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Abstract

Flash floods present a recurring problem in many parts of the Southwest United States, and
the impact of such floods is felt on a social as well as an economic scale. The extent and
severity of the damage resulting from such floods has been measured in many ways, including
lives lost and dollar amounts of insurance claims. We focus on one historic US river, the
Sabine, which has caused extensive flood damage in the past. Gauge height measurements
along segments of the river permit an investigation into the distribution of the height of water
at that location in the river over time. The height of water in a river is a function of not
only current rainfall and snow melt, but also the geometry of the river itself and numerous
characteristics of its surrounding areas, such as permeability of the surrounding soil and extent
of human development. Quantifying some of these characteristics for direct incorporation into
a model may be challenging in some instances, and the data itself may simply be unavailable
in others. Consequently, as an alternative, an expert familiar with river flow may be able to
indirectly impart some of this information to the model through quantiles of the quantity of
interest, in this case, gauge height. Proper prior elicitation is a key element in Bayesian inference
and the assessment of any prior distribution from experts’ opinions is a critical aspect of this
inference, both in getting the information and in transforming it into a functional form for the
prior distribution. Many methods have been proposed to tackle the problem; most of them are
based on the assessment of some features (e.g., quantiles, mean) of the parameter of interest,
whereas very few look at features of the model itself, i.e., the observable quantities whose
distribution is specified as a function of the parameter. We propose a novel approach which
starts from quantiles of the parametric model, translates them into values of the parameters of
interest, and uses them to specify a prior distribution. In conjunction with the likelihood, the
prior is then used to develop the predictive distribution, which provides the basis for future
expectations regarding the behavior of the river. The generalized extreme value distribution
will be shown to model the height of water in the Sabine River quite well and we will discuss
practical issues concerning the implementation of the approach, from graphical tools helpful in
assessing the plausibility of the specified quantiles to adequate parameter transformations and
sensitivity analysis.
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1. Introduction

The particular aspect of the distribution of gauge height that is crucially important when
investigating floods is the upper tail, as opposed to the mean value or other measures of
typically occurring water levels. The generalized extreme value (GEV) distribution arises
naturally when modeling the maxima over a sequence of observations, and it frequently
provides an empirically good fit to the extreme values in a data set even when the mo-
tivation through maxima doesn’t apply. We propose this distribution as the likelihood
function and compare its performance with the lighter-tailed normal distribution serving
as the likelihood.

Our data consists of all available daily gauge height measurements at a point along the
Sabine River near Ruliff, Texas, USA. The data was collected from September 27, 1997,
through March 15, 2009, and is available on the United States geological survey website
http://waterdata.usgs.gov/usa/nwis/uv?site\_\no=08020900. Since our interest is
in the upper tail of the distribution of gauge heights, we began by discarding the smaller
half of the data points, i.e., everything below the median gauge height. The retained data
points are shown in Figure 1, along with a kernel-smoothed estimate of their density in
Figure 2, where the flood stage is indicated by a line at the 25 foot mark in both figures.

Figure 1. Time series of Sabine River sauge height.

The key inference pertaining to this river will concern the probability of the gauge
height exceeding the 25 ft. flood stage threshold, resulting in flooding of the surrounding
developed area. The probability of flooding will be shown to differ substantially under the
different models. For purposes of model selection we hold out a portion of observations
at the end of the data set for validation. There we compare the predicted probabilities of
flooding under the GEV and normal models.

Bayesian analysis is markedly recognized by the subjective probability belief, or quanti-
tative a priori description of unknown parameter θ. Without external support statisticians
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Figure 2. Kernel-Smoothed density estimate of Sabine River dauge height.

can only implement the whole computational process at his/her own will, say conjugate
priors, Jeffreys’ priors and other objective priors. On the other hand, expert opinion may
be helpful when we investigate new, rare, complex or poorly understood phenomena.

Multivariate-normal related prior elicitation on the predictive prior space by requesting
response summaries from experts was developed by Kadane et al. (1980), Garthwaite and
Dickey (1988), Al-Awadhi and Garthwaite (1998) among others. However, those algorithms
were limited to simple normal linear or AR(1) time series models. On the other hand,
direct non-informative prior elicitation was discussed through piecewise conjugate priors
(Meeden, 1992), entropy based priors (Jaynes, 1968, 1983), mixture of natural conjugate
priors (Dalal and Hall, 1983) and others. Quantile based univariate prior elicitation for
simple cases, say symmetric ones, was studied by Peterson and Miller (1964), Garthwaite
and Dickey (1985), O’Hagan (1998) among others. A recent comprehensive review on
probability elicitation was written by Garthwaite et al. (2005) and Dey and Liu (2007).
(Berger, 1985, Chapter 3) also discussed subjective prior determination on the direct prior
space by showing that a lack of sufficient tail information in continuous parameter space
causes much difficulty for most of the approaches in practice, including the “histogram”
approach, the “relative likelihood” approach, the entropy based method, and even the
most used “matching a given functional form” method which often needs prior moments
and others. Berger (1985, Chapter 3) envisioned that a quantile based approach poses
as a better method since estimation of probabilities of regions are more attractive than
working on moments. However, two situations deserve caution in application of quantile
approaches: disagreement among multiple quantiles and incidental matching by multiple
functional forms (Berger, 1985, Chapter 3). The key point to ease these concerns is to
efficiently and precisely recover flexible parametric priors in a quantitative way other than
those weak symmetric ones in order to implement the “sketching” principle (Berger, 1985,
Chapter 3) for the downstream graphical verification.

In this paper, we propose a model based approach for direct model quantile elicitation,
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which translates into prior distribution assessment. Although the proposed approach is
quite general, we deem it particularly useful in cases such as this river data, in which as-
sessments directly on the prior distribution are extremely difficult. In fact, this is typical of
problems which can be modeled by a generalized extreme value distribution (e.g., extreme
rainfalls and wind speeds).

The paper is organized as follows. Section 2 motivates the approach by discussing its
application to the Sabine river data, which lends itself naturally to use of the generalized
extreme value distribution. Section 3 formally presents the techniques used to fit the model
using the quantile-based Bayesian prior elicitation technique. Section 4 tailors the approach
to the GEV distribution. The practical implementation of this procedure is discussed in
Section 5, and the full Sabine River data analysis is presented in Section 6. Section 7 briefly
discusses robustness considerations, and Section 8 concludes the paper with a discussion
of the key findings.

2. Flash Flooding Along the Sabine River

The Sabine River has the largest volume of water discharged at its mouth among all rivers
in Texas. It is 555 miles long, with a drainage basin of nearly 10,000 square miles, and lies
in a region with heavy rainfall. Furthermore, its basin is characterized by flat slopes and
a wide floodplain.

Rivers in this region are known for dangerous floods and lie in the so-called “Flash
Flood Alley” region of Texas. The quick onset of flash floods in this region stems from the
proximity of its flat plains to the Texas Hill region, which channels large volumes of rainfall
into shallow river beds. With average annual precipitation between thirty-seven and fifty
inches, the region in which the Sabine River lies experiences frequent flooding, with large
floods occurring every five years on average. Perhaps the greatest potential for disastrous
consequences arises when this particular type of flooding, known as flash flooding, occurs.

Flooding leads to damage of the area surrounding the river when the water level rises
above a height known as the “flood stage”, the value of which depends on the proximity
of the river to developed land. By estimating the distribution of gauge heights, we can
calculate the return levels, which provide important information about the likelihood and
severity of floods. A T-year return level refers to a flood of a magnitude that is exceeded,
on average, only once every T-years. Thus, the higher return levels are very sensitive to
the upper tails of the distribution of gauge height. Consequently, we focus on addressing
the difficulties involved in extracting information pertaining to these upper tails through
the methodology introduced below.

3. Statement of the Problem

Following the Bayesian paradigm, we consider a random vector X with distribution func-
tion F (x|θ) and density function f(x|θ) and we are interested in specifying the prior
distribution π(θ), where θ can be scalar or vector valued.

Experts are asked to specify distinct quantiles G1 < · · · < Gk, with k fixed, from the
marginal distribution of X, corresponding to the probabilities q1 < · · · < qk. Each quantile
specification G, corresponding to a probability q, leads to the equation in θ given by

q = F (G|θ). (1)
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We suppose that the parameter θ is obtained as solution of Equation (1), i.e.,

θ = h(q,G). (2)

As an example, consider an exponential model X ∼ E(θ), then Equations (1) and (2)
become, respectively q = 1− exp(−θG) and θ = [− log(1− q)]/G.

In general, m quantiles are needed to obtain a solution

θ = h(q1, . . . , qm, G1, . . . , Gm) (3)

when considering a multivariate parameter θ of size m.
Solutions to Equations (2) or (3) lead to expert’s assessment on the value of the the

parameter θ. Multiple quantile specifications lead to multiple assessment on θ. Specification
of n quantiles when the parameter θ has size m ≤ n lead to

(
n
m

)
values of θ: the number

follows from all possible combinations of m elements chosen among n. In particular, n
values of θ are obtained for univariate parameters.

We treat the
(

n
m

)
values of θ as a sample from the expert’s prior distribution and we use

it to specify one by, for instance, using sample moments to specify the hyperparameters
of the prior distribution.

Back to the exponential model X ∼ E(θ), the statistician could deem a gamma prior
G(α, β) as a suitable model for the prior because of its conjugacy property. The parameters
α and β are such that E(θ) = α

β and Var(θ) = α
β2 , so that

α =
[E(θ)]2

Var(θ)
and β =

E(θ)
Var(θ)

. (4)

Given the sample θ1, . . . , θn, the sample mean and sample variance are computed and
substituted in Equation (4) and the values of α and β are therefore determined.

4. Generalized Extreme Value Distribution

We discuss how the proposed approach applies to data modeled with a generalized extreme
value (GEV) distribution. The interest for the GEV model is twofold, both mathematical
and practical. The GEV model depends upon three parameters (location, scale and shape)
which are related to its quantiles in a nontrivial way and they require a transformation
before the proposed approach can be applied satisfactorily (as discussed in Section 5).

The practical interest in applying the model to the GEV model resides in the difficulty
of assessing prior distributions directly on the parameters, e.g., through some of their
quantiles. Typical data modeled by a GEV distribution are extreme rainfalls (e.g., Coles
and Tawn, 1996) and extreme wind speeds (e.g., Coles and Powell, 1996). Experts are
expected to have opinions on the probability of rainfall (or wind speed) exceeding some
thresholds rather than on quantiles of the distribution of the GEV location, scale and
shape parameters.

Based on three distinct quantiles, we present the equations whose solution (in general,
numerical) links parameters to quantiles. Therefore, quantile assessments are transformed
into parameter ones which are used to choose hyperparameters of the prior distribution
on the parameter.

We suppose three different probabilities q1 < q2 < q3 are chosen and the expert assigns
distinct values G1 < G2 < G3 to the corresponding quantiles.
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The cumulative density function of the GEV distribution is given by

F (x) = exp

{
−

[
1 + λ

(
x− µ

σ

)]−1/λ

+

}

and its density function is

f(x) =
1
σ

[
1 + λ

(
x− µ

σ

)]−1/λ−1

+

exp

{
−

[
1 + λ

(
x− µ

σ

)]−1/λ

+

}
,

with µ ∈ R, λ ∈ R and σ ∈ R+.
The following holds for Gq, quantile of order q:

q = exp

{
−

[
1 + λ

(
Gq − µ

σ

)]−1/λ

+

}
. (5)

From now on, we suppose 1 + λ
(

Gq−µ
σ

)
> 0.

Starting from Equation (5) and considering the pair (q1, G1), simple computations lead
to

σ =
λ(G1 − µ)

[− log(q1)]
−λ − 1

, (6)

and, after introducing the pair (q2, G2),

µ =
G1K2(λ)−G2K1(λ)

K2(λ)−K1(λ)
, (7)

with Ki(λ) = λ
σ (Gqi

− µ), i = 1, 2. It is worth noticing that Equation (7) holds for λ 6= 0.
Finally, when considering the other pair (q3, G3), it follows that λ is the solution to

∆1 exp(−α1λ) + ∆2 exp(−α2λ) + ∆3 exp(−α3λ) = 0, (8)

with ∆1 = G2 − G3, ∆2 = G3 − G1, ∆3 = G1 − G2 and αi = log (− log(qi)), i = 1, 2, 3.
Note that exp(−α1λ) < exp(−α2λ) < exp(−α3λ) and ∆1 < 0, ∆2 > 0 and ∆3 < 0.

Once Equation (8) is solved and λ found, then µ and σ are obtained, in sequence,
from Equation (7) and (6). Although in most cases Equation (8) will lead to numerical
solutions, a closed form solution can be obtained in the very simple (but useful) case in
which α3 = 3α1 and α2 = 2α1. In this case, Equation (8) becomes

∆3x
3 + ∆2x

2 + ∆1x = 0,

taking x = exp(−α1λ). We consider the solution x̃ = G2−G3
G1−G2

, different from x = 0, 1, which
correspond to λ = ∞ and λ = 0, respectively. In this case Equations (8), (7) and (6)
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become

λ̃ =
log([G1 −G2]/[G2 −G3])]

log (− log(q1))
,

µ̃ =
G2

1 + G2
2 −G1G2 −G1G3

G2 −G3
and

σ̃ =
[G2 −G1]3

[G2 −G3][2G2 −G3 −G1]
× log ([G1 −G2]/[G2 −G3])

log (− log(q1))
.

A very interesting case, for practical purposes, is given by q1 = 0.80, q2 = 0.9514 and
q3 = 0.9884, where the last two can be approximated by 0.95 and 0.99, respectively.

We prefer to consider all the three parameters defined on the real line, as motivated
later in Section 5. Therefore we consider log(σ) instead of σ.

We now suppose that the expert is able to provide n > 3 quantiles, so that k =
(
n
3

)
values of θ = (µ, log(σ), λ) are obtained as solutions to Equations (6), (7) and (8).

From such sample θ1, . . . , θk, it is possible to obtain sample means, sample variances and
sample covariances and they can be used to determine the hyperparameters of the prior
distribution. For large k a trivariate Gaussian approximation is a possible choice, provided
it gives negligible probability to the inadmissible values of the parameters. The choice of
the Gaussian distribution will be motivated in Section 5.

5. Practical Implementation

So far we have assumed that experts can elicit quantiles which are used to find hyperpa-
rameters of priors with pre-specified functional form (gamma for the exponential model
and Gaussian for the GEV model). Our goal is to provide a procedure which allows in-
teractive elicitation, permitting checks and changes by the expert during the process and
requiring as little intervention as possible by the statistician performing the modeling.

The former goal is achieved by presenting the expert the graphs of the predictive den-
sity functions, which are obtained as a result of his/her quantiles elicitation (see, e.g.,
Figure 10). Although the expert is asked only about few quantiles, his/her knowledge is
such that he/she could assess the plausibility of such a density function over the entirety
of its domain.

There are cases (e.g., the exponential model) in which a specific functional form of the
prior distribution could be considered for many reasons (e.g., the gamma distribution as
conjugate prior for the parameter of the exponential model). In our quest for a procedure
which requires the least possible effort in modeling and allows for implementation of user-
friendly software, we prefer to resort to a unique framework, namely Gaussian priors. First
of all, we would transform parameters in such a way that their domain coincides with that
of a (multidimensional) Gaussian distribution, or, as it is standard practice in statistics,
such that the Gaussian distribution assigns negligible probability to the unfeasible values of
the parameter. At this point, given a (possibly transformed) sample (θ1, . . . , θk), a Q-Q plot
is used to assess the normality assumption. If the Q-Q plot shows a lack of normality, then
Box-Cox transformations are applied to the parameter θ so that the Gaussian assumption
is justified for the new transformed parameter. Therefore, the sample (θ1, . . . , θk) is used to
estimate the means and variance-covariance matrix of the Gaussian prior distributions on
the transformed parameter θ̃. Finally, the posterior distribution on the actual parameter
θ is obtained by transformation from the posterior distribution on θ̃.
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6. Examples

In this Section we apply the proposed approach to the Sabine River data indicated in
the Introduction. The Sabine data was split into two parts: the fitted portion and the
validation portion. The time series and kernel smoothed density estimates of these two
portions are provided below in Figures 3, 4, 5 and 6.
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Figure 3. Kernel smoothed estimate of fitted portion of Sabine River gauge height density

We use empirical quantiles from the historical Sabine River data to serve as expert-
provided prior information. Thus, the following quantiles are assumed:
Percentiles: (0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 0.99).
Quantiles: (5.85, 5.95, 6.15, 6.84, 9.3, 16.02, 23.1, 25.76, 30.83)

The
(
9
3

)
combinations of percentile/quantile pairs for the GEV-MVN model result in the

sample parameter points shown in Figure 7, and are used to develop the following method
of moment type estimators for the MVN prior:
Sample mean vector: (µ, σ, ξ) = (7.08, 3.10, 2.11).

Sample covariance matrix:




2.85 1.68 0.74
1.68 1.04 0.51
0.74 0.51 0.42


 .

Similarly, the
(
9
2

)
combinations of percentile/quantile pairs for the normal-MVN model

result in the sample parameter points shown in Figure 8, and are used to develop the
following method of moment type estimators for the MVN prior:
Sample mean vector: (µ, σ) = (11.56, 5.53).

Sample covariance matrix:
(

11.20 3.55
3.55 10.28

)
.

The 95% highest posterior density credible region for the normal-MVN model parameters
is shown in Figure 9, and the posterior densities for the GEV-MVN and normal-MVN
models are illustrated in Figures 11 and 10.
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Figure 4. Time series of fitted portion of Sabine River gauge height data.

Figure 5. Kernel smoothed estimate of validation portion of Sabine River gauge height density.
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Figure 6. Time series of validation portion of Sabine River gauge height data.

Figure 7. Sample parameter points for GEV-MVN model.
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Figure 8. Sample parameter points for normal-MVN model.

Figure 9. 95% highest posterior density credible region for normal model parameters.
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Figure 10. Posterior density for GEV-MVN model.

Figure 11. Posterior Density for GEV-MVN Model
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The posterior mean and covariance for the GEV model are:
Posterior mean vector: (µ, σ, ξ) = (7.65, 2.52, 0.96),

posterior covariance matrix:




0.027 0.032 −0.010
0.032 0.038 −0.012
−0.010 −0.012 0.004


 .

The posterior mean and covariance for the normal model are:
Posterior mean vector: (µ, σ) = (12.14, 6.61).

Posterior covariance matrix:
(

0.037 0.004
0.004 0.017

)
.

These posterior densities are then combined with the likelihood specifications to provide
the predictive density for a new data set, z, given the original data, x, defined as

f(z|x) =
∫

f(z|θ)π(θ|x)dθ.

The predictive density is sketched in Figure 12 for the normal-MVN model, and in
Figure 13 for the GEV-MVN model.

Figure 12. Predictive density for the normal-MVN model.

We then use the validation data set to compare the performance of these two predictive
models in anticipating the relative frequency of flood occurrence. In the validation data
set the gauge heights exceed the flood stage 8.01% of the time. The normal-MVN model
predicts 2.61%, which is too low by 5.40%, and the GEV-MVN model predicts 10.85%,
which is too high by 2.84%.

This predictive criterion for selecting the better model based on flood prediction chooses
the GEV-MVN model. The Sabine River gauge height appears to require a heavy upper-
tailed distribution. Recalling that we initially discarded the data points below the median,
we see that the normal-MVN model considers exceedance of the flood stage a 76 day return
level event, whereas the GEV-MVN model considers it an 18 day return level event. This
illustrates the pronounced differences in inference based on light-tailed and heavy-tailed
distributions when modeling extreme events.
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Figure 13. Predictive density for the GEV-MVN model.

7. Bayesian Robustness

The paper uses experts’ quantile specification to determine a unique prior distribution,
in general a Gaussian one as motivated in the previous sections. Although the choice of
a unique prior is convenient for inference purposes, the selection of its functional form
and parameters is rather arbitrary. This aspect, considered as a critical issue by both
Bayesians and non-Bayesians, can be addressed by taking classes of priors and performing
a sensitivity analysis, as described in Rios Insua and Ruggeri (2000) and references therein.

The case of quantile specification on the model X ∼ f(x|θ), with X defined on < and
θ ∈ Θ, has been addressed by Betrò et al. (1994) as a particular generalized moments
constrained class of priors, defined as

Γ =
{

π :
∫

Θ
hi(θ)π(dθ) = qi, i = 1, . . . , k

}
, (9)

where G1 < · · · < Gk are the quantiles corresponding to q1 < · · · < qk, and

hi(θ) =
∫ Gi

−∞
f(x|θ)dx, i = 1, . . . , k. (10)

When interested in inferences about posterior quantities like Eπ(θ|x)g(θ), the range

ρ = sup
π∈Γ

Eπ(θ|x)g(θ)− inf
π∈Γ

Eπ(θ|x)g(θ) (11)

is a typical sensitivity measure to study the effects of priors varying in a class Γ. As shown
in Betrò et al. (1994), the range in Equation (11) is obtained for discrete distributions
concentrated in at most k +1 points when considering the class Γ defined in Equation (9).
Efficient algorithms have been developed by Betro and coauthors; for references, see the
most recent paper by Betrò (2009).
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8. Conclusions

This approach, whereby the families of likelihood and prior distributions are specified by
the experts, along with the quantiles, circumvents the need to elicit prior information
on the unobservable prior space. We emphasize that the methodology illustrated above
enabled indirect specification of the tail behavior through expert elicited quantiles of the
observable quantities. This tail behavior was important in correctly determining the return
level for the extreme events leading to potentially severe flooding.

An important goal was to minimize the number of arbitrary choices that the statistician
must make. Indeed, this methodology enables one to work exclusively with expert-provided
quantiles, inducing a sample of points in the prior space, which are then used to estimate
the hyperparameters. The prior distribution both provides extra flexibility in modeling the
response, and serves to reconcile the n > m quantiles, which would overspecify a single
parametric family of likelihoods alone, with the expert-provided information. The family of
likelihoods, the specification of which is guided by the expert, is modified by the quantiles
in this fashion. In this case we compared the performance of GEV and normal likelihoods,
finding the former to be superior in predicting the tail behavior of the flood process.

This approach of eliciting information on the observable space, not the parameter space,
as is more common, resembles an empirical Bayes approach. However, instead of assuming
the availability of actual data, we can work exclusively with expert-provided quantiles.
Thus, the basis for our modeling process is quite different than the traditional setup.
To the best of our knowledge, there are no standard techniques that handle this data
framework. However, the nearest to what could be considered a standard approach to
fitting a model based on a set of quantiles would perhaps involve working with the cdfs.
Here one could minimize a measure of the distance between the cdf points provided by the
expert-provided quantiles on the one hand, and a cdf belonging to the family of parametric
likelihoods provided by the experts on the other. This would be related to the Kolmogorov-
Smirnov test statistic if the measure used is the maximum absolute deviation between the
two cdfs. The important difference is that the cdf implied by the expert-provided quantiles
in this case, is not actually an empirical cdf, since it is not derived from observed data.

For comparative purposes, we note that by proceeding in this more standard manner,
minimizing the distance between a cdf in the GEV(µ, σ, ξ) family of distributions and the
expert-provided quantiles, results in the following:

If one uses the maximum absolute deviation as a measure of the inter-cdf distance, one
obtains µ = 8.51, σ = 3.31, ξ = 0.44 , which results in a probability of 6.9% of exceeding
the flood stage. This understates the flood frequencies observed in the validation data set,
but not by very much.

We further note that the solution offered in this paper was illustrated with a parametric
model, using quantile assessment on it to specify a parametric prior distribution, with
known functional form. We note that we could also have used a similar approach when
dealing with a nonparametric model. As an example, consider a Dirichlet process with a
parameter given, apart from a constant, by a GEV distribution. Quantiles could be used
either to specify the GEV distribution directly (looking for the parameter values giving
the best fit to the quantiles) or a second-level prior distribution on the GEV parameters,
as done here. The former approach would be fully nonparametric, whereas the other is a
mixture of Dirichlet processes (Antoniak, 1974).

A semi-parametric approach could consider a GEV distribution whose parameters are
chosen by a Dirichlet process with a Gaussian parameter obtained as in the current paper;
this approach leads to a so-called Dirichlet process mixture model (Lo, 1984).
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