unknown in both models, these parameters are used to equate
the variations of the observable quantity.

4.4 Nonlinear regression: a broader class of distributions

In Fernández et al. (1997), a general class of multivariate distributions is introduced by
defining a correspondence between points z in IRn−{0} and pairs (w, r) where r > 0 and
w lies in some (n − 1)-manifold W which can be thought of as a general version of the
(n−1)-sphere. The idea is to produce a generalization of the class of spherical distributions.
Thus, a random vector Z defined on IRn is first represented by a random vector W defined
on W together with a positive random variable R which plays the role of a generalized
radius. Within this framework, specific subclasses of distributions can then be defined if,
for example, W and R are independent or the marginal distribution of either of them is
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fixed. As for the topic of Bayesian robustness, these authors deal with the situation where
a collection Y1, . . . ,Yp of vectors in IRn is observed in accordance to the model

Y i = bi(β) + σiεi, i = 1, . . . , p,

where the σi > 0 are scale parameters and the bi are location vectors parameterized in
terms of a common vector β in IRm (m ≤ n). They use the improper prior

p(β, σ1, . . . , σp) ∝ p(β)
p∏
i=1

σ−1
i

and prove that the joint distribution of (Y1, . . . ,Yp,β) is exactly the same as long as
the sampling distribution is obtained by taking ε = RW for a fixed distribution on W
and an arbitrary distribution on R. Provided that the resulting distributions are proper,
p(y1, . . . ,yp) and p(β|y1, . . . ,yp) are then invariant with respect to the sampling distri-
bution.

This result generalizes the case of spherical distributions, although it may lead to im-
proper posterior distributions.

4.5 Influence measures for elliptical distributions

Arellano-Valle et al. (2000) consider the usual linear regression structure as in Section 3.1
but based on an elliptical sampling distribution, namely

[y |X,β, φ] ∼ ELn(Xβ, φ−1In;h(·)),

with density given by

φn/2hn(φ(y − µ)>(y − µ)),

and where h(·) is the generator of the class (see Appendix). For this model, they use the
improper prior, Equation (4), and hence recover the corresponding invariance (robustness)
results. On this basis, the authors explore a number of influence measures which have
been previously considered for the normal case. As expected, under these conditions they
show that any influence measure based on the posterior distribution of β is invariant with
respect to the choice of the generator h(·). By contrast, influence measure concerning
the scale parameter φ do depend upon h(·). More importantly, the authors suggest that
monitoring the behavior of the influence measures based on the posterior distribution of
the scale parameter might be useful to compare and choose among alternative generators.

In another paper, Arellano-Valle et al. (2003) propose a family of conjugate prior dis-
tributions which reproduce, to some extent, the invariance property of the improper prior
π(β, φ) ∝ φ−1.

Using results on marginal and conditional distributions for subvectors of a random vector
with a spherical distribution, these conjugate priors define p(φ |h) as a radial distribution
which combines with the density of the elliptical distribution for the regression model.
As for p(β |φ, h), the distribution is, in principle, arbitrary although some conditions are
imposed to recover the invariance property. Under these conditions, they show that the
invariance obtains whenever p(β |h) does not depend on h. Moreover, if this density is
constant, then the marginal posterior distribution of β is a Student-t, just as in the normal
model with a diffuse prior.
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The idea of achieving invariance under a proper prior is clearly related to, and generalizes,
the concepts of marginal equivalence and semiconjugate priors as discussed by Osiewalski
and Steel (1993b). Arellano-Valle et al. (2003) go back to the diffuse prior case and explore,
under these conditions, several known procedures for model comparison. They show that
such procedures are useless for comparing models based on different generators, precisely
due to the fact that some key expressions do not depend on the generator at all.

More recently, Arellano-Valle et al. (2006) go one step further along this line of research
and define a class of models whose linear regression structure is embedded in a spherical
sampling distribution where three supposedly known hyperparameters are included which,
in particular, modify the role of φ as a scale parameter. The corresponding likelihood is
then combined with a prior distribution p(β, φ) chosen from a family such that β and φ are
independent a priori, and where p(β) is arbitrary and p(φ) is a squared radial distribution
which shares the same generator and a specific hyperparameter with the likelihood. The
authors then provide analytic expressions for the posterior distribution of β and φ, and
show that for certain choices of the newly introduced hyperparameters, and if p(β) is
constant, the posterior distribution of β does not depend on the generator.

5. General Location-Scale Models

5.1 A first generalization

One of the first Bayesian robustness studies for location-scale families is that of Box and
Tiao (1962), who introduce the family of exponential power distributions, with densities
of the form

p(y |µ, φ, γ) ∝ φ exp
{
−1

2
[φ(y − µ)]2/(1+γ)

}
,

as a generalization of the normal distribution. Here, apart from the location parameter µ
and the scale parameter φ, Box and Tiao (1962) introduce the shape parameter γ which,
for γ = 0, reproduces the normal model. It is interesting to note that, since the normal is
a particular instance of the spherical distribution, the exponential power can be regarded
as the univariate version of an lq spherical distribution (discussed below).

Box and Tiao (1962) analyze the robustness of the posterior distribution of µ with
respect to the value of γ when the diffuse prior π(µ, φ) ∝ φ−1 is used. They conclude
that inferences regarding µ are not robust against changes in the value of γ. Also, these
authors extend their analysis to linear and nonlinear regression models and reach similar
conclusions.

More than thirty years later, Osiewalski and Steel (1993c) explore a rather different
approach and introduce the lq spherical models which generalize the usual spherical family
by replacing the l2 norm with the more general norm

vq(a) =

(
n∑
i=1

aqi

)1/q

.

Thus, a random vector Y ∈ IRn is said to have an lq spherical distribution with location
parameter µ ∈ IRn and scale parameter φ ∈ IR+ if

p(y |µ, φ) = φng[vq(φ(y − µ))],

where the generator function g(·) is such that p(y |µ, φ) is proper for all µ ∈ IRn and
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φ ∈ IR+. For this model they prove that, if

p(µ, φ) ∝ φ−1p(µ), (5)

a priori, then p(µ |y), when proper, depends on q but does not depend on g(·). Hence, given
q, inferences about µ are robust (invariant) with respect to the generator. It is interesting
to note that, in this general setting, what the result by Box and Tiao (1962) says is that,
for the (fixed) generator they use, inferences are not robust against changes in the form of
the norm.

5.2 An enlarged spherical family

Fernández et al. (1994) show that the class of spherical distributions can be enlarged to
include any continuous multivariate distribution. First recall that an ordinary spherical
distribution for a vector Y defined on IRn can be interpreted as the product of a uniform
distribution over the unit sphere Sn−1 and a distribution for the Euclidean norm of the
random vector (the radius). The generalization is achieved by weakening the independence
condition and allowing distributions other than the uniform over the unit sphere Sn−1.
On this basis, they consider a vector Y ∈ IRn such that Y = µ + φ−1Z where µ ∈ IRn

and φ > 0 are fixed location and scale parameters, whereas Z is a random vector with a
proper density f(·). Thus,

p(y |µ, φ) = φnf(φ(y − µ)),

defines a general location-scale family. In this setting, the authors prove, after decomposing
Z into its projection onto Sn−1 and its norm (radius), that a prior of the form of Equation
(5) leads to a posterior distribution p(µ |y) which, when proper, does not depend on
the conditional distribution of the radius given the direction on Sn−1. Therefore, this
result states that, for any location-scale family, if the prior is given by Equation (5), then
inferences concerning the location parameter are robust (invariant) with respect to the
class of distributions for Z which share the same distribution over the unit sphere Sn−1.

5.3 The v-spherical family

In a follow-up paper, Fernández et al. (1995) propose another generalization of the family
of spherical distributions. A random vector Y ∈ IRn has a v-spherical distribution with
location parameter µ ∈ IRn and scale parameter φ ∈ IR+ if

p(x |µ, φ) = φng[v(φ(y − µ))], (6)

where v(·) is a positive homogeneous function, g(·) is a nonnegative function, and both
are such that Equation (6) is a proper density.

The properties of this family are explored and, in particular, it is shown that if the prior,
Equation (5), is adopted, the posterior distribution of µ, when proper, does not depend on
g(·). In other words, for a fixed v(·), the models in the class defined by all possible choices of
g(·) are marginally equivalent if p(µ, φ) ∝ φ−1p(µ). Some particular examples of marginal
equivalence are also provided for the case where the prior distribution is proper.
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5.4 Skew distributions

In a related direction, Vidal et al. (2006) explore how the usual analysis of the normal
model can be extended when two different generalizations are considered simultaneously.
On the one hand, the symmetric normal distribution is replaced with an elliptical (also
symmetric) distribution. On the other hand, the symmetry condition is relaxed by consid-
ering skew distributions as introduced by Azzalini (1985). In order to get analytic results,
the authors deal with a specific subclass of skew-elliptical models, namely those which
are representable as a scale mixture of skew-normal distributions. Their main result is
that the L1 distance between a representable elliptical distribution and a representable
skew-elliptical distribution remains invariant and is equal to the L1 distance between the
corresponding normal and skew-normal models. The authors also quantify the effect of
the skewness parameter (λ) on the posterior distribution of the location (µ) and scale (σ)
parameters. They assume a proper normal-inverse-gamma prior for (µ, σ2) (independent
of λ) and prove that the posterior density can be written as the product of the posterior
density corresponding to the symmetric model and a perturbation function which depends
on λ and measures the sensitivity of posterior inferences to the degree of skewness. In
this case, the posterior distribution (in particular, that of the location parameter µ) is not
invariant to the choice of the skew parameter. Nevertheless, the authors show that, for
large sample sizes, the perturbation function tends to one and hence posterior inferences
are asymptotically robust with respect to the degree of skewness.

6. Discussion

Each of the papers reviewed in Sections 4 and 5 introduces some nice and clever ideas to
investigate robustness. In the case of regression, the starting point is the normal linear
model with homoscedastic, uncorrelated errors. This setting is generalized to a situation
where the location parameter has a nonlinear structure and the covariance structure is
rather general apart from a common scale parameter φ. More importantly, the normal-
ity assumption is abandoned in favor of increasingly wider classes of models (Student-t,
mixtures of normals, spherical and elliptical models, and even more general models).

In all of these cases, however, a univariate scale parameter is introduced and robustness
of the posterior distribution of the regression coefficients β and/or the posterior predic-
tive distribution is assessed mainly with respect to the sampling distribution. As for the
other component of the model (the prior distribution) we can distinguish two cases. The
more prominent uses an improper prior p(θ, φ) ∝ φ−1p(θ), with p(θ) either proper or im-
proper, where θ includes β and possibly other parameters. This idea appears for the first
time in Zellner (1976) and allows him to relate Bayesian robustness with its frequentist
counterpart. There, even though the prior might not be unique, it always belongs to a
family of diffuse priors. The other case is that of a proper prior for φ. To deal with this
situation, the general strategy does not fix the prior in advance and then explore different
likelihoods. Instead, the sampling distribution and the corresponding prior on φ (marginal
or conditional on β) are chosen simultaneously whereas the prior for β is rather arbitrary.

Several authors have argued in favor of letting the prior for φ depend on the specific
likelihood. For example, Arellano-Valle et al. (2003) say “The dependence. . . is reasonable,
since in the present context the interpretation of the scale parameter changes with the
density generator”.

So, we would like to emphasize that, in the regression setting, robustness is analyzed
with respect to the likelihood while the prior for φ is either diffuse (improper) or, being
proper, changes according to the chosen likelihood.

When dealing with the closely related case of location-scale families, the situation is



46 M. Mendoza and E. Gutiérrez-Peña

similar –if more transparent– since the use of covariates is almost entirely excluded and then
robustness analysis is more explicitly focused on the underlying family of distributions.

As mentioned above, the pioneering work by Box and Tiao (1962) shows that inferences
about the location parameter lack robustness when the normal model is replaced with
other members of the exponential power family and a diffuse prior is considered.

On the other hand, in a series of papers, Fernández et al. (1994, 1995, 1997) deal with a
rather different setting. First, instead of a sample of univariate observations, and in close
relation with the regression framework, repeated sampling implies a collection of vectors.
More importantly, the basic structure

p(y |µ, φ) = φnf(φ (y − µ)),

where f(·) is a completely arbitrary (multivariate, continuous) distribution, is approached
by taking f to be either in the class of ordinary spherical distributions or in a specific
subclass of the lq-spherical or v-spherical families. They also introduce a general represen-
tation of any multivariate continuous distribution in terms of a distribution (not necessarily
uniform) over the unit sphere Sn−1 and a distribution for the respective Euclidean norm
(independent of the former). Using this representation, they induce various classes of dis-
tributions by fixing the distribution over Sn−1. As a general result, these authors prove
that for f(·) within a suitable class, inferences about µ or Y are robust if the prior for φ
is π(φ) ∝ φ−1. Also, more restrictive results are obtained for proper prior distributions on
φ, and in such cases, the prior depends on the corresponding f(·) under consideration.

Summing up, we can basically identify two scenarios. Either the diffuse prior is adopted
and wide robustness results obtained, or a proper prior is used and it is still possible to
achieve robustness, although in a more limited fashion and always adjusting the prior to
the specific choice of the sampling distribution.

We then see that, for the purpose of assessing the robustness of the inferences with
respect to the sampling distribution, in the elicitation process (both in the regression and
location-scale settings) the key issue is the specification of the prior distribution for the
scale parameter. As a consequence, extra caution is strongly advised in that respect.

It is also worth recalling that the location µ or the vector of coefficients β is usually
regarded as a well-defined parameter in the sense that it has the same interpretation
regardless of the chosen model in a given class, whereas the scale parameter is recognized
as having an interpretation which depends on the specific model. We feel that this aspect of
the problem deserves a more careful discussion if one is to fully understand the implications
of the results discussed so far.

In particular, it must be stressed that one of the original ideas behind the study of
robustness was that of using sampling distributions with heavier tails than the normal in
order to accommodate extreme observations revealing an extraordinary level of variability
in the data (Box and Tiao, 1962 and Zellner, 1976).

Under these circumstances, it cannot be ignored that the general interpretation of the
scale parameter is precisely in terms of dispersion. Thus, in the normal case, φ−1 can
be directly interpreted as the variance. However, when the class of sampling models is
generalized as in the papers reviewed in the preceding sections, if the second moment exists
then the variance is, in general, given by cfφ

−1, where cf is a proportionality constant
which depends on the specific sampling distribution under consideration. Moreover, for
other distributions the moments might not even exist. At this point, it is worth recalling
de Finetti (1974), who states: “attention should be focused on the predictive distribution
concerning directly the quantities of interest rather than the ones concerned with the
parameters that are but auxiliary ingredients”.

Incidentally, it must be recognized that something similar may happen with the location
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parameter as well, since it can only be interpreted as the mean if the first moment exists.
Thus, and again following de Finetti (1974), it might be preferable to describe our knowl-
edge in term of truly common parameters, in the sense that: (i) they always exist (as limits
of observable functions of the data); (ii) they have the same interpretation across models.
Related remarks on this issue can be found in Gustafson (2001) and, more recently, Copas
and Eguchi (2010). See also Section 1.4.5.1 of Berger et al. (2000).

An obvious proposal satisfying (i) and (ii) are the quantiles. In the univariate location-
scale problem, if Y = µ + φ−1Z, where p(z) = f(z), then p(y |µ, φ) = φf(φ(y − µ)).
Denoting by z(α) the α-quantile of f(z), then y(α) = µ+ φ−1 z(α) under p(y |µ, φ).

Therefore, if α 6= γ are fixed, the prior distribution of (µ, φ) corresponding to f(·) can
be easily obtained as a transformation of the elicited prior for (y(α), y(γ)) which does not
depend on any specific model f . Hence, p(µ, φ) will depend on f(·) only through (z(α), z(γ)).
Moreover, if f1(·) and f2(·) are two elements of the class being explored for robustness, it is
clear that coherence requires that the unique prior p(y(α), y(γ)) induce two different priors

p1(µ, φ) and p2(µ, φ) for f1(·) and f2(·) respectively, as long as
(
z

(1)
(α), z

(1)
(γ)

)
6=
(
z

(2)
(α), z

(2)
(γ)

)
.

In brief, difficulties associated with the interpretation of φ (as well as µ) can be overcome
if these parameters are expressed in terms of quantiles of observable quantities and the
prior distribution is then elicited on these quantiles (see Dickey and Chen, 1985, for a
related discussion).

In general, these analyses preclude the use of the same prior for (µ, φ) when moving
across different models. As a consequence, extra care is required when using the same
improper prior π(µ, φ) ∝ φ−1. This is in accordance with the findings of Arellano-Valle et
al. (2003) regarding model comparison. A similar remark applies to the work by Vidal et
al. (2006) on skew-elliptical distributions, where the authors use the same proper prior for
the location and scale parameters regardless of the specific skew sampling model. This is
probably not the best strategy to analyze the robustness of that generalization.

In the next section, a case study in the context of the linear regression model will be
presented in order to illustrate some of these ideas.

7. A Case Study

7.1 A simple elliptical linear model

Here we consider the linear model based on the generators hn(u; k) defined in Appendix.
Specifically,

[y |X,β, σ2] ∼ ELn(Xβ, σ2In;h(·; k)).

In other words,

Y = Xβ + ε, ε ∼ Nn(0, σ2kIn).

This is, acknowledgedly, a very simple model. However, it does allow us to compute all the
required densities (posterior and predictive) in closed form while still shedding some light
on the subtleties of the robustness analysis for more general elliptical and location-scale
models.

The estimators of β and σ2 for this model are given by

β̂k = (X>X)−1X>y = β̂ and σ̂2
k =

1
(n− p)k

(y −Xβ̂)>(y −Xβ̂) = σ̂2/k.
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Recall that φ = 1/σ2. Thus we can write

fk(y |β, φ) = Nn(y |Xβ, φ−1kIn), (7)

so that

E(Y |β, φ) = Xβ and Var(Y |β, φ) = φ−1kIn.

We now consider two related but different conjugate families for the general normal
model (7).

7.1.1 Näive prior

Suppose we take, for all values of k, the prior distribution for parameters of the general
normal model to be the same as the prior distribution used in Section 3.3 for the standard
linear model, namely

pN (β, φ) = Np(β | b0, φ
−1B−1

0 ) Ga(φ | d0/2, a0/2). (8)

We call this the näive prior because it does not take into account the fact that the
interpretation of the scale parameter φ is not the same for different values of k. Specifically,
for all i = 1, . . . , n,

φ =
k

Var(Yi)
.

The posterior distribution under the näive prior is given by

pN (β, φ |y) = Np(β | bN1 , φ−1[BN
1 ]−1) Ga(φ | dN1 /2, aN1 /2),

where

bN1 ≡ b1(k) = [(1/k)X>X +B0]−1[(1/k)X>y +B0b0]

BN
1 ≡ BN

1 (k) = (1/k)X>X +B0

aN1 ≡ a1(k) = (1/k)(y −XbN1 )>(y −XbN1 ) + (bN1 − b0)>B0(bN1 − b0) + a0

dN1 ≡ d1(k) = n+ d0.

Thus, the marginal posterior for β is given by

pN (β |y) = Stp(β | bN1 , [TN1 ]−1, dN1 ), (9)

where TN1 =
(
dN
1
aN
1

)
BN

1 . It is then clear that pN (β, φ |y) depends upon k.

Reference prior and posterior The reference prior for (β, φ) under the general normal
model (7) is, again,

π(β, φ) ∝ φ−1,

regardless of the value of k. As in the standard case, this prior can be formally seen as the
limit of the näive conjugate prior as a0 → 0, d0 → −p and B0 → O.
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Similarly, the reference posterior distribution is a limiting case of the corresponding
conjugate posterior distribution and is characterized by

bN1 = β̂

BN
1 = (1/k)X>X

aN1 = (n− p) σ̂2
k = (n− p) σ̂2/k

dN1 = n− p.

7.1.2 Compatible priors

As discussed at the end of in Section 6, the prior distribution should be elicited on a set
of parameters having the same interpretation across models. There, as a general solution,
we suggested working with quantiles. Alternatively, when the first two moments exist, one
can work in terms of the mean and the variance.

Here it is possible to use priors on (β, φ) which are compatible in the sense that they
induce the same prior distribution on E(Y ) and Var(Y ). This is easily achieved in our
case. Let τ = φ/k, so that Var(Y |β, φ) = τ−1In. Then the prior

pC1 (β, τ) = Np(β | b0, τ
−1B−1

0 ) Ga(φ | d0/2, a0/2),

has the desired property. Written in terms of (β, φ), this prior takes the form

pC(β, φ) = Np(β | bC0 , φ−1[BC
0 ]−1) Ga(φ | dC0 /2, aC0 /2),

with

bC0 = b0

BC
0 = (1/k)B0

ac0 = a0/k

dC0 = d0.

(Note that this prior coincides with the prior used in Sections 3.3 and 7.1.1 only when
k = 1.) In other words,

pC(β, φ) = pCk (β, φ) ≡ Np(β | b0, (φ/k)−1B−1
0 ) Ga(φ | d0/2, a0/(2k)).

The posterior distribution is given by

pC(β, φ |y) = Np(β | bC1 , φ−1[BC
1 ]−1) Ga(φ | dC1 /2, aC1 /2),
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where

bC1 = [(1/k)X>X +BC
0 ]−1[(1/k)X>y +BC

0 b
C
0 ]

= [(1/k)X>X + (1/k)B0]−1[(1/k)X>y + (1/k)B0b0]

= (X>X +B0)−1(X>y +B0b0)

= b1

BC
1 = (1/k)X>X +BC

0

= (1/k)X>X + (1/k)B0

= (1/k)(X>X +B0)

= (1/k)B1

aC1 = (1/k)(y −XbC1 )>(y −XbC1 ) + (bC1 − bC0 )>BC
0 (bC1 − bC0 ) + aC0

= (1/k)(y −Xb1)>(y −Xb1) + (1/k)(b1 − b0)>B0(b1 − b0) + a0/k

= a1/k

dC1 = n+ dC0 = d1.

Note that this posterior can also be written as

pC(β, φ |y) = pCk (β, φ |y) ≡ Np(β | b1, (φ/k)−1B−1
1 ) Ga(φ | d1/2, a1/(2k)).

Now, the marginal posterior for β is given by

pC(β |y) = Stp(β | bC1 , [TC1 ]−1, dC1 ), (10)

where TC1 =
(
dC
1
aC
1

)
BC

1 = T 1. In fact,

pC(β |y) = Stp(β | b1,T
−1
1 , d1),

which does not depend on the value of k.

Reference prior and posterior Recall that the reference prior for (β, φ) under the
general normal model (7), is

π(β, φ) ∝ φ−1,

and note that it can also be formally regarded as the limit of the compatible conjugate
prior when aC0 → 0, dC0 → −p and BC

0 → O, which of course is equivalent to a0 → 0,
d0 → −p and B0 → O.

Thus, the reference posterior distribution is characterized by

bC1 = β̂

BC
1 = (1/k)X>X

aC1 = (n− p) σ̂2
k = (n− p) σ̂2/k

dC1 = n− p,
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or, equivalently, by

b1 = β̂

B1 = X>X

a1 = (n− p) σ̂2

d1 = n− p.

7.2 Inference on β

7.2.1 Näive prior

As discussed in Section 7.1.1, the marginal posterior of β under the general normal
model (7), depends on the value of k and hence on the specific elliptical model under
consideration. Indeed, Equation (9) can be very sensitive to the choice of k if the prior,
Equation (8) is proper, even if such prior is rather vague.

To see this, suppose that pN (β, φ) is proper, so that a0 > 0, d0 > 0, and B0 is positive-
definite. Then, as k →∞,

bN1 → b0

BN
1 → B0

aN1 → a0

dN1 → n+ d0,

which implies

pN (β |y)→ Stp

(
β | b0,

[
a0

n+ d0

]
B−1

0 , n+ d0

)
,

whereas, as k → 0,

bN1 → β̂

kBN
1 →X>X

kaN1 → (n− p) σ̂2

dN1 → n+ d0,

formally implying

pN (β |y)→ Stp

(
β | β̂,

[
(n− p)σ̂2

n+ d0

]
(X>X)−1, n+ d0

)
.

It should be noted, however, that k → 0 implies Y →Xβ, which in turn implies β̂ → β
and σ̂2 → 0. Hence, regardless of the values of the (fixed) sample size n, pN (β |y) converges
to a degenerate distribution at the true value of β.

Summing up, even when the proper prior pN (β, φ) is arbitrarily close to reference prior,
we can choose values of k leading to completely different inferences for β. On this basis, it
may be argued that the robustness (rather, invariance) obtained under the reference prior
is just a singularity rather than a general pattern.
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7.2.2 Compatible priors

In contrast with the results obtained for the näive prior, the marginal posterior for β
under the general normal model (7), is the same for all values of k, and equals

pC(β |y) = Stp(β | b1,T
−1
1 , d1),

the marginal posterior under the standard model (see Section 3.3).
Therefore, Equation (10) does not depend on the specific elliptical model under con-

sideration, even if the prior pC(β, φ) is proper and quite informative. Of course, in the
limiting case where pC(β, φ) is the reference prior, Equation (10), will still not depend on
the choice of k. Thus, use of compatible priors (and not only the reference prior) will yield
posterior inferences on β that are insensitive to the choice of k.

Concerning the effect of the prior on the marginal posterior of β for fixed k, it can be
seen that the weight of the prior relative to the data is the same as in the standard linear
model. This, again, is in contrast with the results obtained under the näive prior.

7.3 Prediction and model comparison

In this section we will only consider proper priors since the following predictive densities
and the corresponding Bayes factors are not defined when reference priors are used.

7.3.1 Predictive densities

Predictive density under the standard model:

p(y) = Stn

(
β |Xb0,

(
a0

d0

)
(In +XB−1

0 X>), d0

)
.

Predictive density under the general normal model (näive prior):

pN (y) = Stn

(
β |Xb0,

(
a0

d0

)
(kIn +XB−1

0 X>), d0

)
.

Predictive density under the general normal model (compatible priors):

pC(y) = Stn

(
β |XbN0 ,

(
aN0
dN0

)
(kIn +X[BN

0 ]−1X>), dN0

)
= Stn

(
β |Xb0,

(
a0

d0

)
(In +XB−1

0 X>), d0

)
= p(y).
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7.3.2 Bayes factors

The Bayes factor between the standard model and the general normal model with a
näive prior and the same design matrix is given by

BFN12 = BFN12(k) =
p(y)
pN (y)

=
|kIn +XB−1

0 X>|1/2

|In +XB−1
0 X>|1/2

×

{
(1 + 1

a0
(y −Xb0)>(kIn +XB−1

0 X>)(y −Xb0)
}(d0+p)/2

{
(1 + 1

a0
(y −Xb0)>(In +XB−1

0 X>)(y −Xb0)
}(d0+p)/2

Since the prior is proper, we must have a0 > 0, d0 > 0, and B0 positive-definite. Now,
as k →∞,

BFN12 = BFN12(k)→∞,

while, letting k → 0, we have

BFN12 = BFN12(k)→ |XB−1
0 X>|1/2

|In +XB−1
0 X>|1/2

×

{
(1 + 1

a0
(y −Xb0)>(XB−1

0 X>)(y −Xb0)
}(d0+p)/2

{
(1 + 1

a0
(y −Xb0)>(In +XB−1

0 X>)(y −Xb0)
}(d0+p)/2

< 1.

Thus, under a proper näive prior it is possible to choose different values of k leading to
quite different Bayes factors, and so the analysis is not robust against the choice of k.

On the other hand, to study the sensitivity of BFN12 to the choice of (näive) prior for
fixed k, for simplicity we consider the case where B0 = v0Ip with 0 < v0 < ∞. Then, it
can be shown that

lim
v0→∞

BFN12(k) > kn/2 (if k > 1)

and

lim
v0→∞

BFN12(k) < kn/2 (if k < 1).

(Note that BFN12(1) = 1 for all v0.) Also, note that

lim
v0→0

BFN12(k) = 1,

for each fixed value of k.
We now turn our attention to the Bayes factor between the standard model and the

general normal model with a compatible prior and the same design matrix. It is given by

BFC12 =
p(y)
pC(y)

= 1, ∀ k.
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Therefore, when compatible priors are used the general normal model (for all values of k)
is equivalent to the standard model. This makes sense in our case since the general normal
model is just a rescaled version of the standard normal model and only affects the variance
of the observations, while the effect of the compatible prior is precisely to compensate for
such a change in the scale by assigning the same prior to the variance of the observations
regardless of the sampling model. It should be noted however, that when comparing two
general elliptical linear models, BFC12 should not be insensitive as in this case but should
be able to adequately discriminate between them if the corresponding generators belong
to different families with different tail behavior or kurtosis, say.

Concerning the effect of the prior on the Bayes factor for fixed k, it can be seen that
the Bayes factor is insensitive to the choice of prior in this case. This, once more, is in
contrast with the results obtained under the näive prior. However, as discussed above,
when comparing two general elliptical linear models, BFC12 should not be insensitive as in
this case but should be robust against changes in the prior.

Here we are not concerned with the problem of model comparison under reference (im-
proper) priors due to the fact that Bayes factors are not well defined and no widely
accepted solution exists in that case. However, the analysis above suggests that suitably
defined limits of Bayes factors under compatible priors may be used to compare general
elliptical model in the noninformative case.

8. Concluding Remarks

In this paper, we have argued that the invariance property exhibited by regression and
location-scale models, and widely discussed in the literature, is a rather extreme instance
of robustness, in fact verging on complete insensitivity (Figure 1).

Figure 1. Schematic representation of Bayesian inference as regards robustness.

From this perspective, it is not at all clear that such a property is a desirable one. One
important aspect of this property is the need for the use of the same diffuse (improper) prior
distribution on the location and scale parameters across sampling models, even though the
interpretation of such parameters vary.
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We have considered a case study focusing specifically on the robustness of inferences
concerning regression coefficients β of the normal linear model with respect to changes in
two different inputs: (i) the generator h ∈ H for a very simple class of elliptical sampling
models H; and (ii) the prior distribution on the regression and scale parameters.

Specifically, we have studied how small changes in h or in the prior affect the marginal
posterior distribution of the regression coefficients β. Roughly speaking, if such small
changes lead to small changes in the posterior then the inferences about β can actually
said to be robust (Figure 1(a)). Conversely, if small changes in h or in the prior produced
significant changes in the posterior, then the inferences about β would not be robust
(Figure 1(b)).

We can identify a third possibility, namely the situation when changes (large or small)
in h or in the prior do not change the posterior distribution of β at all (Figure 1(c)). We
find this lack of sensitivity quite intriguing and feel that it should be regarded as essen-
tially different from the robustness property described above and represented by (Figure
1(a)). Similar remarks can be made about the robustness of the predictive (i.e. marginal)
distributions of the data and of the Bayes factors derived from them.

While we acknowledge we have focused on a very simple model, it does allow us to
compute all the required densities (posterior and predictive) in closed form while providing
some insight concerning the subtleties of robustness analyses for more general location-
scale models. For one thing, use of näive priors should be avoided and use of compatible
priors is recommended. We also feel that a proper robustness study should concentrate on
proper (compatible) priors and avoid the use of diffuse (improper) prior.

Indeed, under proper compatible priors, posterior inferences on β are insensitive to the
choice of h within the class of rescaled normal generators H. This result is closely related
to that obtained by Arellano-Valle et al. (2003) within the general class of elliptical models
when proper conjugate priors are used. Similarly, under proper compatible priors, all of
the general normal models derived from the class H are equivalent according to the Bayes
factor. However, the Bayes factor can be expected to distinguish between two different
general elliptical linear models with the same design matrix.

As a final remark, it must be pointed out that we have not discussed a number of
contributions where asymptotic calculations are part of the central arguments (see, e.g.,
Gustafson, 2001 and Copas and Eguchi, 2010). This is because, despite the theoretical value
of those results, for most practical robustness studies the sample size will be moderate at
best.
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Appendix: Elliptical Distributions

A real, absolutely continuous random variable Z is said to have a spherical distribution if
it has a density function of the form

f(z) = h(z2) (z ∈ IR),

where the function h(·) is called the generator and is such that∫ ∞
0

u−1/2 h(u) du = 1.

For example, if h(u) = (2π)−1/2 exp(−u/2) then Z ∼ N(0, 1) and we obtain the standard
normal distribution. Other choices of h(·) give rise to other spherical distribution such as
the Student-t. Multivariate spherical distributions for an n-dimensional vector Z can be
similarly defined by

f(z) = hn(||z||2) (z ∈ IRn),

where ||z||2 = z>z and the generator hn(·) is such that∫ ∞
0

πn/2

Γ(n/2)
u(n/2)−1 hn(u) du = 1.

More generally, a random vector Y is said to have an elliptical distribution with location
vector µ and scale matrix Σ is its density function is of the form

f(y |µ,Σ) = |Σ|−1/2hn((y − µ)>Σ−1(y − µ)).

This is commonly written as Y ∼ ELn(µ,Σ;h).
For example, the multivariate normal model corresponds to

hn(u) = (2π)−n/2 exp(−u/2).

In this paper we will focus on a specific subclass given by generators of the form

hn(u; k) = (2πk)−n/2 exp(−u/(2k)).

We call this the general normal class and denote it by

H = {hn(·; k) : 0 < k <∞}.
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