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Abstract

In this article, a class of multivariate unified skew-elliptical (SUE) distributions is in-
troduced and studied in detail. In particular, three stochastic representations, the cu-
mulative distribution function, marginal and conditional distributions, linear transfor-
mations, additivity, quadratic forms, and moments of SUE distributions are presented.
The paper ends with a discussion of different but equivalent parameterizations for the
density-based definition of SUE distributions.
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1. Introduction

In recent years, the quest for flexible multivariate parametric distributions has been very
intensive as witnessed by the edited book of Genton (2004), the review article by Azzalini
(2005), and various subsequent publications. In this paper, we define and study multivari-
ate unified skew-elliptical distributions, a family of distributions that is mathematically
tractable while being very general and flexible in its possible shapes. Although its ori-
gin is rooted in elliptically contoured (EC) distributions (Fang et al., 1990), it allows for
asymmetric distributional forms. We start with a formal definition.

Definition 1.1 [Unified skew-elliptical distribution] A continuous p-dimensional random
vector Y has a multivariate unified skew-elliptical (SUE) distribution, denoted by Y ∼
SUEp,q(ξ,Ω,Λ, h(p+q), τ,Γ), if its density function at y ∈ Rp is

1
Fq(τ ; Γ + ΛΩ̄Λ>, h(q))

fp(y; ξ,Ω, h(p))Fq
(

Λz + τ ; Γ, h(q)
Q(z)

)
, (1)
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where z = ω−1(y − ξ), Q(z) = z>Ω̄−1z, Λ is a q × p real matrix controlling shape,
τ ∈ Rq is the extension parameter, and Γ is a q × q positive definite correlation matrix.
Here fp(y; ξ,Ω, h(p)) = |Ω|−1/2h(p)(Q(z)) denotes the density function of an elliptically
contoured distribution with location ξ ∈ Rp, positive definite p × p dispersion matrix Ω,
with p× p scale and correlation matrices ω = diag(Ω)1/2 and Ω̄ = ω−1Ωω−1, respectively,
and density generator h(p). The function Fr(x; Σ, h(r)) denotes the r-dimensional centered
elliptical cumulative distribution with r × r dispersion matrix Σ and density generator
h(r), and h

(q)
Q(z)(u) = h(p+q){u+Q(z)}/h(p){Q(z)}.

The SUE distribution was also considered in Arellano-Valle and Azzalini (2006) with
a different but equivalent parameterization (see also Arellano-Valle et al., 2006a), albeit
without a systematic study of its theoretical properties. This paper aims to fill this gap.
Except for the factorization of the dispersion matrix Ω as ω−1Ω̄ω−1, we use here a similar
parameterization as that used by González-Faŕıas et al. (2004) for the closed skew-normal
distribution. The SUE distribution reduces to the unified skew-normal (SUN) distribution
of Arellano-Valle and Azzalini (2006), up to an equivalent parameterization, when h(p) =
φ(p), the p-variate normal density generator function

φ(p)(u) = (2π)−p/2 exp
(
−u

2

)
, u > 0, (2)

and to the unified skew-t (SUT) distribution when h(p) = t
(p)
ν , the p-variate Student-t

density generator function

t(p)ν (u) = c(ν, p)
{

1 +
u

ν

}−(ν+p)/2
, u > 0, with c(a, b) =

Γ{(a+ b)/2}
Γ(a/2)(πa)b/2

. (3)

The p-variate probability density functions of the normal and Student-t distributions
with location ξ and dispersion matrix Ω are defined through their corresponding den-
sity generator functions by φp(y; ξ,Ω) = φ(p){(y − ξ)>Ω−1(y − ξ)} and tp(y; ξ,Ω, ν) =
t
(p)
ν {(y − ξ)>Ω−1(y − ξ)}, respectively.
When q = 1, the SUE distributions were called extended skew-t (EST) distributions by

Arellano-Valle and Genton (2010a) who gave a systematic study of their properties, see
also Adcock (2010) in terms of a different but equivalent parameterization. Similarly, the
SUN distributions reduce to the extended skew-normal distributions (ESN) when q = 1.
By analogy, we name extended skew-elliptical (ESE) distributions the SUE distributions
with q = 1.

The following scheme summarizes the relationships among those various multivariate
distributions:

SUEp,q
t
(p)
ν−→ SUTp,q

ν→∞−→ SUNp,q

↓ ↓ ↓

ESEp,1
t
(p)
ν−→ ESTp,1

ν→∞−→ ESNp,1

In this paper, we present the probabilistic properties of the SUE distributions. Their
proofs are given in the Appendix. As can be seen from the above scheme, the properties of
the five subclasses (ESE, SUT, EST, SUN, ESN) are directly obtained as particular cases
of the results given in this paper. If, in addition to q = 1, we set also τ = 0, then we obtain
the results for skew-elliptical (SE), skew-t (ST), and skew-normal (SN) distributions, see
for example Branco and Dey (2001), Azzalini and Capitanio (2003), and Azzalini and Dalla
Valle (1996), respectively.



Chilean Journal of Statistics 19

The organization of this article is as follows. In Section 2, we present three stochastic
representations of the SUE distributions, as well as their cumulative distribution functions.
In Section 3, we derive the marginal and conditional distributions of the SUE family. In
Section 4, we study linear transformations, additivity, and quadratic forms of random vec-
tors with SUE distributions. In Section 5, we provide expressions to compute moments of
SUE distributions. We end the paper with a discussion of different but equivalent param-
eterizations for the density-based definition of SUE distributions.

2. Stochastic Representations

Following Arellano-Valle et al. (2006a), the SUE distribution can be introduced as the
distribution of a p-dimensional selection random vector defined by

Y − ξ d= (W |W0 < ΛW + τ), (4)

where “ d=” denotes equality in distribution and(
W
W0

)
∼ ECp+q

((
0
0

)
,

(
Ω 0
0 Γ

)
, ϕ(p+q)

)
,

and ϕ(p+q) denotes the characteristic generator of the (p+q)-dimensional EC distribution.
This definition allows to incorporate the singular SUE distribution that arises when Ω
does not have full rank p; see Arellano-Valle and Azzalini (2006) for a complete discussion
of the singular SUN distribution, as well as Rao (1965) and Dı́az et al. (2002) for singular
EC distributions. If Ω has full rank p, then the distribution of Y is nonsingular and its
density can be computed as in Arellano-Valle et al. (2002):

fY (y) =
1

P(W0 − ΛW < τ)
fV (y − ξ)P(W0 < Λ(y − ξ) + τ |W = y − ξ). (5)

In what follows, we assume for simplicity that both Ω and Γ have full rank, so we are
adopting Definition 1.1 for SUE distributions. Therefore, by using the decomposition Ω =
ωΩ̄ω considered in Definition 1.1 and writing W = ωX, W0 = X0, we formalize the
connection between Equation (4) and Definition 1.1 in the following proposition.

Proposition 2.1 [Selection representation of SUE distributions] Let Y = ξ + ωZ, where

Z
d= (X|X0 < ΛX + τ) (6)

and (
X
X0

)
∼ ECp+q

((
0
0

)
,

(
Ω̄ 0
0 Γ

)
, h(p+q)

)
.

Then Y ∼ SUEp,q(ξ,Ω,Λ, h(p+q), τ,Γ).

The particular case of Proposition 2.1 for EST distributions is given in Arellano-Valle
and Genton (2010a). Next, two equivalent representations (parameterizations) of Z are
obtained as follows.
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First, let X̃0 = γ−1(ΛX −X0), where γ = diag(Γ + ΛΩ̄Λ>)1/2. Then

Z
d= (X|X̃0 + τ̄ > 0), τ̄ = γ−1τ, (7)

with(
X

X̃0

)
∼ ECp+q

((
0
0

)
,

(
Ω̄ ∆

∆> Γ̄

)
, h(p+q)

)
, ∆ = Ω̄Λ>γ−1, Γ̄ = γ−1(Γ + ΛΩ̄Λ>)γ−1.

Second, let X̃ = X −∆Γ̄−1X̃0. Then,

Z
d= (∆Γ̄−1X̃0 + X̃|X̃0 + τ̄ > 0), (8)

with (
X̃

X̃0

)
∼ ECp+q

((
0
0

)
,

(
Ω̄−∆Γ̄−1∆> 0

0 Γ̄

)
, h(p+q)

)
.

For example, for the SUN random vector Y = ξ + ωZ ∼ SUNp,q(ξ,Ω,Λ, τ,Γ), we have by

Equation (6) that Z d= (X|X0 < ΛX + τ) with(
X
X0

)
∼ Np+q

((
0
0

)
,

(
Ω̄ 0
0 Γ

))
,

while Equation (8) yields the well-known stochastic representation Z
d= ∆Γ̄−1X̃∗ + X̃∗∗

with X̃∗
d= (X̃0|X̃0 + τ̄ > 0), where X̃0 ∼ Nq(0, Γ̄), X̃∗∗ ∼ Np

(
0, Ω̄−∆Γ̄−1∆>

)
, and they

are independent random vectors.
Similarly, for the SUT random vector Y = ξ + ωZ ∼ SUTp,q(ξ,Ω,Λ, ν, τ,Γ), we have by

Equation (6) that Z d= (X|X0 < ΛX + τ) with(
X
X0

)
∼ tp+q

((
0
0

)
,

(
Ω̄ 0
0 Γ

)
, ν

)
.

In this case, we can show also from Equation (8) that

Z
d= ∆Γ̄−1X̃∗ +

√
ν + Q̃∗
ν + q

X̃∗∗, Q̃∗ = X̃>∗ Γ̄−1X̃∗, X̃∗
d= (X̃0|X̃0 + τ̄ > 0), (9)

where X̃0 ∼ tq(0, Γ̄, ν), X̃∗∗ ∼ tp
(
0, Ω̄−∆Γ̄−1∆>, ν + q

)
, and they are independent ran-

dom vectors.
We note from Equation (6) that the cumulative distribution function of SUE distribu-

tions can be computed easily as

P(Y ≤ y) =
P(X ≤ z,X0 − ΛX < τ)

P(X0 − ΛX < τ)
=
Fp+q

{(
z
τ

)
;
(

Ω̄ −Ω̄Λ>

−ΛΩ̄ Γ + ΛΩ̄Λ>

)
, h(p+q)

}
Fq
(
τ ; Γ + ΛΩ̄Λ>, h(q)

) ,

where z = ω−1(y − ξ).
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Next, we provide a SUN-scale mixture representation of SUE distributions. It is a gen-
eralization of the well-known representation of ST distributions as a scale mixture of the
skew-normal distribution.

Proposition 2.2 [SUN-scale mixture representation of SUE distributions] Let the random
vector Y ∼ SUEp,q(ξ,Ω,Λ, h(p+q), τ,Γ), where for any positive integer k,

h(k)(u) =
∫ ∞

0
vk/2φ(k)(

√
vu)dG0(v), (10)

for some cumulative distribution function G0 such that G0(0) = 0, which does not depend
on k, and where φ(k) is the k-dimensional normal density generator defined by (2). If τ = 0,
then Y

d= ξ + ωV
−1/2

0 Z0, where V0 ∼ G0 is independent of Z0 ∼ SUNp,q(0, Ω̄,Λ, 0,Γ).

For example, the SUT random vector Y ∼ SUTp,q(ξ,Ω,Λ, ν, τ,Γ) can be represented,

when τ = 0, as Y d= ξ + ωV
−1/2

0 Z0, where V0 ∼ Gamma(ν/2, ν/2) and V0 is independent
of Z0 ∼ SUNp,q(0, Ω̄,Λ, 0,Γ), since in this case we have in Equation (10) that h(k)(u) =
t
(k)
ν (u), the k-dimensional Student-t density generator defined by Equation (3). For the

SUN-scale mixture, we have Z d= V
−1/2

0 Z0 and so its moments can be computed easily in
terms of the V0-moments (provided they exist) and SUN-moments. For instance, E(Z) =
E(V −1/2

0 )E(Z0) and Var(Z) = E(V −1
0 )Var(Z0) + Var(V −1/2

0 )E(Z0)E(Z0)>. However, if we
consider the hierarchical representation

(Y |Vτ = v) ∼ SUNp,q(ξ, v−1Ω,Λ,
√
v τ,Γ) and Vτ ∼ Gτ ,

where Gτ has density function gτ related to g0, the density function of V0 ∼ G0, by

gτ (v) =
Φq

(√
v τ ; Γ + ΛΩ̄Λ>

)
Fq
(
τ ; Γ + ΛΩ̄Λ>, h(q)

)g0(v), (11)

where Φq(y; Σ) denotes the q-dimensional centered normal cumulative distribution function
with q×q covariance matrix Σ, then Y ∼ SUEp,q(ξ,Ω,Λ, h(p+q), τ,Γ) with h(p+q) belonging
to the representable class (10). The proof of this result is straightforward by considering
the fact that E{Φk(

√
V0 x;A)} = Fk(x;A, h(k)) for any representable generator h(k). In

particular, the SUTp,q(ξ,Ω,Λ, ν, τ,Γ) family can be represented as in Equation (11) by
assuming that g0 is the density function of V0 ∼ Gamma(ν/2, ν/2).

3. Marginal and Conditional Distributions

We show in this section that the marginal and the conditional distributions of SUE distri-
butions remain in that family.

Proposition 3.1 [Marginal distribution of SUE distributions] Let the random vector
Y ∼ SUEp,q(ξ,Ω,Λ, h(p+q), τ,Γ). Consider the partition Y > = (Y >1 , Y >2 ) with dim(Y1) =
p1, dim(Y2) = p2, p1 +p2 = p, and the corresponding partition of the parameters (ξ,Ω,Λ).
Then, Yi ∼ SUEpi,q(ξi,Ωii,Λi(j), h(pi+q), τ̄i(j), Γ̄i(j)) for i = 1, 2, where

Λi(j) = γ−1
i(j)(Λi + ΛjΩ̄jiΩ̄−1

ii ), τ̄i(j) = γ−1
i τ, Γ̄i(j) = γ−1

i(j)(Γ + ΛjΩ̃jj·iΛ>j )γ−1
i(j),

Ω̃jj·i = Ω̄jj − Ω̄jiΩ̄−1
ii Ω̄ij , γi(j) = diag(Γ + ΛjΩ̃jj·iΛ>j )1/2, i, j = 1, 2.
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Note that Λ1 = 0 with Λ2 6= 0 does not imply symmetry in the marginal distribution of
Y1. In fact, a necessary and sufficient condition to obtain Λ1(2) = 0 is that Λ1 = Λ2Ω̄21Ω̄−1

11 .
Similar conditions are necessary to obtain symmetry in the marginal distribution of Y2.
These facts are directly related with the parameterization used in Definition 1.1.

Proposition 3.2 [Conditional distribution of SUE distributions] Let the random vector
Y ∼ SUEp,q(ξ,Ω,Λ, h(p+q), τ,Γ). Consider the partition Y > = (Y >1 , Y >2 ) with dim(Y1) =
p1, dim(Y2) = p2, p1 + p2 = p, and the corresponding partition of the parameters. Then,
(Y1|Y2 = y2) ∼ SUEp1,q(ξ1·2,Ω11·2,Λ1·2, h

(p1+q)
Q2(z2) , τ1·2,Γ), where Q2(z2) = z>2 Ω̄−1

22 z2, with

z2 = ω−1
2 (y2−ξ2), ξ1·2 = ξ1+Ω12Ω−1

22 (y2−ξ2), Ω11·2 = Ω11−Ω12Ω−1
22 Ω21, Λ1·2 = Λ1ω

−1
1 ω1·2,

and τ1·2 = (Λ1Ω̄12Ω̄−1
22 + Λ2)z2 + τ .

Unlike the marginal distributions, we note here for the conditional distribution of
(Y1|Y2 = y2) that Λ1 = 0 implies symmetry. The particular cases of Propositions 3.1
and 3.2 for EST distributions are given in Arellano-Valle and Genton (2010a). Their ap-
plication to perturbation of numerical confidential databases via ST distributions has been
studied by Lee et al. (2010). The results above suggest that perturbations based on SUE
distributions are possible as well.

For the SUTp,q(ξ,Ω, ν, τ,Γ) distribution, we have by Equation (3) the following condi-
tional density generator (see also Arellano-Valle and Bolfarine, 1995; Arellano-Valle et al.,
1994, 2006b):

h
(p1+q)
Q2(z2)(u) =

h(p1+p2+q){Q2(z2) + u}
h(p2){Q2(z2)}

=
c(ν, p1 + p2 + q)[1 + {Q2(z2) + u}/ν]−(ν+p1+p2+q)/2

c(ν, p2){1 +Q2(z2)/ν}−(ν+p2)/2

= c(ν + p2, p1 + q)
(

ν + p2

ν +Q2(z2)

) p1+q
2
{

1 +
(

ν + p2

ν +Q2(z2)

)
u

ν + p2

}− ν+p2+p1+q
2

=
(

ν + p2

ν +Q2(z2)

) p1+q
2

h(p1+q)

(√
ν + p2

ν +Q2(z2)
u

)
.

In other words, for the SUT distribution any k-dimensional conditional generator has the
form h

(k)
a (u) = α

−k/2
a h(k)(α−1/2

a u), where h(k) is the corresponding unconditional generator
and αa is a scale factor induced by the quadratic form in the conditioning variable. Hence,
for the SUT family the conditional density function of Y1|Y2 = y2 is

fY1|Y2=y2(y1) =
1

Tq

(
α
−1/2
Q2

τ1·2; Γ + Λ1Ω̄11·2Λ>1 , ν + p2

) tp1 (y1; ξ1·2, α
2
Q2

Ω11·2, ν + p2

)

×Tq

{(
ν + p2 + p1

ν +Q1·2(z1·2)

)1/2

(Λ1·2z1·2 + α
−1/2
Q2

τ1·2); Γ, ν + p2 + p1

}
, (12)

where αQ2 = {ν+Q2(z2)}/(ν+p2), z1·2 = α−1
Q2
ω−1

1·2(y1−ξ1·2), and Q1·2(z1·2) = z>1·2Ω̄−1
11·2z1·2.

Consequently, we will use the following notation for the conditional SUT distribution:

(Y1|Y2 = y2) ∼ SUTp1,q

(
ξ1·2,

(
ν +Q2(z2)
ν + p2

)
Ω11·2,Λ1·2, ν + p2,

(
ν + p2

ν +Q2(z2)

)1/2

τ1·2,Γ

)
.

(13)
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4. Linear Transformations, Additivity, and Quadratic Forms

We start by describing linear transformations of SUE distributions.

Proposition 4.1 [Linear transformation of SUE distributions] Let the random vector
Y ∼ SUEp,q(ξ,Ω,Λ, h(p+q), τ,Γ). Then AY +b ∼ SUEr,q(ξA,ΩA, Λ̄A, h(r+q), τ̄A, Γ̄A) for any
r × p matrix A of rank r ≤ p and r × 1 vector b, where ξA = Aξ + b, ΩA = AΩA>, with
scale and correlation matrices ωA = diag(ΩA)1/2 and Ω̄A = ω−1

A ΩAω
−1
A , respectively, and

Λ̄A = γ−1
A ΛA, ΛA = ΛΩ̄ωA>ω−1

A Ω̄−1
A = ΛΩ̄ωA>Ω−1

A ωA, τ̄A = γ−1
A τ,

γA = diag(Γ + ΛΩ̄Λ> − ΛAΩ̄AΛ>A)1/2, Γ̄A = γ−1
A (Γ + ΛΩ̄Λ> − ΛAΩ̄AΛ>A)γ−1

A .

In particular, if r = p, i.e. A is a p× p non-singular matrix, then AY + b ∼ SUEp,q(Aξ +
b, AΩA>,Λω−1A−1ωA, h

(r+q), τ,Γ).

Here, once again, the particular case of Proposition 4.1 for EST distributions is given in
Arellano-Valle and Genton (2010a).

We note that if, in Proposition 4.1, A is an r × p matrix of rank p < r, then by
using the fact that the matrix A>A is invertible and by letting ΛA = Λ(A>A)−1A>,
we have also by Equation (4) that A(Y − ξ) d= (AW |W0 < ΛAAW + τ). Therefore,
AY ∼ SUEr,q(Aξ,AΩA>,ΛA, ϕ(r+q), τ,Γ) defines a singular SUE distribution.

An important special case follows when AΩA> = Ip and Aξ + b = 0, which oc-
curs, for example, when considering the decomposition Ω = Ω1/2Ω1/2 and by letting
A = Ω−1/2 = (Ω−1)1/2 and b = −Ω−1/2ξ. Thus, we are considering the standardized
random vector Z0 = Ω−1/2(Y − ξ) ∼ SUEp,q(0, Ip, Λ̄, h(p+q), τ,Γ), where Λ̄ = Λω−1Ω1/2 =
ΛΩ̄1/2. Suppose now that q ≤ p and that the shape matrix Λ has rank q. Hence, by
applying Proposition 4.1 to the SUE random vector Z0, but with A = Λ̄, we obtain
Λ̄Z0 ∼ SUEq,q(0,ΛΩ̄Λ>, diag(ΛΩ̄Λ>)1/2, h(2q), τ,Γ). Moreover, denoting ΩΛ = ΛΩ̄Λ>,
ωΛ = diag(ΛΩ̄Λ>)1/2 and Ω̄Λ = ω−1

Λ ΩΛω
−1
Λ , we obtain the following canonical repre-

sentation of the SUE distribution:

Zc = ω−1
Λ Λ̄Z0 ∼ SUEq,q(0, Ω̄Λ, ωΛ, h

(2q), τ,Γ). (14)

The canonical representation given in Equation (14) reduces (summarizes) the original
shape parameters in Λ (qp parameters) to the shape parameters given by the square root
of the diagonal elements of the matrix ΛΩΛ> (q parameters).

Another interesting example is related to the sum of two marginal SUE random vectors,
which is described in the next proposition.

Proposition 4.2 [Sum of SUE distributions] Let Y1 and Y2 be two random vectors of
dimensions p1 × 1 and p2 × 1, respectively, such that

(
Y1

Y2

)
∼ SUEp1+p2,q1+q2

((
ξ1

ξ2

)
,

(
Ω1 0
0 Ω2

)
,

(
Λ1 0
0 Λ2

)
, h(p1+p2+q1+q2),

(
τ1

τ2

)
,

(
Γ1 0
0 Γ2

))
,

where ξi is pi× 1, ωi is pi× pi, Λi is qi× pi, τi is qi× 1 and Γi is qi× qi, for i = 1, 2. Then,

Y1 ∼ SUEp1,q1+q2

(
ξ1,Ω1,

(
Λ1

0

)
, h(p1+q1+q2),

(
τ1

γ−1
2 τ2

)
,

(
Γ1 0
0 γ−1

2 Γ2γ
−1
2

))
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and

Y2 ∼ SUEp2,q1+q2

(
ξ2,Ω2,

(
0

Λ2

)
, h(p2+q1+q2),

(
γ−1

1 τ1

τ2

)
,

(
γ−1

1 Γ1γ
−1
1 0

0 Γ2

))
,

and they are uncorrelated, where γi = Γi−ΛiΩ̄iΛ>i , i = 1, 2. Moreover, for p1 = p2 = r, we
have Y1 + Y2 ∼ SUEr,q1+q2(ξ+,Ω+, Λ̄+, h

(r+q), τ̄+, Γ̄+), where ξ+ = ξ1 + ξ2, Ω+ = Ω1 + Ω2,
and

Λ̄+ = γ−1
+ Λ+ =

(
γ−1

1 Λ1+

γ−1
2 Λ2+

)
, Λ+ =

(
Λ1+

Λ2+

)
=
(

Λ1Ω̄1ω1Ω−1
+ ω+

Λ2Ω̄2ω2Ω−1
+ ω+

)
,

τ̄+ = γ−1
+ τ =

(
γ−1

1 τ1

γ−1
2 τ2

)
, Γ̄+ = γ−1

+ Γ+γ
−1
+ , γ+ =

(
γ1+ 0
0 γ2+

)
,

γi+ = diag(Γi + ΛiΩ̄iΛ>i − Λi+Ω̄+Λ>i+)1/2, i = 1, 2,

Γ+ =
(

Γ1 + Λ1Ω̄1Λ>1 − Λ1+Ω̄+Λ>1+ −Λ1+Ω̄+Λ>2+

−Λ2+Ω̄+Λ>1+ Γ2 + Λ2Ω̄1Λ>2 − Λ2+Ω̄+Λ>2+

)
.

As in the elliptically contoured case, here Y1 and Y2 are independent random vectors
if and only if h is the normal density generator. In other words, if in Proposition 4.2
we consider the SUN distribution, then Y1 and Y2 are independent SUN random vectors,
and the reciprocal is also true. So within the SUE class with the structure considered in
Proposition 4.2, independence characterizes the SUN distribution. This means that within
the SUE family, only the SUN model has the additivity property.

Distribution of quadratic forms were studied by Arellano-Valle and Genton (2010b) for
the elliptical selection random vectors defined by Arellano-Valle et al. (2006a). For instance,
from Y = ξ+ωZ, the distribution of QY = (Y −ξ)>Ω−1(Y −ξ) = Z>Ω̄−1Z = Q(Z), where
Z ∼ SUEp,q(0, Ω̄,Λ, h(p+q), τ,Γ), can be obtained by noting, for example from Equation

(6), that QY
d= (QX |X0 < ΛX + τ), where QX = X>Ω̄−1X. Thus, the density function of

QY is given by (see property (P2) in Arellano-Valle and Genton, 2010b)

fQY (v) = fQX (v)
P(X0 < ΛX + τ |QX = v)

P(X0 < ΛX + τ)
,

where P(X0 < ΛX + τ) = Fq(τ ; Γ + ΛΩ̄Λ>, h(q)) since X̃0 = γ−1(ΛX −X0) ∼ ECq(0,Γ +
ΛΩ̄Λ>, h(q)), and so P(X̃0 + τ̄ > 0) = P(ΛX −X0 + τ > 0). To compute the conditional
probability P(X0 < ΛX + τ > 0|QX = v), we note that X0 is independent of X given QX
and (X0|QX = v) ∼ ECq(0,Γ, h

(q)
v ). Thus, by using the well-known fact that a uniform

random vector U = Q
−1/2
X Ω̄−1/2X is independent of QX and also of T0 = Q

−1/2
X X0, where

(T0|QX = v) ∼ ECq(0, v−1Γ, h(q)
v ), we have

P(X0 < ΛX + τ |QX = v) = E{P(T0 < Λ̄U +
√
v τ |U,QX = v)},

= E{Fq(
√
v Λ̄U + v; Γ, h(q)

v )},

where Λ̄ = ΛΩ̄1/2 and the expectation is taken over U . Hence, we obtain

fQY (v) = fQX (v)
E{Fq(

√
v Λ̄U + τ ; Γ, h(q)

v )}
Fq(τ ; Γ + ΛΩ̄Λ>, h(q))

. (15)



Chilean Journal of Statistics 25

It follows that if Λ̄ = 0 and τv = 0, that is, ΛΩ̄ = 0 and τ = 0, then E{Fq(
√
v Λ̄U +

τ ; Γ, h(q)
v )} = Fq(0; Γ, h(q)

v ) = Fq(0; Γ, h(q)) = Φq(0; Γ), and so QY
d= QX . But the condi-

tions ΛΩ̄ = 0 and τ = 0 are equivalent to the conditions ∆ = 0 and τ̄ = 0 in Equation (7),
under which Y

d= X ∼ ECp(ξ,Ω, h(p)).
For the ESE distribution (that is, for q = 1), when τ = 0, it is well-known that the

quadratic forms (Y−ξ)>Ω−1(Y−ξ) d= (X−ξ)>Ω−1(X−ξ) for Y from the full skew-elliptical
class of distributions, where X ∼ ECp(0, Ip, h(p)), an elliptically contoured distribution. In
particular for an ESTp(ξ,Ω, ν, λ, 0) random vector Y we have (Y −ξ)>Ω−1(Y −ξ) ∼ pFp,ν .
Various particular cases of this invariance property have been studied by Azzalini (1986),
Azzalini and Capitanio (1999), Genton et al. (2001), Ma and Genton (2004), Wang et al.
(2004a,b) and Genton and Loperfido (2005). For τ 6= 0 and ψ(Y − c) = (Y − c)>C(Y − c),
letting C = A>A and c = ξ, Proposition 4.1 with h(p+q) = t

(p+q)
ν implies ψ(Y − c) =

‖AωZ‖2, yielding invariance when λA = 0, that is, when AωΩ̄λ = 0, which means λ = 0
when p = 1. In particular, the invariance property does not hold when p = 1 and τ 6= 0.
For example, if Y ∼ ESN1(0, 1, λ, τ), then by Equation (15), the density of QY = Y 2 is
given by

fQY (v) =
1

2
√
vΦ1(τ/

√
1 + λ2; 1)

φ1(
√
v)
{

Φ1(λ
√
v + τ ; 1) + Φ1(−λ

√
v + τ ; 1)

}
, (16)

for v > 0. It reduces to 0 as τ → −∞, and to φ1(
√
v)/
√
v for λ = 0; or for λ → ±∞; or

for τ → +∞. Thus, only in the cases λ = 0, λ → ±∞ and τ → +∞, we have QY ∼ χ2
1.

However, a graphical analysis of Equation (16) indicates that departures from QY ∼ χ2
1

are fairly minor.

5. Moments

Moments of a SUE random vector involve truncated multivariate moments. Consider Z ∼
SUEp,q(0, Ω̄,Λ, h(p+q), τ,Γ). By Equation (7), we have g(Z) d= {g(X̃)|X̃0 + τ̄} for any Borel
function g. Also, if g is integrable, then it is straightforward to show from this last relation
that

E{g(Z)} = E[E{g(X̃)|X̃0}|X̃0 + τ̄ > 0], (17)

where X̃|X̃0 = x̃0 ∼ ECp(∆Γ̄−1x̃0, Ω̄−∆Γ̄−1∆>, h(p)

Q̃0
), with Q̃0 = X̃>0 Γ̄−1X̃0. In particular,

considering (17), we obtain for the mean vector and covariance matrix (provided they exist)
of Z ∼ SUEp,q(0, Ω̄,Λ, h(p+q), τ,Γ) that

E(Z) = ∆Γ̄−1E(X̃0|X̃0 + τ̄ > 0)

and

Var(Z) = E(αQ̃0
|X̃0 + τ̄ > 0)(Ω̄−∆Γ̄−1∆>) + ∆Γ̄−1Var(X̃0|X̃0 + τ̄ > 0)Γ̄−1∆>,

where αQ̃0
= p−1E{(X̃ −∆Γ̄−1X̃0)>(Ω̄−∆Γ̄−1∆>)−1(X̃ −∆Γ̄−1X̃0)|Q̃0}, that is, αQ̃0

is
the common marginal variance parameter associated with the conditional EC distribution
of {(Ω̄−∆Γ̄−1∆>)−1/2(X̃ −∆Γ̄−1X̃0)|X̃0}

d= {(Ω̄−∆Γ̄−1∆>)−1/2(X̃ −∆Γ̄−1X̃0)|Q̃0} ∼
ECp(0, Ip, h

(p)

Q̃0
). Expressions for the truncated mean vector E(X̃0|X̃0+τ̄ > 0) and truncated
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covariance matrix Var(X̃0|X̃0 + τ̄ > 0) are given in González-Faŕıas et al. (2004) for the
multivariate normal distribution. For an arbitrary multivariate distribution, see Castro et
al. (2010a).

In terms of the original parameterization, we obtain the following expressions for the
mean vector and covariance of Z:

E(Z) = Ω̄Λ>µ̄τ̄ , with µ̄τ̄ = γ−1E(X̃0|X̃0 + τ̄ > 0),

and

Var(Z) = aτ̄{Ω̄− Ω̄Λ>(Γ + ΛΩ̄Λ>)−1ΛΩ̄}+ Ω̄Λ>(Γ + ΛΩ̄Λ>)−1Σ̄τ̄ (Γ + ΛΩ̄Λ>)−1ΛΩ̄,

with aτ̄ = E(αQ̃0
|X̃0 + τ̄ > 0) and Σ̄τ̄ = γ−1Var(X̃0|X̃0 + τ̄ > 0)γ−1. In particular, when

Z ∼ SUTp,q(0, Ω̄,Λ, ν, τ,Γ) we have by (9) that

aτ̄ =
ν + E(Q̃0|X̃0 + τ̄ > 0)

ν + q − 2
.

Mardia’s measures of multivariate skewness and kurtosis (Mardia, 1970) can also be
computed following similar results as in Arellano-Valle and Genton (2010a). Substantial
simplifications occur when q = 1, where for identifiability we should take Γ = 1. Such
simplifications are due to the fact that for q = 1 the truncated condition X̃0 + τ̄ > 0 is a
simple event on the real line.

6. Two Alternative Parameterizations

As mentioned in Arellano-Valle and Azzalini (2006), there are different but equivalent
parameterizations to define the SUN distribution. A discussion about identifiability of the
different parameterizations is given by Castro et al. (2010b) for the ESN distribution. Since
these parameterizations are induced by the selection representations given in Equations (6)-
(8), they can be considered also in the definition of the SUE class. Next, we present these
parameterizations in terms of the density function of the random vector Z = ω−1(Y − ξ).
In fact, the definition of the SUE density given in Equation (1) is induced by the selection
representation given in Equation (6), for which the density function of Z, called SUE, is

fZ(z) =
1

Fq(τ̄ ; Γ + ΛΩ̄Λ>, h(q))
fp(z; 0, Ω̄, h(p))Fq(Λz + τ ; Γ, h(q)

Q(z)). (18)

Now, if we use Equation (7), we obtain the density function derived by Arellano-Valle and
Azzalini (2006), called SUE-1:

fZ(z) =
1

Fq(τ̄ ; Γ̄, h(q))
fp(z; 0,Ω, h(p))Fq(∆>Ω̄−1z + τ̄ ; Γ̄−∆>Ω̄−1∆, h(q)

Q(z)). (19)

Under this parameterization, we need the condition that Γ̄−∆>Ω̄−1∆ > 0. This condition
holds by construction if we assume that

Ω∗ =
(

Ω̄ ∆
∆> Γ̄

)
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is a nonsingular correlation (covariance) matrix. Finally, let Ω̄ = Ψ + ∆Γ̄−1∆> = Ψ +
ΥΓ̄Υ>, where Υ = Γ̄−1∆. This parameterization simplifies Equation (7) as Z d= {ΥX̃0 +
X̃1|X̃0 + τ̄ > 0}, where (X̃>1 , X̃0)> ∼ ECp+q(0, diag(Ψ, Γ̄), h(p+q)) and yields the following
SUE density function, called SUE-2:

fZ(z) =
1

Fq(τ̄ ; Γ̄, h(q))
fp(z; 0, Ω̄, h(p))Fq(Γ̄Υ>Ω̄−1z + τ̄ ; Γ̄− Γ̄Υ>Ω̄−1ΥΓ̄, h(q)

Q(z)), (20)

with Ω̄ = Ψ + ΥΓ̄Υ>, and where we note that Γ̄− Γ̄Υ>Ω̄−1ΥΓ̄ = (Γ̄−1 + Υ>Ω̄−1Υ)−1.
A schematic relation between the above three parameterizations comes from the corre-

lation matrix Ω∗ as follows:

(
Ω̄ Ω̄Λ>γ

ΛγΩ̄ Γγ + ΛγΩ̄Λ>γ

)
︸ ︷︷ ︸

SUE density (18)

←−
(

Ω̄ ∆
∆> Γ̄

)
︸ ︷︷ ︸

SUE-1 density (19)

−→
(

Ψ + ΥΓ̄Υ> ΥΓ̄
Γ̄Υ> Γ̄

)
︸ ︷︷ ︸
SUE-2 density (20)

,

where Λγ = γ−1Λ and Γγ = γ−1Γγ−1. Finally, note that ΛγΩ̄ = 0⇔ ∆ = 0⇔ ΥΓ̄ = 0.
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Appendix: Proofs

Proof of Proposition 2.1 Note first that fY (y) = |ω|−1fZ(z), where z = ω−1(y − ξ).
Now, the density of Z d= (X|X0 < ΛX + τ) is given by (see, e.g., Arellano-Valle et al.,
2002)

fZ(z) =
1

P(X0 − ΛX < τ)
fX(z)P(X0 < Λz + τ |X = z). (A.1)

Thus the proof follows from (X0|X = z) ∼ ECq

(
0,Γ, h(q)

Q(z)

)
, where Q(z) = z>Ω̄−1z,

X ∼ ECp(0, Ω̄, h(p)) and X0 − ΛX ∼ ECq(0,Γ + ΛΩ̄Λ>, h(q)).

Proof of Proposition 2.2 Let V be a non-negative random variable such that condition-
ally on V = v, we have {(

X
X0

) ∣∣∣V = v

}
d= v−1/2

(
N
N0

)
,
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where V ∼ G and V is independent of(
N
N0

)
∼ Np+q

((
0
0

)
,

(
Ω̄ 0
0 Γ

))
.

Consequently, we obtain (Z|V = v) d= v−1/2(N |N0 < ΛN + v1/2τ), with the following
conditional SUN density:

fZ|V=v(z) =
1

Φq{τ ; v−1(Γ + ΛΩ̄Λ>)}
φp(z; v−1Ω̄)Φq(Λz + τ ; v−1Γ),

from where the proof follows.

Proof of Proposition 3.1 Because Y = ξ + ωZ, where Z d= (X|X0 < ΛX + τ), and
considering the partitions

Y =
(
Y1

Y2

)
−→ Z =

(
Z1

Z2

)
−→ X =

(
X1

X2

)
and

ξ =
(
ξ1

ξ2

)
, Ω =

(
Ω11 Ω12

Ω21 Ω22

)
, ω =

(
ω1 0
0 ω2

)
, Ω̄ =

(
Ω̄11 Ω̄12

Ω̄21 Ω̄22

)
, Λ =

(
Λ1 Λ2

)
,

where ωi = diag(Ωii)1/2 and Ω̄ij = ω−1
i Ωijω

−1
j for i, j = 1, 2, it is clear that Y1 = ξ1 +ω1Z1,

where

Z1
d= (X1|X0 < ΛX + τ) = {X1|X01 < (Λ1 + Λ2Ω̄21Ω̄−1

11 )X1 + τ},

and X01 = X0 − Λ2X2·1 and X2·1 = X2 − Ω̄21Ω̄−1
11 X1. Thus, to obtain the density of Z1,

we can apply Equation (A.1) to {X1|X01 < (Λ1 + Λ2Ω̄21Ω̄−1
11 )X1 + τ} by noting that(

X1

X01

)
=
(

X1

X0 − Λ2X2·1

)
∼ ECp+q

((
0
0

)
,

(
Ω̄11 0
0 Γ + Λ2Ω̃22·1Λ>2

)
, h(p1+q)

)
,

and so (X01|X1 = z1) ∼ ECq(0,Γ + Λ2Ω̄22·1Λ>2 , h
(q)
Q1(z1)), where Q1(z1) = z>1 Ω̄11z1 and

Ω̃22·1 = Ω̄22− Ω̄21Ω̄−1
11 Ω̄12. Note here that the dispersion matrix Γ+Λ2Ω̃22·1Λ>2 induces the

correlation matrix Γ̄1(2) = γ−1
1(2)(Γ + Λ2Ω̃22·1Λ>2 )γ−1

1(2), where γ1(2) = diag(Γ + Λ2Ω̃22·1Λ>2 )
is the corresponding scale matrix. Hence, by noting also that Γ + ΛΩ̄Λ> = γ1(Γ̄1 +
Λ̄1Ω̄11Λ̄>1 )γ1, where Λ1(2) = γ−1

1(2)(Λ1 + Λ2Ω̄21Ω̄−1
11 ), we obtain by using Equation (A.1)

the following density for Z1:

fZ1(z1) = fp1

(
z1; Ω̄11, h

(p1)
) Fq (Λ1(2)z1 + τ̄1(2); Γ̄1(2), h

(q)
Q1(z1)

)
Fq

(
τ̄1(2); Γ̄1(2) + Λ1(2)Ω̄11Λ>1(2)

) ,
where τ̄1(2) = γ−1

1(2)τ. Finally, by applying that fY1(y1) = |ω1|−1fZ1(z1), where z1 =

w−1
1 (Y1 − ξ1), we finish the proof for i = 1. The proof for i = 2 is analogous.
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Alternative proof of Proposition 3.1 From the properties of elliptically contoured dis-
tributions (see, e.g., Fang et al., 1990) we have

fp(y; ξ,Ω, h(p)) = fp1(y1; ξ1,Ω11, h
(p1))fp2(y2; ξ2·1,Ω22·1, h

(q)
Q1(z1))

= |Ω11|−1/2h(p1){Q1(z1)}|Ω22·1|−1/2h
(p2)
Q1(z1){Q2·1(z2·1)}

= |Ω11|−1/2h(p1){Q1(z1)}|Ω22·1|−1/2h
(p2)
Q1(z1){Q̃2·1(z̃2)},

where zi = ω−1
i (yi − ξi), i = 1, 2, z2·1 = ω−1

2·1ω2(z2 − ξ2·1) and z̃2 = z2 − ξ̃2·1, with

ξ2·1 = ξ2 + ω2ξ̃2·1, ξ̃2·1 = Ω̄21Ω̄−1
11 z1,

Ω̄22·1 = ω−1
2·1Ω22·1ω

−1
2·1, ω2·1 = diag(Ω22·1)1/2, Ω22·1 = Ω22 − Ω21Ω−1

11 Ω12,

Ω̃22·1 = ω−1
2 Ω22·1ω

−1
2 = ω−1

2 ω2·1Ω̄22·1ω2·1ω
−1
2 = Ω̄22 − Ω̄21Ω̄−1

11 Ω̄12,

Q1(z1) = z>1 Ω̄−1
11 z2,

Q2·1(z2·1) = z>2·1Ω̄−1
22·1z2·1 = (z2 − ξ̃2·1)>Ω̃−1

22·1(z2 − ξ̃2·1) = Q̃2·1(z2 − ξ̃2·1).

On the other hand, since Q(z) = Q1(z1) +Q2·1(z2·1) = Q1(z1) + Q̃2·1(z̃) and Λz = Λ1z1 +
Λ2z2 = (Λ1 + Λ2Ω̄21Ω̄−1

11 )z1 + Λ2z̃2, we have after some straightforward algebra that

Fq(Λz + τ ; Γ, h(q)
Q(z))

=

∫
u<Λz+τ |Γ|

−1/2h(p+q){Q(z) + u>Γ−1u}du
h(p){Q(z)}

=

∫
u<(Λ1+Λ2Ω̄21Ω̄−1

11 )z1+τ |Γ|
−1/2h

(p2+q)
Q(z1) {Q̃2·1(z̃2) + (u+ Λ2z̃2)>Γ−1(u+ Λ2z̃2)}du

h
(p2)
Q1(z1){Q̃2·1(z̃2)}

,

where we note that

Q̃2·1(z̃2) + (u+ Λ2z̃2)>Γ−1(u+ Λ2z̃2) = (z̃2 +AΛ>2 Γ−1u)>A−1(z̃2 +AΛ>Γ−1u) + u>B−1u

= ẑ>2 ẑ2 + u>B−1u,

with ẑ2 = A−1/2(z̃2 + AΛ>2 Γ−1u), A = (Ω̃−1
22·1 + Λ>2 Γ−1Λ2)−1 and B = (Γ−1 −

Γ−1Λ2AΛ>2 Γ−1)−1. Thus, by replacing the above results given in Equation (1), we have
for the marginal density of Y1 that

fY1(y1) =
1

Fq(τ ; Γ + ΛΩ̄Λ>, h(q))

∫
y2

fp(y; ξ,Ω, h(p))Fq(Λz + τ ; Γ, h(q)
Q(z))dy2

=
1

Fq(τ ; Γ + ΛΩ̄λ>, h(q))
fp1(y1; ξ11,Ω11, h

(p1))|Ω̃22·1|−1/2|Γ|−1/2

×
∫
u<(Λ1+Λ2Ω̄21Ω̄−1

11 )z1+τ

∫
z̃2

h
(p2+q)
Q(z1) {Q̃2·1(z̃2) + (u+ Λ2z̃2)>Γ−1(u+ Λ2z̃2)}dz̃2du
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=
1

Fq(τ ; Γ + ΛΩ̄λ>, h(q))
fp1(y1; ξ11,Ω11, h

(p1))|Ω̃22·1|−1/2|A|1/2|Γ|−1/2|B|1/2

×
∫
u<(Λ1+Λ2Ω̄21Ω̄−1

11 )z1+τ

∫
z̃2

|B|−1/2h
(p2+q)
Q(z1) (ẑ>2 ẑ2 + u>B−1u)dz̃2du

=
1

Fq(τ ; Γ + ΛΩ̄λ>, h(q))
fp1(y1; ξ11,Ω11, h

(p1))|Ω̃22·1|−1/2|A|1/2|Γ|−1/2|B|1/2

×
∫
u<(Λ1+Λ2Ω̄21Ω̄−1

11 )z1+τ

∫
z̃2

|B|−1/2h
(q)
Q(z1)(u

>B−1u)du

=
1

Fq(τ ; Γ + ΛΩ̄Λ>, h(q))
fp1(y1; ξ11,Ω11, h

(p1))

×Fq{(Λ1 + Λ2Ω̄21Ω̄−1
11 )z1 + τ ; Γ + Λ2Ω̃22·1Λ>2 , h

(q)
Q1(z1)},

where we used that |Ω̃22·1|−1/2|A|1/2|Γ|−1/2|B|1/2 = 1, since B = Γ + Λ2Ω̃22·1Λ>2 and
|A| = |Ω̃22·1||Γ||B|−1. By noting now that the dispersion matrix Γ+Λ2Ω̃22·1Λ>2 induces the
correlation Γ1(2) = γ−1

1(2)(Γ + Λ2Ω̃22·1Λ>2 )γ−1
1(2), where γ1(2) = diag(Γ + Λ2Ω̃22·1Λ>2 )1/2, and

also that Γ+ΛΩ̄Λ> = γ1(2)(Γ̄1(2)+Λ1(2)Ω̄11Λ1(2))γ1(2), where Λ1(2) = γ−1
1(2)(Λ1+Λ2Ω̄21Ω̄−1

11 ),
we obtain finally that

fY1(y1) = fp1(y1; ξ11,Ω11, h
(p1))

Fq(Λ1(2)z1 + τ̄1(2); Γ̄1(2), h
(q)
Q1(z1))

Fq(τ̄1(2); Γ̄1(2) + Λ1(2)Ω̄11Λ>1(2), h
(q))

,

where τ̄1(2) = γ−1
1(2)τ, therefore ending the proof for the marginal distribution of Y1. The

proof for Y2 is analogous.

Proof of Proposition 3.2 Considering that Y = ξ + ωZ, where Z d= (X|X0 < ΛX + τ)
and the partition given in the proof of Proposition 3.1, we obtain

(Y1|Y2 = y2) = {ξ1 + w1Z1|Z2 = ω−1
2 (y2 − ξ2)} = ξ1·2 + ω1·2(Z1·2|Z2 = z2),

where ξ1·2 = ξ1 + ω1ξ̃1·2z2, ξ̃1·2 = Ω̄12Ω̄−1
22 z2, z2 = ω−1

2 (y2 − ξ2), Z1·2 = ω−1
1·2ω1(Z1 −

Ω̄12Ω̄−1
22 Z2), Z2 = ω−1

2 (Y2 − ξ2). We note that Ω̃11·2 = Ω̄11 − Ω̄12Ω̄−1
22 Ω̄21 =

ω−1
1 ω1·2Ω̄11·2ω1·2ω

−1
1 , where ω1·2 and Ω̄11·2 are the scale and correlation matrices induces

by Ω11·2, respectively. Thus, we have

fY1|Y2=y2(y1) = |ω1·2|−1fZ1·2|Z2=z2(z1·2), (A.2)

where z1·2 = w−1
1·2ω1(z1 − ξ̄1·2), with z1 = ω−1

1 (y1 − ξ1). But, since (Z1·2|Z2 = z2) d=
(X1·2|X0·2 < Λ1ω

−1
1 ω1·2X1·2 + τ,X2 = z2), where X1·2 = ω−1

1·2ω1(X1 − Ω̄12Ω̄−1
22 X2) and

X0·2 = X0−(Λ1Ω̄12Ω̄−1
22 +Λ2)X2, the conditional density of (Z1·2|Z2 = z2) can be computed

as

fZ1·2|Z2=z2(z1·2) =
1

P(X0·2 < Λ1X1·2 + τ |X2 = z2)
fX1·2|X2=z2(z1·2)

×P(X0 < Λ1z1·2 + τ |X2 = z2, X1·2 = z1·2),
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by using that{(
X1·2
X0·2

) ∣∣∣X2 = z2

}
=
{(

ω−1
1·2ω1(X1 − Ω̄12Ω̄−1

22 X2)
X0 − (Λ2 + Λ1Ω̄12Ω̄−1

22 )X2

) ∣∣∣X2 = z2

}
∼ ECp+q

((
0

−(Λ1Ω̄12Ω̄−1
22 + Λ2)z2

)
,

(
Ω̄11·2 0

0 Γ

)
, h

(p1+q)
Q2(z2)

)
,

where Q2(z2) = z>2 Ω̄−1
22 z2. Thus, since this last result implies (X0·2|X2 = z2, X1·2 =

z1·2) ∼ ECq(0,Γ, h
(q)
Q2(z2)+Q1·2(z1·2)), where Q2(z2) +Q1·2(z1·2) = z>2 Ω̄−1

22 z2 + z>1·2Ω̄−1
11·2z1·2 =

z>Ω̄−1z = Q(z), (X1·2|X2 = z2) ∼ ECp1(0, Ω̄11·2, h
(p1)
Q2(z2)) and {(X0·2−Λ1X1·2)|X2 = z2} ∼

ECq(−(Λ1Ω̄12Ω̄−1
22 + Λ2)z2,Γ + Λ1Ω̄11·2Λ>1 , h

(q)
Q2(z2)), we obtain

fZ1·2|Z2=z2(z1·2) =
1

Fq

(
τ1·2; Γ + Λ1Ω̄11·2Λ>1 , h

(q)
Q2(z2)

)fp1 (z1·2; 0, Ω̄11·2, h
(p1)
Q2(z2)

)
×Fq

(
Λ1ω

−1
1 ω1·2z1·2 + τ1·2; Γ, h(q)

Q2(z2)

)
, (A.3)

where τ1·2 = (Λ1Ω̄12Ω̄−1
22 + Λ2)z2 + τ . The proof follows by replacing Equation (A.3) in

Equation (A.2).

Alternative proof of Proposition 3.2 Following the alternative proof of Proposition
3.1 and a similar notation as used there, we note that

fp(y; ξ,Ω, h(p))
fp2(y2; ξ2,Ω22, h(p2))

= fp1(y1; ξ1·2,Ω11·2, h
(p1)
Q2(z2)),

and

fY2(y2) =
1

Fq(τ ; Γ + ΛΩ̄Λ>, h(q))
fp2(y2; ξ22,Ω22, h

(p2))Fq(Λ2(1)z2 + τ̄2(1); Γ̄2(1), h
(q)
Q2(z2)),

implying that

fY1|Y2=y2(y1) =
1

Fq(Λ2(1)z2 + τ̄2(1); Γ̄2(1), h
(q)
Q2(z2))

fp1(y1; ξ1·2,Ω11·2, h
(p1)
Q2(z2))Fq(Λz+τ ; Γ, h(q)).

Thus, because Fq(Λ2(1)z2+τ̄2(1); Γ̄2(1), h
(q)
Q2(z2)) = Fq

(
τ1·2; Γ + Λ1Ω̄11·2Λ>1 , h

(q)
Q2(z2)

)
and also

Fq(Λz+ τ ; Γ, h(q)) = Fq

(
Λ1ω

−1
1 ω1·2z1·2 + τ1·2; Γ, h(q)

Q2(z2)

)
, where z1·2 = ω−1

1·2(y1− ξ1·2) and

τ1·2 = (Λ1Ω̄12Ω̄−1
22 + Λ2)z2 + τ , the proof follows.

Proof of Proposition 4.1 Let XA = ω−1
A AωX and X0·A = X0 − ΛX + ΛAXA, where

ωA = diag(ΩA)1/2, with ΩA = AΩA>, and ΛA = ΛΩ̄ωA>ω−1
A Ω̄−1

A . From the properties of
EC distributions, we have after some algebraic manipulations that(

XA

X0A

)
∼ ECr+q

((
0
0

)
,

(
Ω̄A 0
0 Γ + ΛΩ̄Λ> − ΛAΩ̄AΛ>A

)
, h(r+q)

)
,
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where Ω̄A = ω−1
A ΩAω

−1
A . Thus, by letting ZA = ω−1

A AωZ, where Z d= (X|X0 < ΛX + τ),

we obtain that ZA
d= (XA|X0·A < ΛAXA + τ) d= (XA|X̄0·A < Λ̄AXA + τ̄A), where X̄0·A =

γ−1
A X0·A, Λ̄A = γ−1

A ΛA, τ̄A = γ−1
A τ and γA = diag(Γ + ΛΩ̄Λ> − ΛAΩ̄AΛ>A)1/2. From

Equation (A.1), we have

fZA(z) =
1

Fq(τ̄A; Γ̄A + Λ̄AΩ̄AΛ̄>A, h(q))
fr(z; 0, Ω̄A, h

(r))Fq(Λ̄Az + τ̄A; Γ̄A, h
(q)
QA(z)),

where Γ̄A = γ−1
A (Γ + ΛΩ̄Λ> − ΛAΩ̄AΛ>A)γ−1

A is the correlation matrix associated with
Γ + ΛΩ̄Λ>−ΛAΩ̄AΛ>A. Thus the proof follows by noting that AY + b = ξA +ωAZA, where
ξA = Aξ + b.

Proof of Proposition 4.2 Let Y = (Y >1 , Y >2 )> and consider the matrices A1 = (Ip1 , 0)
and A2 = (0, Ip2). Since Yi = AiY, i = 1, 2, where

Y ∼ SUEp,q((ξ>1 , ξ
>
2 )>, diag(Ω1,Ω2),diag(Λ1,Λ2), h(p+q), (τ>1 , τ

>
2 )>, diag(Γ1,Γ2)),

with p = p1 + p2, q = q1 + q2, the result for the marginal distribution of Yi follows by
applying the first part of Proposition 4.1. From that part, we obtain also the distribution
of the sum of Y1 and Y2 when p1 = p2 = r, since Y1 + Y2 = AY, where A = (Ir, Ir).
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