Chilean Journal of Statistics
Vol. 1, No. 1, April 2010, 17-33

SPECIAL ISSUE “IN MEMORY OF PILAR LORETO IGLESIAS ZUAZOLA”
RESEARCH PAPER

Multivariate unified skew-elliptical distributions

Reinaldo B. Arellano-Valle! and Marc G. Genton?*

!Departamento de Estadistica, Pontificia Universidad Catélica de Chile, Santiago, Chile,
2Department of Statistics, Texas A&M University, College Station, USA.

To Pili With Love

(Received: 25 January 2010 - Accepted in final form: 08 March 2010)

Abstract

In this article, a class of multivariate unified skew-elliptical (SUE) distributions is in-
troduced and studied in detail. In particular, three stochastic representations, the cu-
mulative distribution function, marginal and conditional distributions, linear transfor-
mations, additivity, quadratic forms, and moments of SUE distributions are presented.
The paper ends with a discussion of different but equivalent parameterizations for the
density-based definition of SUE distributions.
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1. INTRODUCTION

In recent years, the quest for flexible multivariate parametric distributions has been very
intensive as witnessed by the edited book of Genton (2004), the review article by Azzalini
(2005), and various subsequent publications. In this paper, we define and study multivari-
ate unified skew-elliptical distributions, a family of distributions that is mathematically
tractable while being very general and flexible in its possible shapes. Although its ori-
gin is rooted in elliptically contoured (EC) distributions (Fang et al., 1990), it allows for
asymmetric distributional forms. We start with a formal definition.

DEFINITION 1.1 [Unified skew-elliptical distribution] A continuous p-dimensional random
vector Y has a multivariate unified skew-elliptical (SUE) distribution, denoted by Y ~
SUE, ¢(&, 2, A, hPtd) 7 I'), if its density function at y € RP is

1
Fy(r;T + AQAT, h(@)

fp(y;f,Q,h(p))Fq <AZ+7_7F7h822)) 9 (1)
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where z = w™l(y — €), Q(2) = 2"Q 7'z, A is a ¢ x p real matrix controlling shape,
7 € RY? is the extension parameter, and I' is a ¢ X ¢ positive definite correlation matrix.
Here f,(y;€,Q,hP) = |Q|71/21(P)(Q(2)) denotes the density function of an elliptically
contoured distribution with location £ € RP, positive definite p X p dispersion matrix €2,
with p x p scale and correlation matrices w = diag(Q)l/ 2 and Q = w1Qw™1, respectively,
and density generator h(®). The function F,(z; ¥, h(")) denotes the r-dimensional centered
elliptical cumulative distribution with r x r dispersion matrix ¥ and density generator

hO), and W) (u) = K9 {u + Q(2)}/P{Q(2)).

The SUE distribution was also considered in Arellano-Valle and Azzalini (2006) with
a different but equivalent parameterization (see also Arellano-Valle et al., 2006a), albeit
without a systematic study of its theoretical properties. This paper aims to fill this gap.
Except for the factorization of the dispersion matrix  as w™'Qw™!, we use here a similar
parameterization as that used by Gonzélez-Farias et al. (2004) for the closed skew-normal
distribution. The SUE distribution reduces to the unified skew-normal (SUN) distribution
of Arellano-Valle and Azzalini (2006), up to an equivalent parameterization, when h(?) =
#P)| the p-variate normal density generator function

6P (u) = (2m) P2 exp (_g) . w0, 2)

and to the unified skew-t (SUT) distribution when h(?) = t(yp ), the p-variate Student-t
density generator function

I'{(a+0b)/2}

w0 it c(od) = o

uy —(w+p)/2
} (3)

1P () = e(v,p) {1+ =

v

The p-variate probability density functions of the normal and Student-t distributions
with location ¢ and dispersion matrix {2 are defined through their corresponding den-
sity generator functions by ¢,(y;€,Q) = P {(y — ) TQ 1y — &)} and t,(y;€,9Q,v) =
t(yp){(y —6TQHy — &)}, respectively.

When ¢ = 1, the SUE distributions were called extended skew-t (EST) distributions by
Arellano-Valle and Genton (2010a) who gave a systematic study of their properties, see
also Adcock (2010) in terms of a different but equivalent parameterization. Similarly, the
SUN distributions reduce to the extended skew-normal distributions (ESN) when ¢ = 1.
By analogy, we name extended skew-elliptical (ESE) distributions the SUE distributions
with ¢ = 1.

The following scheme summarizes the relationships among those various multivariate
distributions:

(p) 00
SUE,, “> SUT, , =% SUN,,
! ! l

V—00

(p)
ESE,; “> EST,; =% ESN,,

In this paper, we present the probabilistic properties of the SUE distributions. Their
proofs are given in the Appendix. As can be seen from the above scheme, the properties of
the five subclasses (ESE, SUT, EST, SUN, ESN) are directly obtained as particular cases
of the results given in this paper. If, in addition to ¢ = 1, we set also 7 = 0, then we obtain
the results for skew-elliptical (SE), skew-t (ST), and skew-normal (SN) distributions, see
for example Branco and Dey (2001), Azzalini and Capitanio (2003), and Azzalini and Dalla
Valle (1996), respectively.
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The organization of this article is as follows. In Section 2, we present three stochastic
representations of the SUE distributions, as well as their cumulative distribution functions.
In Section 3, we derive the marginal and conditional distributions of the SUE family. In
Section 4, we study linear transformations, additivity, and quadratic forms of random vec-
tors with SUE distributions. In Section 5, we provide expressions to compute moments of
SUE distributions. We end the paper with a discussion of different but equivalent param-
eterizations for the density-based definition of SUE distributions.

2. STOCHASTIC REPRESENTATIONS

Following Arellano-Valle et al. (2006a), the SUE distribution can be introduced as the
distribution of a p-dimensional selection random vector defined by

Y — €L (WWy < AW +7), (4)

«Lr denotes equality in distribution and

W 0) (£0) e+
() v () (67) 7).

and P9 denotes the characteristic generator of the (p+ ¢q)-dimensional EC distribution.
This definition allows to incorporate the singular SUE distribution that arises when €2
does not have full rank p; see Arellano-Valle and Azzalini (2006) for a complete discussion
of the singular SUN distribution, as well as Rao (1965) and Diaz et al. (2002) for singular
EC distributions. If ©Q has full rank p, then the distribution of Y is nonsingular and its
density can be computed as in Arellano-Valle et al. (2002):

where

1
Wo—AW<T)

fr(y) = B fo(y=PWo <Aly =& +7[W =y —9). ()

In what follows, we assume for simplicity that both  and I'" have full rank, so we are
adopting Definition 1.1 for SUE distributions. Therefore, by using the decomposition 2 =
wQw considered in Definition 1.1 and writing W = wX, Wy = Xj, we formalize the
connection between Equation (4) and Definition 1.1 in the following proposition.

PROPOSITION 2.1 [Selection representation of SUE distributions] Let Y = £ + wZ, where

Z L (X|Xo < AX +7) (6)

() =0 ((5) (5 ).

Then Y ~ SUE, ,(¢,, A, R®+9 7. T).

and

The particular case of Proposition 2.1 for EST distributions is given in Arellano-Valle
and Genton (2010a). Next, two equivalent representations (parameterizations) of Z are
obtained as follows.
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First, let Xg =y 1(AX — Xj), where v = diag(I' + AQAT)Y/2. Then

ZE(X|Xo+7>0), 7=~""'r, (7)

with

X QA _ _ _
(6 D B

Second, let X = X — AT~'X. Then,

Z L (AT Xy + X|Xo+ 7 > 0), (8)

X 0 Q- AT 1AT 0 (p+q)
() ~ 20 (o) (7502 1) ).

For example, for the SUN random vector Y = & +wZ ~ SUN,, ,(£,Q, A, 7,T'), we have by
Equation (6) that Z < (X|Xy < AX + 7) with

(%) =% ((0)- (1))

while Equation (8) yields the well-known stochastic representation Z 4 AT X, + X,

with X, 4 (X'O\X'o + 7 > 0), where X0 ~ N,(0,T), X ~ N, (O,Q — Af*IAT), and they
are independent random vectors.
Similarly, for the SUT random vector Y = { +wZ ~ SUT, 4(&,Q, A, v, 7,T'), we have by

Equation (6) that Z < (X|Xo < AX + 7) with

() = () (7))

In this case, we can show also from Equation (8) that

ZLATR /R, QXTI XL (Gl kT2 0), ()

where X ~ t4(0, T, v), Xy ~ tp (O, Q- AT AT, v+ q), and they are independent ran-
dom vectors.

We note from Equation (6) that the cumulative distribution function of SUE distribu-
tions can be computed easily as

z 9) —QAT
. _ > (p+q)
by <y~ PS5 X0 AX <7) F”+q{<f> ’ (—AQHAQAT) o }
=YV T TP X, —AX <) F, (T + AQAT, h(®) ’

with

where 2z = w1 (y — &).
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Next, we provide a SUN-scale mixture representation of SUE distributions. It is a gen-
eralization of the well-known representation of ST distributions as a scale mixture of the
skew-normal distribution.

PROPOSITION 2.2 [SUN-scale mixture representation of SUE distributions] Let the random
vector Y ~ SUE,, ,(£,Q, A, h(P*+9) 7 T), where for any positive integer k,

B ) = / o260 (o) dGo(v), (10)
0

for some cumulative distribution function G such that Go(0) = 0, which does not depend
on k, and where ¢(¥) is the k-dimensional normal density generator defined by (2). If 7 =0,

then YV < £+ w%_1/2ZO, where Vj ~ Gy is independent of Zy ~ SUN,, ,(0,Q, A,0,T).

For example, the SUT random vector Y ~ SUT, ,(¢,Q,A,v,7,T') can be represented,

when 7 =0, as Y 4 £+ wVO_l/QZo, where V) ~ Gamma(v/2,v/2) and Vj is independent
of Zy ~ SUN, (0,9, A,0,T), since in this case we have in Equation (10) that h(*)(u) =
(k) (u), the k-dimensional Student-t density generator defined by Equation (3). For the
SUN-scale mixture, we have Z 4 Vo_l/ 2Z() and so its moments can be computed easily in
terms of the Vp-moments (provided they exist) and SUN-moments. For instance, E(Z) =
E(V; *)E(Zo) and Var(Z) = E(V; ") Var(Zo) + Var(Vy /*)E(Z0)E(Zo) . However, if we
consider the hierarchical representation

(Y|V, =v) ~ SUN, ,(§,v ', A, Vor,T) and V; ~ G,
where G, has density function g, related to gg, the density function of V) ~ Gy, by

P, (Vor; T+ AQAT)
Fy (r;T7 + AQAT, h(9)

gT(v) = go(’U), (11)

where ®,(y; ¥) denotes the ¢g-dimensional centered normal cumulative distribution function
with ¢ x ¢ covariance matrix ¥, then Y ~ SUE, ,(£,Q, A, AP+ 7 T') with h(PT9) belonging
to the representable class (10). The proof of this result is straightforward by considering
the fact that E{®y(vVoz; A)} = Fi(z; A, h¥)) for any representable generator h(*). In
particular, the SUT, ,(¢,Q, A, v, 7,T") family can be represented as in Equation (11) by
assuming that go is the density function of Vj ~ Gamma(r/2,v/2).

3. MARGINAL AND CONDITIONAL DISTRIBUTIONS

We show in this section that the marginal and the conditional distributions of SUE distri-
butions remain in that family.

PRrROPOSITION 3.1 [Marginal distribution of SUE distributions] Let the random vector
Y ~ SUE, ,(¢,9Q, A, h?+9 1. T). Consider the partition YT = (V;",Y,") with dim(Y;) =
p1, dim(Y2) = p2, p1 +p2 = p, and the corresponding partition of the parameters (£, 2, A).
Then, Y; ~ SUEp,hq(fi, Qi Ai(j)7 h(pri-q)’ ﬂ‘(j), fz(])) for i = 1,2, where

ij-i = ij — jSﬁﬁlﬁiﬁ ’Yz(]) = dlag(F + Aijj.iA;r)l/z, 2,j = 1, 2.
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Note that Ay = 0 with As # 0 does not imply symmetry in the marginal distribution of
Y1. In fact, a necessary and sufficient condition to obtain A1(2) = (0is that A; = Agleﬁl_ll.
Similar conditions are necessary to obtain symmetry in the marginal distribution of Y5.
These facts are directly related with the parameterization used in Definition 1.1.

PROPOSITION 3.2 [Conditional distribution of SUE distributions] Let the random vector
Y ~ SUE, ,(&,Q, A, hP+9) 7 T). Consider the partition YT = (¥;T,Y;") with dim(Y;) =
p1, dim(Y2) = p2, p1 + p2 = p, and the corresponding partition of the parameters. Then,

M1]Y2 = y2) ~ SUEpl,q(51-2,Q11-2,A1-2,hg;(tz)),ﬁ-mr), where Q2(z2) = 2 Q35 22, with

29 = wg_l(y2_£_2)7 §r0 = 6421205, (12— &2), Q12 = Q11— Q12055 Qo1, Ara = Ay twra,
and T1.2 = (Alglgﬂgzl + AQ)ZQ + 7.

Unlike the marginal distributions, we note here for the conditional distribution of
(Y1]Y2 = y9) that A; = 0 implies symmetry. The particular cases of Propositions 3.1
and 3.2 for EST distributions are given in Arellano-Valle and Genton (2010a). Their ap-
plication to perturbation of numerical confidential databases via ST distributions has been
studied by Lee et al. (2010). The results above suggest that perturbations based on SUE
distributions are possible as well.

For the SUT) ,(§, 2, v, 7,T') distribution, we have by Equation (3) the following condi-
tional density generator (see also Arellano-Valle and Bolfarine, 1995; Arellano-Valle et al.,
1994, 2006b):

(p1+9q) h(p1+p2+q){Q2(22) +u}
Moy (W) = (p2)
hP2){Q2(22)}

~c(v,pr+p2+ QL+ {Qa(z2) + u} /v~ WHPiFPta)/2
- (v, p2) (1 + Qa(z2) v} - +P2)/2

pP1+a _ v+potpitg

v+ Do 2 VP2 Y )
oommen (c25) (e () o)

pr1ta
— <V+p2 > ’ p(Pr+a) ( v+ D2 u)
v+ Qa(22) v+ Qa(z2) )

In other words, for the SUT distribution any k-dimensional conditional generator has the

form ') (u) = aq RI2p (k) (g 1/2 u), where h(¥) is the corresponding unconditional generator
and ag is a scale factor induced by the quadratic form in the conditioning variable. Hence,
for the SUT family the conditional density function of Y7|Ys = ys is

1
Tq (Oééi/le.Q; I+ Alﬁu.gAI, V+ p2

1/2
vV+p2+p1 —1/2
T _ Ai.oz1. 2);T 12
X q{<y+Q1.2(Z1.2)> ( 12212 T Qg T1.2); 7V+P2+p1}7 (12)

TyilYazy, (Y1) = ) tp, (y1;§1-270¢2Qan-27 v+ p2)

where ag, = {v+Q2(22)}/(v+p2), 2120 = aéiwf%(yl —£12), and Q1.2(21.2) = 2] Q1 9212,
Consequently, we will use the following notation for the conditional SUT distribution:

V+Q2(22)> ( v+ D2 )1/2
ViV = 40) ~ SUT 2, | ———= | Qua, Mo, v+ po, | ——— 21
(Y1|Y2 = y2) 1 <f12 < o+ w2, Avz, VP2, | SRR 1.2

(13)
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4. LINEAR TRANSFORMATIONS, ADDITIVITY, AND QUADRATIC FORMS

We start by describing linear transformations of SUE distributions.

PROPOSITION 4.1 [Linear transformation of SUE distributions] Let the random vector
Y ~ SUE,,(£,9, A, h?T9 7. T). Then AY +b ~ SUE, ,(€4,Q4, A4, hT9 74, T 4) for any
r X p matrix A of rank r < p and r x 1 vector b, where £4 = A¢ +b, Qy = AQAT, with
scale and correlation matrices wy = diag(£2 A)l/ 2and Qq = wZIQ Awgl, respectively, and

]\A = 'yZlAA, AA = AQUJATCL)Zlﬁzl = AQWATQZIWA7 TA = 7217-’

va = diag(T + AQAT — A4Q4A Y2 Ta =2 T +AQAT — AaQaA) )L

In particular, if r = p, i.e. A is a p X p non-singular matrix, then AY + b ~ SUE, ,(A{ +
b, AQAT Aw=TA 1wy, hHD 7 T).

Here, once again, the particular case of Proposition 4.1 for EST distributions is given in
Arellano-Valle and Genton (2010a).

We note that if, in Proposition 4.1, A is an r X p matrix of rank p < 7, then by
using the fact that the matrix AT A is invertible and by letting Ay = A(ATA)"1AT,
we have also by Equation (4) that A(Y — &) 4 (AW |Wy < AgqAW + 7). Therefore,
AY ~ SUE, , (A&, AQAT A, "+ 7 T) defines a singular SUE distribution.

An important special case follows when AQAT = I, and A¢ + b = 0, which oc-
curs, for example, when considering the decomposition Q@ = QY2QY2 and by letting
A=Q12 = (QYHYY2 and b = —Q~/2¢. Thus, we are considering the standardized
random vector Zg = Q" V/2(Y — ¢) ~ SUE, 4(0, I, A, h?*9 7. T), where A = Aw™10Q1/2 =
AQY2. Suppose now that ¢ < p and that the shape matrix A has rank ¢. Hence, by
applying Proposition 4.1 to the SUE random vector Zy, but with A = A, we obtain
AZy ~ SUEM(O,AQAT,diag(AQAT)I/Q,h(2q),T,F). Moreover, denoting Q4 = AQAT,
WA = diag(AQAT)l/2 and Q) = wlewal, we obtain the following canonical repre-
sentation of the SUE distribution:

Z, = wy'AZy ~ SUE, 4(0,Qp,wp, h?D 7. T). (14)

The canonical representation given in Equation (14) reduces (summarizes) the original
shape parameters in A (gp parameters) to the shape parameters given by the square root
of the diagonal elements of the matrix AQAT (¢ parameters).

Another interesting example is related to the sum of two marginal SUE random vectors,
which is described in the next proposition.

PROPOSITION 4.2 [Sum of SUE distributions] Let Y; and Y3 be two random vectors of
dimensions p; x 1 and ps X 1, respectively, such that

YI fl Q1 0 Al 0 (p1+p2t+q1+q2) T1 Fl 0
(}/&) SUEP1+P27Q1+(12 (<£2) ) ( 0 Q2) ) ( 0 A2> ,h ) T ; 0 F2 y

where &; is p; X 1, w; 18 p; X p;, Ay is ¢; X p;, 7 is ¢; x 1 and I['; is ¢; X ¢;, for i = 1,2. Then,

A T I 0
Y] ~ SUEP1,Q1+(12 <£17 M, < 01> ,h(P1+q1+q2)’ <72_11T2> ’ ( 01 72_111272_1))
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and

0 -1 —].1—\ -1 0
Y, ~ SUEp27q1+q2 <£27QQ, <A2> 7h(P2+Q1+qQ)’ <71T2T1) , ('Yl 01’)/1 r ’

and they are uncorrelated, where v; = I'; — Ain'A;-r, 1 = 1,2. Moreover, for p; = py = r, we
have Y1 + Yo ~ SUE, 4, 14, (€4, Qs Ap, RUTD 7 T L), where & = & + &, Q4 = Q1 + O,
and

—1 ) -1

. _ A A A Qw1 Q7w

Ay =~7IA, = (71, Mt Ay = () = (e Wy
=0 B <72‘1A2+ T Aoy Aowr Q3w )

1
_ _ T = _ _ 0
Fr=14 T = <%—1 1) , Ty =97'TrfY e = (VH ) ;

Yo T2 0 74

Yir = diag(Ty + A QA — Ay QAT )Y2 i =12,

. — Iy + AlﬁlAI__ A1+Q+AI+ —_A1+Q+A;+ ~
—A2+Q+A1|—+ 'y + AQQlA;— — A2+Q+A;—+ ’

As in the elliptically contoured case, here Y; and Y5 are independent random vectors
if and only if A is the normal density generator. In other words, if in Proposition 4.2
we consider the SUN distribution, then Y7 and Ys are independent SUN random vectors,
and the reciprocal is also true. So within the SUE class with the structure considered in
Proposition 4.2, independence characterizes the SUN distribution. This means that within
the SUE family, only the SUN model has the additivity property.

Distribution of quadratic forms were studied by Arellano-Valle and Genton (2010b) for
the elliptical selection random vectors defined by Arellano-Valle et al. (2006a). For instance,
from Y = £ +wZ, the distribution of Qy = (Y —&)TQ N (Y —¢) = ZTQ71Z = Q(Z), where
Z ~ SUE,4(0,Q, A, h(Pta) 7,1"), can be obtained by noting, for example from Equation

(6), that Qy 4 (Qx|Xo < AX +7), where Qx = X "Q~'X. Thus, the density function of
Qy is given by (see property (P2) in Arellano-Valle and Genton, 2010b)

P(X0<AX—|-T’QX:U)
P(X()<AX+T) ’

foy (v) = fox (v)

where P(Xo < AX +7) = Fy(r;T + AQAT, h(@) since Xo =7~ H(AX — Xg) ~ EC,(0,T +
AQAT, h@) and so P(Xg + 7 > 0) = P(AX — Xo + 7 > 0). To compute the conditional
probability P(Xy < AX + 7 > 0|Qx = v), we note that Xy is independent of X given Q x

and (Xo|Qx = v) ~ EC4(0,T, hgq)). Thus, by using the well-known fact that a uniform

random vector U = Q;(l/ 20-12X is independent of QQx and also of Ty = Q)_(l/ 2Xo, where

To|Qx = v) ~ EC,(0,v~'T, hq()q) , we have
(To| g

P(Xo < AX +7|Qx =v) = E{P(Ty < AU + Vo T|U,Qx =)},
= E{F,(vVv AU +v;T,h{?)},

where A = AQY2 and the expectation is taken over U. Hence, we obtain

B{F,(vuAU + T, h{?)}
Fy(r;T + AQAT, h(2)

foy (v) = for (v)
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It follows that if A = 0 and 7, = 0, that is, AQ = 0 and 7 = 0, then E{F,(y/v AU +
7T, B} = F,(0;T,09) = F,(0;T, h@) = ©,(0;T), and so Qy < Qx. But the condi-

tions AQ = 0 and 7 = 0 are equivalent to the conditions A = 0 and 7 = 0 in Equation (7),

under which Y £ X ~ EC,(¢,Q, h®).

For the ESE distribution (that is, for ¢ = 1), when 7 = 0, it is well-known that the
quadratic forms (Y —£)TQ~1 (Y —¢) 4 (X =6 TQ (X —¢) for Y from the full skew-elliptical
class of distributions, where X ~ EC,(0, I, h(p)), an elliptically contoured distribution. In
particular for an EST, (&, Q, v, A, 0) random vector Y we have (Y —&)TQ~ 1Y —¢) ~ pF,,.
Various particular cases of this invariance property have been studied by Azzalini (1986),
Azzalini and Capitanio (1999), Genton et al. (2001), Ma and Genton (2004), Wang et al.
(2004a,b) and Genton and Loperfido (2005). For 7 # 0 and (Y —¢) = (Y —¢) ' C(Y —¢),
letting C = ATA and ¢ = &, Proposition 4.1 with h(?T9) = t(yp+Q) implies (Y —¢) =
|AwZ|?, yielding invariance when A4 = 0, that is, when AwQ\ = 0, which means A = 0
when p = 1. In particular, the invariance property does not hold when p = 1 and 7 # 0.
For example, if Y ~ ESN1(0,1, A, 7), then by Equation (15), the density of Qy = Y? is
given by

1
T 2o (1/VIF A1)

foy (v) o1(v0) {P1(AWVv +T31) + S1(=M\v +751) ), (16)

for v > 0. It reduces to 0 as 7 — —o0, and to ¢1(1/v)/\/v for A = 0; or for A\ — +oo; or
for 7 — +o0. Thus, only in the cases A = 0, A\ — +00 and 7 — +00, we have Qy ~ x?.
However, a graphical analysis of Equation (16) indicates that departures from Qy ~ x?
are fairly minor.

5. MOMENTS

Moments qf a SUE random vector involve truncated multiv%riate moments. Consider Z ~
SUE, 4(0,9, A, hP+9) 7 T). By Equation (7), we have g(Z) = {g(X)|Xo+7} for any Borel
function g. Also, if g is integrable, then it is straightforward to show from this last relation
that

E{g(2)} = E[E{g(X)|Xo}| X0 + 7 > 0], (17)

where X\Xo = Fg ~ ECp(AT 13, Q- AT AT, hg)), with Qo = X’Jf"lXo. In particular,
considering (17), we obtain for the mean vector and covariance matrix (provided they exist)

of Z ~ SUE, 4(0,Q, A, h(P¥9 7 T) that
E(Z) = ATT'E(Xy|Xo +7 > 0)
and
Var(Z) = E(ag, | Xo +7 > 0)(Q — ATT'AT) + AT 'Var(Xo| Xo + 7 > 0)I AT,
where a5 = p'E{(X — AT 'Xo) T (Q — AT'AT)"1(X — AT X)|Qo}, that is, ag, is
the common marginal variance parameter associated with the conditional EC distribution

of {(Q — ATIAT)V2(X — AT1X)| X0} £ {( — AT'AT)"V/2(X — AT1X()|Q0} ~
EC,(0, I, hg)). Expressions for the truncated mean vector E(Xo|Xo+7 > 0) and truncated
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covariance matrix Var(Xo|Xo 4+ 7 > 0) are given in Gonzélez-Farfas et al. (2004) for the
multivariate normal distribution. For an arbitrary multivariate distribution, see Castro et
al. (2010a).

In terms of the original parameterization, we obtain the following expressions for the
mean vector and covariance of Z:

E(Z) = QA -, with [z =y TE(Xo|Xo+ 7 > 0),
and
Var(Z) = a:{Q — QAT (T + AQAT)TAQY + QAT(D + AQAT) 'S (T + AQAT) TAQ,

with a7 = E(aQO|X0 +7>0) and 27 = v 'Var(Xo|Xo + 7 > 0)y~'. In particular, when
Z ~SUT, 4(0,Q,A,v,7,T) we have by (9) that

v +E(QoXo+7>0)

v4+q—2

Mardia’s measures of multivariate skewness and kurtosis (Mardia, 1970) can also be
computed following similar results as in Arellano-Valle and Genton (2010a). Substantial
simplifications occur when ¢ = 1, where for identifiability we should take I' = 1. Such
simplifications are due to the fact that for ¢ = 1 the truncated condition X¢ + 7 > 0 is a
simple event on the real line.

6. TwO ALTERNATIVE PARAMETERIZATIONS

As mentioned in Arellano-Valle and Azzalini (2006), there are different but equivalent
parameterizations to define the SUN distribution. A discussion about identifiability of the
different parameterizations is given by Castro et al. (2010b) for the ESN distribution. Since
these parameterizations are induced by the selection representations given in Equations (6)-
(8), they can be considered also in the definition of the SUE class. Next, we present these
parameterizations in terms of the density function of the random vector Z = w=1(Y — &).
In fact, the definition of the SUE density given in Equation (1) is induced by the selection
representation given in Equation (6), for which the density function of Z, called SUE, is

1

J2() = F T 5 A0AT, h@)

fo(2;0,Q, hPYF (A2 + 73T, hggz)). (18)

Now, if we use Equation (7), we obtain the density function derived by Arellano-Valle and
Azzalini (2006), called SUE-1:

1

fz(z) = mfp(z; 0, k) F(ATQ 2+ 7T - ATQ'ARY ). (19)
q 0

Q(z)

Under this parameterization, we need the condition that ' — ATQ~"1A > 0. This condition
holds by construction if we assume that

Q
Q*_<AT

= >
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is a nonsingular correlation (covariance) matrix. Finally, let Q = ¥ + ATTAT = ¥ +

IFI:T, where T = f‘lA; This parameterization simplifies Equation (7) as Z 4 {TXO +
X1|Xo + 7 > 0}, where (X|, Xo) T ~ ECp4(0, diag(¥, T), hP+9)) and yields the following
SUE density function, called SUE-2:

Fol20,2, WD) F(DTTQ7 s + 7T = DY Q'YL 0 ), (20)

fz(2) = Q(2)

1
F‘l(%7 F7 h(q))

with Q@ = ¥ + YT'YT, and where we note that T — TYTQ~ YT = (T~ + Y TQ-I1)~ L.
A schematic relation between the above three parameterizations comes from the corre-
lation matrix Q, as follows:

0 QA o QA (Y +YLTT AT
AQT, + A QAT ATT rr’ T )0

—_———
SUE density (18) SUE-1 density (19) SUE-2 density (20)

where A, =y~ !A and I, = "Iy L. Finally, note that A, =0 A =0« TT = 0.
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APPENDIX: PROOFS

PROOF OF ProPOSITION 2.1 Note first that fy(y) = |w|™'fz(2), where z = w™(y — &).

Now, the density of Z 4 (X|Xo < AX + 7) is given by (see, e.g., Arellano-Valle et al.,
2002)

1

fa(z) = P(Xo— AX < 1)

fx(2)P(Xo < Az +7|X = 2). (A1)

Thus the proof follows from (Xo|X = 2) ~ EC, (O,F,hggz)), where Q(z) = 2"Q 1z,

X ~EC,(0,Q,hP) and Xg — AX ~ EC,(0,T + AQAT, n(®). n

ProOF oF PrROPOSITION 2.2 Let V' be a non-negative random variable such that condition-
ally on V' = v, we have
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where V ~ G and V is independent of

() = ((0)-(a7))-

Consequently, we obtain (Z|V = v) 4 v~ Y2(N|Ny < AN + v'/27), with the following
conditional SUN density:

1

= ;0 Q) Pg(Az + 07T
tI)q{T;v_l(FJrAQAT)}d)p(Z’U JPy(Az v,

fZ|V:v(z) =

from where the proof follows. m

PROOF OF PROPOSITION 3.1 Because Y = £ + wZ, where Z 4 (X|Xo < AX + 7), and
considering the partitions

and

_ (& ENAVIRUY _ (w1 O 5 (1 Qoo _
g_<§2 = Do Q22) 7 T 0 wy) 2= Qo1 Qg2 )’ A= (A1),

where w; = diag(Qii)l/2 and Qij = w;lﬁijw;1 fori,j = 1,2, it is clear that Y7 = & +w1 241,
where

71 L (X1|Xo < AX +7) = {X1|Xo1 < (A1 + AaQ1 Q1) X1 + 7},

and X01 = Xo — A2X2.1 and X2.1 = XQ — leﬁile; Tlr_lus, to obtain the density of Zl,
we can apply Equation (A.1) to {X1|Xo1 < (A1 + Agﬂglﬁil)Xl + 7} by noting that

X1 _ X1 0 O 0 (p1+9)
<X01> N (Xo - A2X2~1> ECp+q <(0> ’ ( 0 I+ A2922.1A3—> h ’

and so (Xo1|X1 = z1) ~ EC4(0,T + A2Qao. 1A;—,h(q)( 1)), where Q1(z1) = z]—(lnzl and
Qo = Qoo — 921911 Oqo. Note here that the dispersion matrix [+ AyQoo. 1A2 induces the
correlation matrix FI(Q) = 71(2) (T + Ao Qoo 1Ay )71(2) where 9y = diag(T" + Ao Qoo 1A9)
is the corresponding scale matrix. Hence, by noting also that I' + AQAT = ~;(I'; +

17\1(211/7\?)71, where Ay = ’yl_é)(Al + A2@21Ql_11), we obtain by using Equation (A.1)
the following density for Zi:

= T (@)
Fy (A1(2)Z1 + T12); T'12) th(zl)>
Fy (fl(z);fl(z) + A1(2)Q11A1T(2))

)

fz,(21) = fp, (zl;Qn’h(pl)>

where Ty9) = 'y;é)T. Finally, by applying that fy,(y1) = |wi| 'fz (21), where z; =
wl_l(Yl —&1), we finish the proof for i = 1. The proof for i = 2 is analogous. n
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ALTERNATIVE PROOF OF PROPOSITION 3.1 From the properties of elliptically contoured dis-
tributions (see, e.g., Fang et al., 1990) we have

Fo(y: 6,9, 8P) = o (1561, Qu1, h#)) £, (y2;€2~17922.1,h81)(z1))
= !Qn!71/%@1){@1(21)}!922.1|71/2h5 )Z {Q21(221)}

(
= Q07 2RP Q1 (1) H a2 | 2GR, (@21 (22)),
where z; = w; ( —&),i=1,2, 200 = wy, %WQ(ZQ—é.Ql) and zg—zQ—fg 1, with

: : 5 A1
§o1 =& +wobo1, o1 = QO 21,

A 1 1 : 1/2 1

Moo1 = w1 Qovawgi,  wor = diag(Q22.1)Y%, Qoo = Qoo — Qo1 o,

5 1 1 1A 1_ 4 5 6-16

Doo1 =wy Dooawy = wy wallooiwaiwy = Qoo — Q21077 o,

Q1(21) = 2/ Q' 2,
_ T ool o — E T (50— £ ) = O 7z

Q2.1(22.1) = 29010551221 = (22 — &2.1) ' Qogq (22 — &2.1) = Q2.1(22 — &2.1).

On the other hand, since Q(2) = Q1(z1) + Q2.1(22.1) = Q1(z1) + Q. 1(2) and Az = Ayz1 +
Aozo = (A1 + AgleQH )21 + A2Z2, we have after some straightforward algebra that

Fy(Az+ 1T, hg()z))

L~Y2pe+t){Q(2) + v T uldu
fu<Az+T ’
N hP{Q(=)}
S (M 4829820 4 \F\_l/Qh(mﬂ){Qz 1(Z2) + (u+ A2Z2) TT ! (u + AoZa) }du
hgaz {Q21(52)}

)

where we note that

QQ.l(EQ) + (u + AQEQ)TF_l(u + AQZQ) = (22 + AA;F_l’U,)TA_l(EQ + AATF_lu) + uTB_l’U,
= zQTZQ +u' B,

with 2, = A™Y2(Z + ANJT 'w), A = (Qp, + AJT"'A9)"" and B = (I'"! —

I1AyAA] T~1)~L. Thus, by replacing the above results given in Equation (1), we have

for the marginal density of Y7 that

1
) = @) / Fo(: & QR Ey(Az + 730, b)Yy
Y2

Fy(r;T + AQAT, hla
1

— Q1. RPNO 1/21p|—1/2
Fy(r:T - AQAT, h(@ )fpl(yh&h 11, BPY) Qoo [T /2 |07

x / o / hg(zz;‘l){éu(ig) + (1 + AoZ) "IN u + AoZy) }dZadu
(A14+A2Q21Q77 )21 +7 J 22
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1 -

— _ . 9) h(pl) Qoo *1/2A1/2P71/2B1/2
F (T;F_i_AQ)\T’h(q))fpl(yl?gll? 11, )’ 221| | ’ ‘ ‘ ‘ ’
Y / [BI72RE 0 (5] 25 +u" B~ u)dzadu

u<(A1+A2921§21_11)Z1+7’ Z2 !
1

= Qq1, R®[Q 1/2) AL/2170|-1/2| | 1/2
Fy(riT 1 AQAT, h@ )fpl(ylugllv 11, B Qoo [T/ AI DT B

Y / B/, (u" B~ u)du
U<(A1 +A2@21Ql_11)21+7' 22

1

- Oy, A1)
Fy(m;T + AQAT, h(@ )fp1(y1a§117 11, )

XFq{(Al + AQlegﬁ )2’1 + 7'+ AQQQQ.]_A;—, hgl)(h)}’

where we used that |Q90.1| =12 A|V2|T|~Y/2|B|Y/? = 1, since B = I+ AsQ901A) and
|A| = |Q92.1]||T||B| 7. By noting now that the dispersion matrix F"‘AQQQQ.}A; induces the
correlation T'y (o) = Y12 )(I’ + Ay, 1Ay )71( 2 where 79y = diag(I" + AQQQQ,IA;)IM, and
also that P+ AQAT = Y12)T12)FA12)Q11A1(2))71(2), Where Aj(g) = Vfé) (A1+A2021 057,
we obtain finally that

Fy(Ay2)21 + Ti2); l_11(2)7 hgl)(zl))

FQ(T_I(Q); fl(g) + Al(Z)QllAI(Q), h(Q)) ’

Fi (1) = fo, (15 11, Qu1, BPY)

where Ty(g) = 7;(5)7', therefore ending the proof for the marginal distribution of Y;. The
proof for Y5 is analogous. m

PRrROOF oF PROPOSITION 3.2 Considering that Y = £ + wZ, where Z 4 (X[ Xo < AX + 1)
and the partition given in the proof of Proposition 3.1, we obtain

(V1|Ya = y2) = {& + w1 21| Z2 = wy N2 — &)} = €10 + wi2(Z1.9| Z9 = 22),

where 512 =& + w151 222, €1 = Q1205 29, 22 = = Wy Yyo — &), Z1o = wy, 2w1(Z1 -
912922 ZQ) Z2 = ()/2 - 52) We note that QH 2 = QH - 912922 le =
wy 1w1 9011.9w1. 2w; 1, where wi.9 and Q1.9 are the scale and correlation matrices induces
by 1.2, respectively. Thus, we have

Fyiamy (1) = |wr2] 7 2, 412022 (21:2), (A.2)
where z1.9 = wf;wl(zl £12), with z; = wfl(yl — &1). But, since (Z12|Z2 = 22) 4
(Xl Q‘XOQ < Alwl 1w1 20X1.2 + T, X9 = Z2) where X190 = = wy. %wl(Xl 912Q22 XQ) and
Xo0 = Xo—(A1(212§222 +A2) X5, the conditional density of (Z7.2|Z2 = z3) can be computed
as

1
fZ1-2\Z2=22(21'2) - P(X0~2 <A Xio+ T|X2 _ Zz)fX1-2‘X2=Zz(

xP(Xo < A1z1.2+ 7| X2 = 29, X190 = 21.2),

21.2)
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by using that
X1.9 ‘ wf%wl(Xl — 012(22_21)(2) ‘
X — — — = X =
{<X0~2) ’ 22} {<Xo — (Ao + M Q1) X, ) |72 7 7
0 Q112 0 (p1+4)
FCrta <<_(A1@12@2—21 +A2)Z2) ’( 0 1) M)

where Q2(z2) = 2;952122. Thus, since this last result implies (Xo.2|X2 = 22, X120 =

21.2) ~ ECq(O, T, hglz)(zz)+Q1.z(z1.z))’ where QQ(ZQ) + Ql.g(zl.g) = Z;Q;;Zz + 21291711.221.2 =
2Tz = Q(2), (X12|Xa = 22) ~ ECyp, (0, Qu1.2, A% ) and {(Xo2—A1X1.0)| Xo = 22} ~

Qz(ZZ)
EC,(—(A19Q12Q55 + Ag)za, T + A1Qq1.0A ], hgz(zz))’ we obtain
. o )
fZ1.2|Z2=Z2 (Zl~2) = — fpl 21‘2;0’911'2’hp21 Z2
F, (71-2;F + Aru12A], hiﬁfw) ( ” ))
(A 1 -T h(‘]) A3
XLg 1wy wi.221.2 + 1123 1, Q2(22) )2 ( . )

where 110 = (A1(212(22_21 + A2)zo + 7. The proof follows by replacing Equation (A.3) in
Equation (A.2). ]

ALTERNATIVE PROOF OF PROPOSITION 3.2 Following the alternative proof of Proposition
3.1 and a similar notation as used there, we note that

Fo(y: €9, hP))

= - (p1)
T (Y25 €2, Qao, h(P2)) = fp: (15 €12, Q1.2 hQQ(zz))’
and
1 _ —
Frlv) = Fy(m;T + AQAT, h(@) Foa (y2; €22, Qa2 B2 Fy(Ag1y 22 + To1); Ty, h2§3<22>>,

implying that
1
Fq(AQ(l)Z2 + 7_—2(1); fz(l)’ hgz)(zz))

fY1\Yz=y2 (yl) = fpl (y17 {1-27 Qll-?a hg;()ZZ))Fq(AZ+Ta Fv h(q))

Thus, because Fq(Ag(l)zz—Ffz(l);fg(l), hgz( )) =F, <T1.2; I+ A1§_211.2AI, B ) and also

Z2 Qz(zz)
Fq(AZ +7; 1, h(q)) = Fq (Alwflwl.gzm + 711.9; 1, hgz)(zz)> , where z1.0 = wf%(yl — 51.2) and
Ty = (AIQBQ;; + A2)zo + 7, the proof follows. -

ProoOF orF PRrRoOPOSITION 4.1 Let X4 = wZIAwX and Xg.4 = Xo — AX + AaX 4, where
wy = diag(QA)l/2, with Q4 = AQAT, and Ay = AQwAnglﬁ;ll. From the properties of
EC distributions, we have after some algebraic manipulations that

Xa 0\ (Qa 0 (r+q)
(X()A) ECT—HI ((0) ’ ( 0 T+AQAT — AAQAA:A[—) h ’
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where Q4 = w7 Qawy". Thus, by letting Z4 = w;'AwZ, where Z £ (X|Xo < AX +7),

we obtain Ehat ZA 4 (XA’XOA < ApXa+T) 4 (XA‘X(}A < /:\AXA + T4), where XO~A =

’yZlXo.A, Ay = 'yZIAA, TA = 'yZlT and y4 = diag(l' + AQAT — AAQAAX)I/Q. From
Equation (A.1), we have

1 _ _ —
_ . (r) i (9)
12.(2) Fy(7a;T4 +J_XAQA1_XAT7h(q))fT(Z’O’QA’h JFa(Aaz + 74T, b, )

Where_f‘ A= fyg_l (T + AQAT — A4Q AAD'YZI is the correlation matrix associated with
F+AQAT — AAQAA} Thus the proof follows by noting that AY +b = {4 +waZ 4, where
Ea= AE+b. m

PROOF OF ProPOSITION 4.2 Let Y = (Y;',Y,7)" and consider the matrices A; = (I,,,0)
and Ay = (0,1,). Since Y; = A;Y, i = 1,2, where

Y ~ SUEP#]((girv §J)T7 diag(Qla QQ)7 diag(Al’ AZ)? h(p+q)7 (TIT’ TQT)Ta diag(rla FQ))?

with p = p1 + p2, ¢ = ¢1 + q2, the result for the marginal distribution of Y; follows by
applying the first part of Proposition 4.1. From that part, we obtain also the distribution
of the sum of Y7 and Y2 when p; = py = r, since Y7 + Yy = AY, where A = (1., I;,). =
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