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José A. Dı́az-Garćıa Universidad Autónoma de Chihuahua, Mexico

Raul Fierro Universidad de Valparáıso, Chile
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UNCORRECTED PROOFS
Tenth Volume – Second Issue

Editorial Paper

“Chilean Journal of Statistics”:

An international scientific forum committed to

gender equality, open access, and the new era of

information

We introduce the second issue of the tenth volume of the Chilean Journal of Statistics
(ChJS). In this opportunity, and before presenting the interesting papers to be published
in the current issue, I would like to make some reflections about the international character
of our journal, but also about gender equality and the important challenges for statistics
in the era of information, as well as for the open access to publications and data.

Regarding gender equality, it allows us to accelerate progress and opportunities for ev-
eryone. However, our journal is in debt in relation a such an equality, so that this is big
challenge which we are assuming from now. Indeed, our editorial board is increasing the
number of women starting from this issue, because it is necessary and we must do justice
to the talent and empowerment of women in science, and particularly in statistics. Wel-
come on board Dr. Alejandra Tapia from Chile, Dr. Viviana Giampaoli from Argentina,
Dr. Michelli Barros from Brazil, Dr. Teresa Oliveira from Portugal, and Dr. Ana B. Nieto
from Spain. We are sure that with your enthusiasm, dynamism and talent, our journal will
benefit greatly. We are honored with your acceptance to be part of the ChJS.

Related to our international character, we must recall that the ChJS is published by
the Chilean Statistical Society (www.soche.cl) and belongs to the Chilean statistical
community, but our prestigious Editorial Board, presented at http://chjs.mat.utfsm.
cl/board.html, is composed of researchers from Argentina, Australia, Austria, Bulgaria,
Brazil, Canada, Chile, China, Colombia, Greece, India, Italy, Mexico, Netherlands, Peru,
Portugal, Romania, Saudi Arabia, Spain, Switzerland, UK, and US, which are distributed
according to the graphical plot displayed in Figure 1 according to data visualization of
data science, such as in Figure 2 below. Currently, a 20% of this Board are women and
we hope to increase this number promptly. In addition to our Editorial Board, we have
received papers to be evaluated from di↵erent countries and from the five continents as
shown in Figure 2. The ChJS is publishing about 20% of the papers submitted to our
journal. We are an open access journal, which publishes original papers free of charges for
publication, allowing the international community to disseminate the statistical knowledge
at no cost. This is a contribution from the Chilean Statistical Society to the knowledge
economy, defined as the use of knowledge to create goods and services. Furthermore, our
journal will promote the concept of open data in our next published papers.

Considering the relevant challenges for statistics in the new era of information, which
we are living during these days, the ChJS is open to publish papers related to artificial
intelligence, big data, data mining, data science, and text mining. We have taken into
account this challenge incorporating expert researchers on these topics as part of our
Editorial Board to evaluate and process possible papers regarding such topics. We hope
to publish an adequate number of papers on this interesting thematic during 2020.

ISSN: 0718-7912 (print)/ISSN 0718-7920 (online)
c� Chilean Statistical Society – Sociedad Chilena de Estad́ıstica
http://www.soche.cl/chjs
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Figure 1. Distribution of the Editorial Board’s members in relation to their country.

Figure 2. Dstribution of the authors who submit papers to the ChJS in relation to their country.
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About the Directory of the Chilean Statistical Society (https://soche.cl/
quienes-somos), firstly, I would like to thank its President, Dr. Mauricio Castro, for the
trust placed in me to be appointed as the Editor-in-Chief of the ChJS from March, 2019.
Also, I want to congratulate Dr. Castro for his excellent work in this high position of the
SOCHE. He assumed as President with great leadership during a complicated period for
our beloved scientific society. Secondly, I wish to congratulate as well to Dr. Jorge Figueroa
for being recently elected as the new President of the SOCHE from 2020, to whom I thank
also his trust to continue in my editorial position. They and all the community can rest
assured that I will make my best e↵ort to bring the ChJS to the highest standards of
professionalism, impartiality and quality that all scientific journal must strive for.

In addition to this presentation note, the second issue of the tenth volume of the ChJS
comprises five papers, which correspond to valuable contributions of renowned interna-
tional researchers who have honored us by publishing their interesting works in our journal;
all of these papers are available for free at http://chjs.mat.utfsm.cl/issues.html. We
also thank our Associated Editors and the anonymous reviewers who have contributed to
keeping the top quality standards of the ChJS. Our first paper is authored by Paulo H.
Ferreira, Taciana K.O. Shimizu, Adriano K. Suzuki, and Francisco Louzada. The authors
introduced an asymmetric extension to the tobit model by assuming that the error term
follows a tilted-normal distribution. The model parameters were estimated by a standard
method, whose performance was evaluated with Monte Carlo simulations for di↵erent sam-
ple sizes and parameter settings. Also, adequacy of the tobit formulation was assessed by
using model selection criteria. An illustration with real data was also given including a
diagnostic analysis. The second paper is authored by Eduardo Horta and Flavio Ziegel-
mann. The authors provided su�cient conditions ensuring that mixing properties hold
for the sequence of empirical cumulative distribution functions associated with a conju-
gate process. Also, numerical examples were provided to illustrate the results obtained
in this work. The third paper is authored by Guilherme Parreira da Silva, Cesar Augusto
Taconeli, Walmes Marques Zeviani, and Isadora Aparecida Sprengoski do Nascimento. The
authors evaluated the performance of Shewhart control charts based on neoteric ranked
set sampling to monitor the mean of normal and non-normal processes. They used mean,
median and standard deviation of run lengths to make this evaluation based on Monte
Carlo simulations. The impact of imperfect ranking and non-normality were also assessed
and an illustration with real data was provided to show the potential applications. The
fourth paper is authored by Lucas Pereira Lopes, Vicente Garibay Cancho, and Francisco
Louzada, who provided a GARCH methodology to describe a more realistic pricing option
using stocks from two Brazilian companies. The methodology was confronted with a type
Black-Scholes model, obtaining good results. Concepts of copulas, marginal models and
asymmetry were considered in this study making the joint modeling more flexible and
realistic. The empirical aspects of the obtained results were relevant in financial emerg-
ing markets, where non-normality seems to be evident. This second issue closes with a
fifth paper authored by Boubaker Mechab, Nesrine Hamidi, and Samir Benaissa. The au-
thors investigated nonparametric estimation of the relative error in functional regression
and censored data. The almost complete consistency and the asymptotic normality of the
estimator of the regression operator in the case of a censored response given a functional ex-
planatory variable were studied. The finite sample performance based on the mean square
error between standard and relative error regressions was assessed by simulations. A real
data illustration was carried out to apply the results obtained.

https://soche.cl/quienes-somos
https://soche.cl/quienes-somos
http://chjs.mat.utfsm.cl/issues.html
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Finally, I would like the statistical and data science communities, our prestigious Ed-
itorial Board, and authors to champion the ChJS as an international scientific forum
committed to gender equality, open access, and the new era of information to encourage
others to submitting new investigations to the ChJS. We are indexed by serious and rig-
orous international systems, including the ISI Web of Science. The ChJS continues facing
big challenges for the future and we need of all the community in meeting them.

Vı́ctor Leiva
Editor-in-Chief
Chilean Journal of Statistics
http://www.victorleiva.cl

http://www.victorleiva.cl
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On an asymmetric extension of the tobit model based on

the tilted-normal distribution

Paulo H. Ferreira1,⇤, Taciana K.O. Shimizu2, Adriano K. Suzuki2,
and Francisco Louzada2

1Department of Statistics, Federal University of Bahia, Salvador, Brazil
2Department of Applied Mathematics and Statistics, University of São Paulo, São Carlos, Brazil
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Abstract

In this paper, we introduce an asymmetric extension to the tobit model by assuming that
the error term follows a tilted-normal distribution. The new model, namely tilted-normal
tobit model, can be an useful alternative to other skewed tobit models, such as the skew-
normal and power-normal tobit models. The method of maximum likelihood is used
for estimating the model parameters. We provide some simulation studies for di↵erent
sample sizes and parameter settings. In addition, we perform residual and influence
diagnostic analysis. Finally, we use American food consumption data to illustrate the
better performance of the model introduced.

Keywords: Censored regression model · Influence · Maximum likelihood estimation
· Residual and influence diagnostic analysis · Tilted-normal distribution.

Mathematics Subject Classification: Primary 62J05 · Secondary 62N01.

1. Introduction

Tobit models are regression models whose range of the dependent variable is somehow
constrained. They were first suggested in a pioneering work by Tobin (1958), to describe
the relationship between a non-negative dependent variable (the ratio of total durable
goods expenditure to total disposable income, per household) and a vector of independent
variables (the age of the household head, and the ratio of liquid asset holdings to total
disposable income). Tobin called his model the limited dependent variable model, however
it and its various generalizations are popularly known among economists as tobit models,
a phrase coined by Goldberger (1964) due to similarities with probit models (the term
tobit aims to synthesize in one word Tobin’s probit concept). Tobit models are also known
as censored regression models. For discussion on properties, parameter estimation and
asymptotic properties of estimators, see, e.g., Amemiya (1973, 1984, 1985) and Fair (1977).

⇤
Corresponding author. Email: paulohenri@ufba.br
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The tobit specification is adequate for the situation where the sample proportion of
zero observations is roughly equivalent to the left tail area of the assumed parametric
distribution. The Cragg model (Cragg, 1971), which in the classical literature is known as
the two-part model, is an alternative to tobit when the rate of zero observations is quite
di↵erent from the probability of the left tail obtained with the assumed parametric model.
An interesting way of extending the tobit model is supposing that the probability distri-

bution of the perturbations is no longer normal. For instance, Arellano-Valle et al. (2012)
proposed an extension of the tobit model using the Student-t distribution, which is use-
ful for statistical modeling of censored data sets involving observed variables with heavier
tails than the normal distribution. Mart́ınez-Flórez et al. (2013) assumed the power-normal
distribution (Gupta and Gupta, 2008), thus providing an asymmetric alternative to tobit
model. However, such a probability distribution is problematic, that is, of limited use,
since it only accommodates low to moderate left-skewness. Moreover, Castro et al. (2014)
extended the tobit model to the class of scale mixtures of normal distributions (Andrews
and Mallows, 1974) from the Bayesian viewpoint. Other important contributions extend-
ing the tobit model by using asymmetric and/or heavy-tailed distributions are Garay et
al. (2016, 2017), Mattos et al. (2018), Barros et al. (2018) and Desousa et al. (2018) among
many others.
The main purpose of this paper is to focus on the study of the censored regression model,

under the assumption that the error term follows the tilted-normal distribution (Maiti
and Dey, 2012). Such probability distribution has received some attention in the recent
literature, e.g. Louzada et al. (2018) applied the tilted-normal model to compositional data
on percentages of players’ points in the Brazilian men’s volleyball super league 2014/2015.
Parameter estimation is performed by using the maximum likelihood (ML) approach and
its large sample properties. Application is implemented to American food consumption
data set (USDA, 2000), where it is demonstrated that the proposed model can be very
useful in fitting real data sets.
The paper is organized as follows. In Section 2, we define the tilted-normal distribution

and discuss some of its properties. We present the tilted-normal tobit model and imple-
ment inference using the ML approach in Section 3. In Section 4, results of simulation
studies reveal the good performance of the estimation approach and the appropriateness
of some information criteria in distinguishing among candidate models. Section 5 presents
an application to real data on consumption of tomato in the United States in 1994-1996
(USDA, 2000). Model fitting evaluation indicates that the data set in question is much
better fitted by the tilted-normal tobit model than by the classic (standard or Type I)
tobit model (Tobin, 1958), as well as by other asymmetric models, like the skew-normal
tobit model (Hutton and Stanghellini, 2011) and the power-normal tobit model (Mart́ınez-
Flórez et al., 2013). Finally, some concluding remarks and directions for future work are
given in Section 6. In the work of Hutton and Stanghellini (2011), the skew-normal tobit
model was used to address the skewness and right-censoring problems in bounded health
scores.

2. The Tilted-Normal Distribution

In this section, we present some basic properties of the tilted-normal distribution, including
the probability density function (PDF) and the cumulative distribution function –CDF–
(Subsection 2.1), the moments (Subsection 2.2), as well as other relevant issues (Subsection
2.3).
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Figure 1. Tilted-normal PDF  (z; �) for some values of �.

2.1 Probabilistic functions

Following the proposition of Garćıa et al. (2010) and Maiti and Dey (2012), the tilted-
normal distribution is defined as follows. Let Z be a standard normal random variable,
that is, Z ⇠ N(0, 1). Following Marshall and Olkin (1997), the standard tilted-normal
distribution, denoted by TN(0, 1, �), has PDF given by

 (z; �) =
��(z)

[1� (1� �) {1� �(z)}]2
, z 2 R,

where � > 0 is a shape/skewness parameter, � is the PDF of the standard normal distri-
bution and � is the CDF of the standard normal distribution. The standard tilted-normal
PDF is a unimodal function, which is skewed to the left if � > 1 and to the right if
0 < � < 1, while � = 1 indicates a standard normal PDF (Maiti and Dey, 2012). Figure 1
displays a few PDF graphs for di↵erent values of �.
If Z is a random variable from a TN(0, 1, �) distribution, then the location-scale exten-

sion of Z, Y = µ+ �Z, has PDF given by

 (y;µ,�, �) =
�
��

�y�µ
�

�
⇥
1� (1� �)

�
1� �

�y�µ
�

� ⇤2 , (1)

as well as its CDF given by

 (y;µ,�, �) =
�
�y�µ

�

�

1� (1� �)
�
1� �

�y�µ
�

� , (2)

where µ 2 R and � > 0. We will denote this extension by using the notation Y ⇠
TN(µ,�, �).
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2.2 Moments

For the model (1), Garćıa et al. (2010) showed that the k-th moment about the origin of
the random variable Y is given by

µ
0

k = E
h
Y k

i
=

Z 1

�1
yk (y;µ,�, �)dy

=

Z
1

0


µ+ �

p
2 erf�1

✓
�u+ � � u�

u+ � � u�

◆�k
du,

(3)

where erf�1(w) = w
p
⇡/2 + O

�
w3

�
' w

p
⇡/2 is the inverse error function.

Although the expression (3) seems to be not available in compact form, the authors
verified the following approximations:

µ
0

1 = E [Y ] '
2(1� �)2µ� �

p
2⇡

�
1� �2 + 2� log(�)

�

2�(1� �)
,

µ
0

2 = E
⇥
Y 2

⇤
' �

2(1� �)3

⇢
2(1� �)2µ2 + 2

h�
�2 � 1

�
µ�

p
2⇡ +

�
1 + 6� (1 + �)⇡�2

�i

+ 4��
h
(1� �)µ

p
2⇡ � (1 + �)⇡�

i
log(�)

�
,

µ
0

3 = E
⇥
Y 3

⇤
' �1

4(1� �)�

⇢
� 4(1� �)3µ2 [�1 + �(1 + �)] + 6(1� �)2µ⇡�2

⇥
1 + �

�
2 + �2

�⇤

�
p
2⇡⇡�3

⇥
1 + 2� � 5�2 + 11�3 + 4�4 � �5

⇤
� 6(1� �)��

p
⇡
h
2
p
2(1� �)µ2

+ 4µ�
p
⇡
�
1� �2

�
+
p
2(1 + �)2⇡�2

i
log(�)

�
.

(4)

These quantities can be used to compute the approximate mean (E[Y ] = µ
0

1
), variance

(Var[Y ] = µ
0

2
� (µ

0

1
)2) and skewness index (�1 = µ

0

3
/(µ

0

2
)3/2) of the random variable Y ,

and are particularly useful for estimating the parameters by the method of moments.

2.3 Others

The model (1) can be extended by considering µi = x>
i �, where � is an unknown vector of

regression coe�cients and xi is a vector of known regressors correlated with the response
vector, for i = 1, . . . , n.
Regarding the other skewed distributions that could be used instead of the tilted-normal

distribution, Gupta and Gupta (2008) observed that the estimation of the shape parameter
of the skew-normal distribution (Azzalini, 1985) is problematic, among others, in the cases
where the sample size is not large enough. Monti (2003) noticed that the estimate of the
shape parameter is �̂ = ±1, even when the data are generated by a model with finite �.
Moreover, Pewsey et al. (2012) showed that the Fisher information matrix for the skew-
normal distribution is singular under the symmetry hypothesis and, therefore, regularity
conditions are not satisfied for the likelihood approach. The same authors also derived
the Fisher information matrix for the location-scale version of the power-normal model
(Gupta and Gupta, 2008) and have shown that, in addition to its several nice properties,
it is not singular for the shape parameter � = 1. However, as pointed out by Maiti and
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Dey (2012), left-skewness is not so clear and modeling of left-skewed data will be misfit.
This is due to the fact that such a distribution can only accommodate low to moderate
left-skewness of the data distribution. Hence, the power-normal model is not appropriate
for the cases where the data distribution exhibits strong left-skewness. This limitation also
applies to the tilted-normal distribution, which can not capture high or moderate levels
of skewness (when measured in an appropriate manner). In fact, Rubio and Steel (2012)
and Jones (2015) discuss the restrictions of using the Marshall-Olkin transformation for
inducing skewness in many symmetric models (including the normal one). Despite such
limitation, we demonstrate here that the proposed tobit model based on the tilted-normal
distribution can still be very useful in fitting real data sets as in Section 5.

3. The Tilted-Normal Tobit Model

In this section, we introduce the proposed extension of the tobit model using the tilted-
normal distribution (Subsection 3.1) and discuss statistical inference based on the ML
method (Subsection 3.2).

3.1 Formulation

Let Di = I (Yi > 0), where I(·) is the indicator function. The tilted-normal tobit model
can be defined by relating the observed dependent variable Y o

i to the original (that is, of
theoretical interest), but censored, dependent variable Yi, as follows:

Y o

i = DiYi and Yi = x>
i � + ✏i, (5)

for i = 1, . . . , n, where � is a p ⇥ 1 unknown parameter vector, xi is a p ⇥ 1 vector of
known independent variables, and the errors ✏i ⇠ TN(0,�, �).
The value of the location parameter, 0, of ✏i implies, from the first expression of (4),

that E [✏i] ' ��
p
2⇡

�
1� �2 + 2� log(�)

�
/ (2�(1� �)) < 0, 8�, � > 0 and � 6= 1. Also,

for � > 0 fixed, E [✏i] ! �1 when � ! 0+ and E [✏i] ! 0 as � ! 1�. This location
parameter choice follows from the work of Mart́ınez-Flórez et al. (2013). However, it could
also have been chosen in order to obtain E [✏i] = 0, as in the normal model, and similarly
as in the work of Mattos et al. (2018). Although, even in this case, the expected value of
the observed dependent variable Y o

i di↵ers from the location parameter µi = x>
i �, that

is, E [Y o

i | xi] = E [Yi | Yi > 0,xi]P (Yi > 0 | xi), which, after some steps and considering
✏i ⇠ N

�
0,�2

�
, results in E [Y o

i | xi] = �
�
x>
i �/�

� ⇥
x>
i � + ��

�
x>
i �/�

�
/�

�
x>
i �/�

�⇤
6=

x>
i � (see, e.g., Greene, 2012, Chapter 19).
Note, however, that for the case where ✏i ⇠ TN(0,�, �), the main di�culty in ob-

taining E[Y o

i | xi], which would further allow us to analyze the e↵ects of the inequality
E [Y o

i | xi] 6= x>
i � on the intercept �0 of the tilted-normal tobit model, is that there seems

to be no explicit known expression for the conditional expectation E [Yi | Yi > 0,xi]. Nev-
ertheless, such expected value can be obtained numerically (as shown in Figure 4) or via
approximations, e.g., by using some general results of the Marshall and Olkin (1997) family
of distributions shown in Cordeiro et al. (2014), among others. We will leave this part of
research for our future work.
The tilted-normal tobit model is basically a censored tilted-normal regression model

with the tilted-normal distribution replacing the normal distribution for the error term.
Thus, parameter estimation for the proposed model is related to parameter estimation for
the censored tilted-normal distribution.
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For the more general case, where the (known) left-censoring point is ci 2 R, or even for
the right-censoring case, we can obtain the estimation results by using the previous model
(5), in the same way as stated in Mart́ınez-Flórez et al. (2013).
The next subsection is devoted to implementation of parameter estimation by ML ap-

proach and discusses its properties in large samples.

3.2 Estimation

The ML estimators are the most commonly used in the literature. These estimators enjoy
desirable properties and can be used for constructing confidence intervals for the model
parameters. The normal approximation for the ML estimators in large sample distribution
theory is easily handled either analytically or numerically.
In this work, we consider the ML estimation of the unknown parameters of the tilted-

normal tobit model. The approach is described as follows.

Let ✓ =
�
�>,�, �

�>
be the vector of parameters of interest. Also suppose that the

data consist of n = n0 + n1 observations (x1, d1y1) , . . . , (xn, dnyn), where n0 and n1

are the number of observations on the sets N0 = {i : di = 0} = {i : yi = 0} and
N1 = {i : di = 1} = {i : yi > 0}, respectively. Since the unobserved random variables
Y1, . . . , Yn are independent, with Yi ⇠ TN(x>

i �,�, �), we have P (Y o

i = 0) = P (Yi  0) =
�
�
�x>

i �/�
�
/
�
1� (1� �)

�
1� �

�
�x>

i �/�
� �

, for i 2 N0, while for the non-nulls Y o

i s
we have that they are distributed as their respective Yis, that is, Y o

i ⇠ TN(x>
i �,�, �),

for i 2 N1. Thus, from the relations mentioned above, the likelihood function for the
tilted-normal tobit model is given by

L(✓) =
nY

i=1

2

4
�
⇣
�x>

i �
�

⌘

1� (1� �)
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.

Then, the corresponding log-likelihood function is expressed as

`(✓) =
nX

i=1

(1� di) log

✓
�

✓
�x>

i �

�
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�
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� 2
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di log
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1� (1� �)
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yi � x>

i �

�

◆�◆
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(6)

The ML estimator ✓̂ of ✓ is obtained by directly solving the nonlinear equations: U(�) = 0,
U(�) = 0 and U(�) = 0, where U(·) denotes the score function (see Appendix for analytic
description). Note that these equations can not be solved analytically, but we can use,
for instance, the optim routine (method = “L-BFGS-B”) of the R software to solve them
numerically. Since regularity conditions are satisfied using the large sample distribution,
the distribution of ✓̂ can be approximated by a multivariate normal distribution, that is,
✓̂ ⇠ Np+2(✓, [Jp+2(✓̂)]�1), to obtain confidence intervals and hypothesis testing for the

parameters of the tilted-normal tobit model, where Jp+2✓̂) is the (p+2)⇥ (p+2) observed

information matrix evaluated at ✓̂. The elements of the diagonal of [Jp+2(✓̂)]�1 can be
used to approximate the corresponding standard errors.



Chilean Journal of Statistics 105

4. Simulation Studies

In this section, we present the main results obtained from Monte Carlo simulation studies
aimed at verifying properties of the ML estimators of the tilted-normal tobit model pa-
rameters, with di↵erent sample sizes and censoring percentages (Subsection 4.1), as well as
investigating the appropriateness of the chosen model selection criteria (Subsection 4.2).

4.1 Parameter recovery study

The first simulation study was based on M = 2, 000 generated samples of sizes n = 50,
100, 300 and 500.
Without loss of generality, we took � = 1 and �1 = 3.5. It was considered a linear model

with a single covariate X whose values were generated according to a N(0, 1) distribution.
We assumed errors ✏i ⇠ TN(0,�, �). To ensure a censoring percentage (that is, of zero yi
observations) of approximately 5%, 25%, 50% and 75%, we set the following true values
for �0, respectively (and also for di↵erent values of �):

• For � = 0.5: �0 = 6.4, 2.8, 0.4 and �2.1;
• For � = 1: �0 = 6, 2.4, 0.05 and �2.5;
• For � = 2: �0 = 5.5, 2.1, �0.4 and �2.9;
• For � = 5: �0 = 5, 1.5, �0.9 and �3.4.

Observed data yi were taken as yi = max {�0 + �1xi + ✏i, 0}. In order to evaluate esti-
mators performance for point estimates, the following quantities were considered: means,
biases and mean squared errors (MSEs) of the parameter estimates, and estimated cover-
age lengths (CLs). We also assessed the performance of the proposed model through the
coverage probabilities (CPs) of the 95% normal confidence intervals. ML estimates were
computed by using the optim routine (method = “L-BFGS-B”) of the R software.

Let ✓̂ = (b�0, b�1, b�, b�)> be the ML estimators of the tilted-normal tobit model parame-
ters and (sb�0

, sb�1
, sb�, sb�) be their standard errors, which were computed by inverting the

observed information matrix. The means, biases, MSEs, CLs and CPs can be estimated
by the following equations:

Mean
⇣
✓̂j
⌘
=

1

M

MX

m=1

b✓(m)

j , Bias
⇣
✓̂j
⌘
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M
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⇣
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j � ✓j
⌘
,

MSE
⇣
✓̂j
⌘
=

1

M

MX

m=1

⇣
b✓(m)

j � ✓j
⌘2

, CL
⇣
✓̂j
⌘
=

3.919928

M

MX

m=1

sb✓(m)
j

and

CP (✓j) =
1

M

MX

m=1

I
⇣
b✓(m)

j � 1.959964 sb✓(m)
j

< ✓j < b✓(m)

j + 1.959964 sb✓(m)
j

⌘
,

for j = 1, 2, 3, 4, where b✓(m)

j is the ML estimate of ✓j obtained from the mth replicated
sample.
From Tables 1-4, it can be seen that the ML estimates of �0 and �1 are unstable,

because these parameters are a↵ected by the skewness parameter � and the proportion of
zero observations in the sample. However, the ML estimates become more stable as the
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Table 1. Estimation results for the tilted-normal tobit model (� = 0.5).
Sample

size

Censoring

percentage
Parameter

True

value
Mean Bias MSE CP CL

50 5 �0 6.4 6.4519 0.0519 0.5945 0.9800 3.0781

�1 3.5 3.5128 0.0128 0.0242 0.9415 0.5863

� 1 1.0012 0.0012 0.0165 0.9340 0.5361

� 0.5 0.8487 0.3487 0.9849 0.8565 4.2149

25 �0 2.8 2.8342 0.0342 0.6226 0.9840 3.3211

�1 3.5 3.5184 0.0184 0.0440 0.9220 0.7732

� 1 0.9980 -0.0020 0.0183 0.9400 0.5851

� 0.5 0.9119 0.4119 1.2976 0.8615 5.0279

50 �0 0.4 0.4397 0.0397 0.7172 0.9870 3.8817

�1 3.5 3.5226 0.0226 0.0935 0.9150 1.0962

� 1 0.9887 -0.0113 0.0246 0.9345 0.6950

� 0.5 0.9361 0.4361 1.3936 0.8435 6.3242

75 �0 -2.1 -2.0622 0.0378 1.0908 0.9850 5.1825

�1 3.5 3.5664 0.0664 0.3317 0.8945 1.9142

� 1 0.9630 -0.0370 0.0449 0.9180 0.9563

� 0.5 0.9565 0.4565 1.6456 0.8140 8.5444

100 5 �0 6.4 6.4122 0.0122 0.3380 0.9770 2.1728

�1 3.5 3.5070 0.0070 0.0120 0.9365 0.4178

� 1 1.0034 0.0034 0.0083 0.9510 0.3611

� 0.5 0.7327 0.2327 0.5402 0.8945 2.5704

25 �0 2.8 2.8077 0.0077 0.3922 0.9845 2.4075

�1 3.5 3.5094 0.0094 0.0228 0.9325 0.5490

� 1 1.0060 0.0060 0.0096 0.9470 0.4015

� 0.5 0.7782 0.2782 0.6988 0.8825 3.1039

50 �0 0.4 0.4195 0.0195 0.5152 0.9870 2.8807

�1 3.5 3.5090 0.0090 0.0447 0.9300 0.7719

� 1 1.0072 0.0072 0.0138 0.9500 0.4878

� 0.5 0.8287 0.3287 0.8875 0.8645 4.0961

75 �0 -2.1 -2.0563 0.0437 0.7604 0.9820 4.0274

�1 3.5 3.5217 0.0217 0.1345 0.9295 1.3138

� 1 0.9945 -0.0055 0.0232 0.9475 0.6972

� 0.5 0.8941 0.3941 1.3086 0.8340 6.2404

300 5 �0 6.4 6.3988 -0.0012 0.1036 0.9610 1.1943

�1 3.5 3.5026 0.0026 0.0039 0.9460 0.2414

� 1 1.0002 0.0002 0.0025 0.9555 0.1908

� 0.5 0.5756 0.0756 0.1010 0.9210 1.1327

25 �0 2.8 2.7921 -0.0079 0.1209 0.9655 1.3199

�1 3.5 3.5052 0.0052 0.0068 0.9430 0.3166

� 1 1.0012 0.0012 0.0028 0.9560 0.2090

� 0.5 0.5978 0.0978 0.1455 0.9180 1.3146

50 �0 0.4 0.3847 -0.0153 0.1704 0.9830 1.5937

�1 3.5 3.5063 0.0063 0.0135 0.9410 0.4446

� 1 1.0023 0.0023 0.0040 0.9530 0.2515

� 0.5 0.6397 0.1397 0.2584 0.9150 1.7361

75 �0 -2.1 -2.1111 -0.0111 0.3248 0.9865 2.3749

�1 3.5 3.5081 0.0081 0.0394 0.9335 0.7416

� 1 1.0041 0.0041 0.0083 0.9540 0.3754

� 0.5 0.7279 0.2279 0.5313 0.8890 2.9640

500 5 �0 6.4 6.3938 -0.0062 0.0546 0.9630 0.9079

�1 3.5 3.5020 0.0020 0.0023 0.9470 0.1873

� 1 0.9999 -0.0001 0.0013 0.9465 0.1436

� 0.5 0.5463 0.0463 0.0498 0.9435 0.8300

25 �0 2.8 2.7915 -0.0085 0.0667 0.9670 1.0014

�1 3.5 3.5040 0.0040 0.0040 0.9445 0.2453

� 1 1.0004 0.0004 0.0016 0.9545 0.1566

� 0.5 0.5572 0.0572 0.0678 0.9305 0.9389

50 �0 0.4 0.3887 -0.0113 0.0900 0.9765 1.2022

�1 3.5 3.5031 0.0031 0.0082 0.9405 0.3438

� 1 1.0006 0.0006 0.0022 0.9540 0.1865

� 0.5 0.5770 0.0770 0.1084 0.9320 1.1725

75 �0 -2.1 -2.1190 -0.0190 0.1888 0.9845 1.8003

�1 3.5 3.5043 0.0043 0.0228 0.9335 0.5727

� 1 1.0035 0.0035 0.0047 0.9530 0.2768

� 0.5 0.6499 0.1499 0.2955 0.9050 2.0154

sample size increases. It can also be noted that the MSEs of the ML estimates of �0, �1, �
and � decrease as the sample size increases, which is expected by us since ML estimators
are consistent. As pointed out by Mart́ınez-Flórez et al. (2013), bias correction methods,
such as bootstrap or jackknife (Efron, 1982; Efron and Tibshirani, 1993), could be tried to
improve small sample performance. The main conclusion here is that we are quite safe to
work with the ML estimation method if sample sizes are large (that is, greater than 100).
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Table 2. Estimation results for the tilted-normal tobit model (� = 1).

Sample

size

Censoring

percentage
Parameter

True

value
Mean Bias MSE CP CL

50 5 �0 6 6.1417 0.1417 0.5485 0.9840 2.9170

�1 3.5 3.5138 0.0138 0.0248 0.9410 0.5952

� 1 0.9993 -0.0007 0.0143 0.9420 0.4983

� 1 1.3193 0.3193 1.6982 0.8365 6.4760

25 �0 2.4 2.5572 0.1572 0.5809 0.9840 3.2330

�1 3.5 3.5164 0.0164 0.0434 0.9300 0.7780

� 1 0.9934 -0.0066 0.0167 0.9435 0.5595

� 1 1.3130 0.3130 1.7376 0.8215 7.2424

50 �0 0.05 0.2379 0.1879 0.6702 0.9830 3.8073

�1 3.5 3.5213 0.0213 0.0895 0.9220 1.0849

� 1 0.9800 -0.0200 0.0232 0.9325 0.6784

� 1 1.3061 0.3061 1.8358 0.8025 8.6561

75 �0 -2.5 -2.2420 0.2580 1.0763 0.9775 5.1703

�1 3.5 3.5570 0.0570 0.3211 0.8985 1.9001

� 1 0.9463 -0.0537 0.0459 0.8975 0.9457

� 1 1.2107 0.2107 1.9302 0.7510 10.8050

100 5 �0 6 6.0401 0.0401 0.2902 0.9905 2.0510

�1 3.5 3.5072 0.0072 0.0124 0.9390 0.4236

� 1 1.0026 0.0026 0.0068 0.9600 0.3323

� 1 1.2999 0.2999 1.2101 0.8715 4.5938

25 �0 2.4 2.4526 0.0526 0.3278 0.9920 2.3338

�1 3.5 3.5107 0.0107 0.0227 0.9350 0.5513

� 1 1.0035 0.0035 0.0082 0.9550 0.3836

� 1 1.3147 0.3147 1.3749 0.8605 5.3230

50 �0 0.05 0.1408 0.0908 0.4298 0.9890 2.8498

�1 3.5 3.5107 0.0107 0.0431 0.9285 0.7646

� 1 1.0006 0.0006 0.0119 0.9545 0.4777

� 1 1.3014 0.3014 1.4665 0.8425 6.4662

75 �0 -2.5 -2.3055 0.1945 0.7475 0.9720 4.0618

�1 3.5 3.5254 0.0254 0.1306 0.9290 1.3025

� 1 0.9843 -0.0157 0.0223 0.9380 0.7052

� 1 1.2642 0.2642 1.8509 0.7850 8.9251

300 5 �0 6 5.9950 -0.0050 0.0855 0.9710 1.1322

�1 3.5 3.5029 0.0029 0.0040 0.9475 0.2447

� 1 1.0001 0.0001 0.0019 0.9535 0.1745

� 1 1.1421 0.1421 0.3988 0.9165 2.2529

25 �0 2.4 2.3905 -0.0095 0.1100 0.9760 1.2999

�1 3.5 3.5050 0.0050 0.0069 0.9445 0.3177

� 1 1.0016 0.0016 0.0025 0.9540 0.2016

� 1 1.1843 0.1843 0.5630 0.9055 2.6950

50 �0 0.05 0.0414 -0.0086 0.1468 0.9845 1.6296

�1 3.5 3.5061 0.0061 0.0132 0.9420 0.4390

� 1 1.0021 0.0021 0.0037 0.9625 0.2564

� 1 1.2282 0.2282 0.7680 0.9010 3.5501

75 �0 -2.5 -2.4638 0.0362 0.2994 0.9780 2.5066

�1 3.5 3.5097 0.0097 0.0377 0.9395 0.7342

� 1 1.0002 0.0002 0.0081 0.9505 0.4031

� 1 1.2854 0.2854 1.2776 0.8595 5.7356

500 5 �0 6 5.9930 -0.0070 0.0487 0.9665 0.8641

�1 3.5 3.5022 0.0022 0.0024 0.9455 0.1899

� 1 1.0003 0.0003 0.0011 0.9520 0.1317

� 1 1.0855 0.0855 0.1869 0.9355 1.6243

25 �0 2.4 2.3894 -0.0106 0.0649 0.9695 0.9893

�1 3.5 3.5041 0.0041 0.0041 0.9450 0.2461

� 1 1.0012 0.0012 0.0015 0.9565 0.1515

� 1 1.1152 0.1152 0.2923 0.9235 1.9189

50 �0 0.05 0.0383 -0.0117 0.0913 0.9760 1.2347

�1 3.5 3.5035 0.0035 0.0079 0.9360 0.3394

� 1 1.0016 0.0016 0.0023 0.9520 0.1912

� 1 1.1501 0.1501 0.4136 0.9180 2.4745

75 �0 -2.5 -2.5073 -0.0073 0.2004 0.9780 1.9543

�1 3.5 3.5052 0.0052 0.0220 0.9375 0.5661

� 1 1.0031 0.0031 0.0053 0.9570 0.3070

� 1 1.2613 0.2613 0.9612 0.8865 4.4039

4.2 Misspecification study

The second simulation study was based on 3, 000 generated samples of size n = 500.
The main goal was to verify if we could distinguish between the proposed model and the
candidate ones, in the light of the data set, based on the adopted model selection criteria:
Akaike information criterion (AIC) (Akaike, 1977), corrected AIC (AICc) (Sugiura, 1978;
Hurvich and Tsai, 1989), consistent AIC (CAIC) (Bozdogan, 1987; Anderson et al., 1998),
Bayesian information criterion (BIC) (Schwarz, 1978), and Hannan-Quinn information
criterion (HQIC) (Hannan and Quinn, 1979).
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Table 3. Estimation results for the tilted-normal tobit model (� = 2).

Sample

size

Censoring

percentage
Parameter

True

value
Mean Bias MSE CP CL

50 5 �0 5.5 5.7563 0.2563 0.5080 0.9745 2.8682

�1 3.5 3.5112 0.1548 0.0241 0.9395 0.5863

� 1 0.9814 0.1141 0.0134 0.9280 0.4887

� 2 1.9730 1.6222 2.6308 0.7890 9.9064

25 �0 2.1 2.3960 0.2960 0.5682 0.9750 3.1662

�1 3.5 3.5123 0.0123 0.0399 0.9335 0.7515

� 1 0.9745 -0.0255 0.0161 0.9355 0.5509

� 2 1.9013 -0.0987 2.6386 0.7630 10.5477

50 �0 -0.4 -0.0271 0.3729 0.7246 0.9690 3.7854

�1 3.5 3.5204 0.0204 0.0869 0.9210 1.0689

� 1 0.9564 -0.0436 0.0237 0.9165 0.6806

� 2 1.7980 -0.2020 2.8972 0.7410 12.1170

75 �0 -2.9 -2.4003 0.4997 1.2122 0.9485 5.1567

�1 3.5 3.5541 0.0541 0.3009 0.8955 1.8605

� 1 0.9143 -0.0857 0.0494 0.8740 0.9397

� 2 1.5492 -0.4508 3.0574 0.6790 14.1499

100 5 �0 5.5 5.6038 0.1038 0.2478 0.9710 2.0787

�1 3.5 3.5049 0.0049 0.0118 0.9445 0.4156

� 1 0.9935 -0.0065 0.0064 0.9520 0.3417

� 2 2.1771 0.1771 2.3208 0.8435 8.0449

25 �0 2.1 2.2390 0.1390 0.2746 0.9730 2.3670

�1 3.5 3.5076 0.0076 0.0202 0.9405 0.5298

� 1 0.9887 -0.0113 0.0077 0.9485 0.3940

� 2 2.1057 0.1057 2.4177 0.8260 8.8352

50 �0 -0.4 -0.1877 0.2123 0.4311 0.9595 2.9385

�1 3.5 3.5110 0.0110 0.0396 0.9325 0.7483

� 1 0.9825 -0.0175 0.0121 0.9420 0.5042

� 2 2.0225 0.0225 2.6717 0.8000 10.6324

75 �0 -2.9 -2.5234 0.3766 0.7913 0.9530 4.0722

�1 3.5 3.5261 0.0261 0.1224 0.9285 1.2666

� 1 0.9539 -0.0461 0.0237 0.9125 0.7083

� 2 1.7361 -0.2639 2.8601 0.7240 12.4367

300 5 �0 5.5 5.5060 0.0060 0.0872 0.9630 1.2106

�1 3.5 3.5026 0.0026 0.0038 0.9455 0.2393

� 1 0.9989 -0.0011 0.0023 0.9490 0.1945

� 2 2.2276 0.2276 1.3580 0.9025 4.7415

25 �0 2.1 2.1138 0.0138 0.1114 0.9630 1.4184

�1 3.5 3.5040 0.0040 0.0061 0.9445 0.3043

� 1 0.9991 -0.0009 0.0030 0.9475 0.2310

� 2 2.2532 0.2532 1.7165 0.8855 5.6553

50 �0 -0.4 -0.3504 0.0496 0.1487 0.9525 1.8175

�1 3.5 3.5068 0.0068 0.0124 0.9450 0.4281

� 1 0.9951 -0.0049 0.0046 0.9470 0.3008

� 1 2.1821 0.1821 1.9111 0.8760 7.1213

75 �0 -2.9 -2.7586 0.1414 0.2937 0.9545 2.6569

�1 3.5 3.5126 0.0126 0.0349 0.9390 0.7116

� 1 0.9831 -0.0169 0.0094 0.9260 0.4415

� 2 2.0438 0.0438 2.3756 0.8085 9.5972

500 5 �0 5.5 5.4934 -0.0066 0.0549 0.9615 0.9335

�1 3.5 3.5023 0.0023 0.0023 0.9455 0.1857

� 1 1.0006 0.0006 0.0014 0.9530 0.1492

� 2 2.1799 0.1799 0.8502 0.9230 3.5385

25 �0 2.1 2.0939 -0.0061 0.0728 0.9660 1.0957

�1 3.5 3.5040 0.0040 0.0037 0.9460 0.2358

� 1 1.0012 0.0012 0.0019 0.9525 0.1777

� 2 2.2187 0.2187 1.1618 0.9085 4.2419

50 �0 -0.4 -0.3887 0.0113 0.1047 0.9570 1.4216

�1 3.5 3.5032 0.0032 0.0075 0.9405 0.3305

� 1 0.9994 -0.0006 0.0031 0.9510 0.2342

� 2 2.2231 0.2231 1.5191 0.8950 5.5508

75 �0 -2.9 -2.8224 0.0776 0.2014 0.9575 2.1558

�1 3.5 3.5070 0.0070 0.0203 0.9375 0.5472

� 1 0.9914 -0.0086 0.0063 0.9375 0.3557

� 2 2.1280 0.1280 2.0353 0.8575 8.0622

As in the simulation study presented in the previous subsection, we considered a linear
model with a single covariate X ⇠ N(0, 1) and set �1 = 3.5. We also assumed the following
distributions for the errors:

• Normal: that is, ✏i ⇠ N(0, 1). To ensure a censoring percentage of about 5%, 25%, 50%
and 75%, we took the following true values for �0, respectively: 6, 2.4, 0.1 and �2.4;

• Skew-normal: that is, ✏i ⇠ SN(0, 1, �) (for details on the skew-normal distribution, see
Azzalini, 1985). To consider the two kinds of skewness this distribution has (left-skewed
if � < 0 and right-skewed if � > 0, while for � = 0 the distribution reduces to the



Chilean Journal of Statistics 109

Table 4. Estimation results for the tilted-normal tobit model (� = 5).

Sample

size

Censoring

percentage
Parameter

True

value
Mean Bias MSE CP CL

50 5 �0 5 5.3540 0.3540 0.3342 0.9460 2.8536

�1 3.5 3.5111 0.0111 0.0201 0.9475 0.5493

� 1 0.9412 -0.0588 0.0162 0.8680 0.5013

� 5 3.5575 -1.4425 8.1214 0.7440 19.0512

25 �0 1.5 1.8797 0.3797 0.3676 0.9520 3.2018

�1 3.5 3.5134 0.0134 0.0358 0.9400 0.7148

� 1 0.9292 -0.0708 0.0202 0.8700 0.5740

� 5 3.4673 -1.5327 8.3702 0.7460 21.0448

50 �0 -0.9 -0.4860 0.4140 0.4478 0.9570 3.8100

�1 3.5 3.5140 0.0140 0.0727 0.9260 1.0123

� 1 0.9083 -0.0917 0.0307 0.8520 0.7005

� 5 3.3800 -1.6200 8.8377 0.7575 24.6978

75 �0 -3.4 -2.9325 0.4675 0.8327 0.9380 5.1829

�1 3.5 3.5171 0.0171 0.2475 0.9065 1.7592

� 1 0.8662 -0.1338 0.0603 0.8165 0.9525

� 5 3.2562 -1.7438 9.4535 0.7985 31.3246

100 5 �0 5 5.2705 0.2705 0.2364 0.9070 2.2265

�1 3.5 3.5057 0.0057 0.0098 0.9495 0.3863

� 1 0.9601 -0.0399 0.0088 0.8905 0.3841

� 5 3.8660 -1.1340 6.6349 0.7725 15.6729

25 �0 1.5 1.8164 0.3164 0.2865 0.9030 2.5228

�1 3.5 3.5080 0.0080 0.0169 0.9440 0.4980

� 1 0.9500 -0.0500 0.0111 0.8795 0.4426

� 5 3.6951 -1.3049 7.4738 0.7565 17.3047

50 �0 -0.9 -0.5265 0.3735 0.3687 0.9255 2.9950

�1 3.5 3.5063 0.0063 0.0335 0.9410 0.7008

� 1 0.9354 -0.0646 0.0160 0.8755 0.5327

� 5 3.4990 -1.5010 8.3924 0.7285 19.4424

75 �0 -3.4 -2.9793 0.4207 0.5580 0.9445 4.1795

�1 3.5 3.5194 0.0194 0.1060 0.9355 1.2020

� 1 0.9051 0.1512 0.0319 0.8505 0.7477

� 5 3.3094 -1.6906 9.1418 0.7580 25.4297

300 5 �0 5 5.1046 0.1046 0.0970 0.9320 1.4321

�1 3.5 3.5023 0.0023 0.0031 0.9510 0.2211

� 1 0.9848 -0.0152 0.0035 0.9125 0.2501

� 5 4.6549 -0.3451 4.4836 0.8570 11.5500

25 �0 1.5 1.6473 0.1473 0.1269 0.9185 1.6924

�1 3.5 3.5036 0.0036 0.0052 0.9505 0.2844

� 1 0.9781 -0.0219 0.0045 0.8970 0.2970

� 5 4.4234 -0.5766 5.0965 0.8290 13.1186

50 �0 -0.9 -0.6767 0.2233 0.1929 0.8930 2.0705

�1 3.5 3.5073 0.0073 0.0105 0.9445 0.3966

� 1 0.9638 -0.0362 0.0071 0.8735 0.3650

� 5 4.0483 -0.9517 6.0402 0.7815 14.9564

75 �0 -3.4 -3.0605 0.3395 0.3464 0.9010 2.8726

�1 3.5 3.5092 0.0092 0.0295 0.9345 0.6632

� 1 0.9402 -0.0598 0.0142 0.8540 0.5025

� 5 3.5831 -1.4169 7.9578 0.7305 18.6356

500 5 �0 5 5.0518 0.0518 0.0607 0.9445 1.1470

�1 3.5 3.5014 0.0014 0.0019 0.9450 0.1711

� 1 0.9928 -0.0072 0.0021 0.9460 0.2015

� 5 4.9160 -0.0840 3.4303 0.8955 9.5602

25 �0 1.5 1.5847 0.0847 0.0826 0.9315 1.3724

�1 3.5 3.5032 0.0032 0.0032 0.9470 0.2198

� 1 0.9880 -0.0120 0.0029 0.9295 0.2425

� 5 4.7424 -0.2576 4.1078 0.8560 11.1365

50 �0 -0.9 -0.7555 0.1445 0.1282 0.9100 1.7211

�1 3.5 3.5030 0.0030 0.0062 0.9480 0.3060

� 1 0.9774 -0.0226 0.0047 0.9030 0.3051

� 5 4.4380 -0.5620 5.0809 0.8275 13.2592

75 �0 -3.4 -3.1236 0.2764 0.2595 0.8970 2.4194

�1 3.5 3.5058 0.0058 0.0173 0.9395 0.5098

� 1 0.9553 -0.0447 0.0094 0.8605 0.4235

� 5 3.8121 -1.1879 6.8930 0.7495 16.4207

normal one), and ensure a censoring percentage of approximately 5%, 25%, 50% and
75%, we set the following true values for �0, respectively (and also for di↵erent values
of shape/skewness parameter �):
• For � = �2.2: �0 = 6.6, 3.1, 0.9 and �1.7;
• For � = �1.2: �0 = 6.5, 3, 0.2 and �1.8;
• For � = 1.2: �0 = 5.4, 1.8, �0.7 and �3.1;
• For � = 2.2: �0 = 5, 3, �0.7 and �3.3.



110 Ferreira et al.

• Power-normal: that is, ✏i ⇠ PN(0, 1, �) (for details on the power-normal distribution,
see Gupta and Gupta, 2008). To consider the two kinds of skewness this distribution
has (left-skewed if 0 < � < 1 and right-skewed if � > 1, while for � = 1 the distribution
reduces to the normal one), and ensure a censoring percentage of approximately 5%,
25%, 50% and 75%, we assumed the following true values for �0, respectively (and also
for di↵erent values of shape/skewness parameter �):
• For � = 0.35: �0 = 7.2, 3.6, 1.1 and �1.5;
• For � = 2.8: �0 = 5, 1.5, �1 and �3.2;
• For � = 10: �0 = 4.2, 0.7, �1.5 and �4.3.

• Tilted-normal: that is, ✏i ⇠ TN(0, 1, �). In order to consider the two kinds of skewness
this distribution has, and ensure a censoring percentage of approximately 5%, 25%, 50%
and 75%, we set the following true values for �0, respectively (and also for di↵erent
values of �):
• For � = 6.5: �0 = 5, 1.5, �1 and �3.5;
• For � = 2: �0 = 5.5, 2, �0.5 and �2.8;
• For � = 0.5: �0 = 6.5, 2.7, 0.3 and �2.1;
• For � = 0.15: �0 = 7, 3.5, 1 and �1.4.

It is important to note that the shape/skewness parameter values presented above, were
chosen in order to ensure a skewness measure of approximately �0.5, �0.2, 0.2 and 0.5,
respectively (in the order that such values appear), for each error distribution (with the
exception of the power-normal distribution for the first case, since -0.5 is less than ⇡ �0.48,
which is the lowest skewness measure that can be accommodated by such a model). The
observed data yi were taken as yi = max {�0 + �1xi + ✏i, 0}, for i = 1, . . . , n.
For each obtained sample and for each situation described above, we applied the following

procedures: all four models (tobit-N, tobit-SN, tobit-PN and tobit-TN, where tobit-N
stands for the normal tobit model, tobit-SN is the skew-normal tobit model, tobit-PN is
the power-normal tobit model, and tobit-TN is the tilted-normal tobit model) were fitted
to the data set and then the best one was selected according to the AIC, AICc, CAIC,
BIC and HQIC criteria. The proportion of times each model was chosen is shown in Tables
5-9. The results in these tables indicate that the true model from which the sample was
generated shows a higher proportion, except for the cases where the degree of asymmetry
is weak.

5. Application

In this section, we illustrate the applicability of our proposed tobit-TN model (Subsec-
tion 5.2) and its diagnostics (Subsection 5.3) using an American food consumption data
set (Subsection 5.1) extracted from the 1994-1996 Continuing Survey of Food Intakes by
Individuals (CSFII) (USDA, 2000).

5.1 Data

In the CSFII, two nonconsecutive days of dietary data for individuals of all ages residing in
the United States were collected via in-person interviews using 24 hours recall. Each sample
person reported the amount of each food item consumed. Where two days were reported,
there is also a third record regarding daily averages. Socioeconomic and demographic data
for the sample households and their members were also collected in the survey. Here, the
size of the extracted sample is n = 304 adults aged 20 or older (we only consider one
member per household). In our application, presented in detail in this section, we select
the amount of tomatoes consumed (in 400 grams) by them as the response variable.
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Table 5. The proportion of times each tobit model is selected as the best one according to the AIC criterion.

Fitted model

True

model
tobit-N tobit-SN tobit-PN tobit-TN

tobit-N 5% 0.8000 0.0130 0.0950 0.0920

tobit-N 25% 0.8037 0.0147 0.0933 0.0883

tobit-N 50% 0.7863 0.0130 0.1047 0.0960

tobit-N 75% 0.7817 0.0280 0.1010 0.0893

tobit-SN 5% (� = �2.2) 0.0007 0.5393 0.2753 0.1847

tobit-SN 25% 0.0033 0.4817 0.3367 0.1783

tobit-SN 50% 0.0260 0.4233 0.3490 0.2017

tobit-SN 75% 0.1693 0.2967 0.3347 0.1993

tobit-SN 5% (� = �1.2) 0.3130 0.1893 0.2683 0.2293

tobit-SN 25% 0.3860 0.1657 0.2447 0.2037

tobit-SN 50% 0.5240 0.1067 0.2010 0.1683

tobit-SN 75% 0.6037 0.0773 0.1683 0.1507

tobit-SN 5% (� = 1.2) 0.3410 0.1273 0.2773 0.2543

tobit-SN 25% 0.4187 0.1143 0.2287 0.2383

tobit-SN 50% 0.5077 0.1027 0.1863 0.2033

tobit-SN 75% 0.6460 0.1057 0.1033 0.1450

tobit-SN 5% (� = 2.2) 0.0017 0.5117 0.3120 0.1747

tobit-SN 25% 0.0033 0.5120 0.2967 0.1880

tobit-SN 50% 0.0297 0.4517 0.2837 0.2350

tobit-SN 75% 0.2013 0.3620 0.1860 0.2507

tobit-PN 5% (� = 0.35) 0.2917 0.0000 0.5177 0.1907

tobit-PN 25% 0.3367 0.0000 0.4820 0.1813

tobit-PN 50% 0.4227 0.0010 0.4180 0.1583

tobit-PN 75% 0.5593 0.0030 0.3080 0.1297

tobit-PN 5% (� = 2.8) 0.3530 0.1263 0.2850 0.2357

tobit-PN 25% 0.4067 0.1150 0.2477 0.2307

tobit-PN 50% 0.5173 0.1073 0.1760 0.1993

tobit-PN 75% 0.6273 0.1013 0.1257 0.1457

tobit-PN 5% (� = 10) 0.0070 0.3173 0.4350 0.2407

tobit-PN 25% 0.0587 0.2870 0.3987 0.2557

tobit-PN 50% 0.0967 0.2727 0.3657 0.2650

tobit-PN 75% 0.3153 0.2593 0.1913 0.2340

tobit-TN 5% (� = 6.5) 0.0030 0.0000 0.1137 0.8833

tobit-TN 25% 0.0147 0.0027 0.1460 0.8367

tobit-TN 50% 0.0607 0.0013 0.1970 0.7410

tobit-TN 75% 0.2023 0.0007 0.2613 0.5357

tobit-TN 5% (� = 2) 0.3023 0.0003 0.2733 0.4240

tobit-TN 25% 0.3733 0.0000 0.2660 0.3607

tobit-TN 50% 0.4643 0.0007 0.2420 0.2930

tobit-TN 75% 0.5910 0.0057 0.2103 0.1930

tobit-TN 5% (� = 0.5) 0.3283 0.1277 0.1737 0.3703

tobit-TN 25% 0.4010 0.1273 0.1477 0.3240

tobit-TN 50% 0.4893 0.1123 0.1257 0.2727

tobit-TN 75% 0.6457 0.1200 0.0810 0.1533

tobit-TN 5% (� = 0.15) 0.0033 0.1537 0.1577 0.6853

tobit-TN 25% 0.0047 0.1690 0.1887 0.6377

tobit-TN 50% 0.0237 0.1720 0.2080 0.5963

tobit-TN 75% 0.1053 0.2527 0.1787 0.4633

Table 10 presents the definitions and sample statistics for all considered variables, where
we see that the proportion of tomato-consuming individuals in the data set is around 70%.
Among those consuming, an individual on average consumes 66.12 grams of tomatoes per
day. The histogram and boxplots of tomato consumption are presented in Figures 2 and
3, respectively. Proposed by Hubert and Vandervieren (2008) and used when the data are
skewed distributed, the adjusted boxplot (see Figure 3 right panel) indicates that some
potential outliers identified by the usual boxplot (see Figure 3 left panel) are not outliers.
Table 11 shows asymmetry and kurtosis coe�cients for complete data and also for pos-

itive ys. Note that values for the asymmetry and kurtosis coe�cients justify using the
skewed alternatives to the tobit-N model, e.g. the proposed tobit-TN model.

5.2 Model results

Following Mart́ınez-Flórez et al. (2013), a more emphatic indication that an asymmetric
model should be considered comes from testing the hypothesis of a tobit-N model against
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Table 6. The proportion of times each tobit model is selected as the best one according to the AICc

criterion.
Fitted model

True

model
tobit-N tobit-SN tobit-PN tobit-TN

tobit-N 5% 0.8050 0.0123 0.0933 0.0893

tobit-N 25% 0.8093 0.0147 0.0900 0.0860

tobit-N 50% 0.7923 0.0123 0.1013 0.0940

tobit-N 75% 0.7887 0.0273 0.0977 0.0863

tobit-SN 5% (� = �2.2) 0.0007 0.5393 0.2753 0.1847

tobit-SN 25% 0.0033 0.4817 0.3367 0.1783

tobit-SN 50% 0.0273 0.4233 0.3480 0.2013

tobit-SN 75% 0.1720 0.2967 0.3323 0.1990

tobit-SN 5% (� = �1.2) 0.3177 0.1887 0.2660 0.2277

tobit-SN 25% 0.3907 0.1633 0.2433 0.2027

tobit-SN 50% 0.5317 0.1057 0.1977 0.1650

tobit-SN 75% 0.6087 0.0773 0.1660 0.1480

tobit-SN 5% (� = 1.2) 0.3493 0.1267 0.2737 0.2503

tobit-SN 25% 0.4240 0.1137 0.2263 0.2360

tobit-SN 50% 0.5147 0.1013 0.1833 0.2007

tobit-SN 75% 0.6517 0.1050 0.1010 0.1423

tobit-SN 5% (� = 2.2) 0.0020 0.5113 0.3120 0.1747

tobit-SN 25% 0.0033 0.5120 0.2967 0.1880

tobit-SN 50% 0.0303 0.4513 0.2833 0.2350

tobit-SN 75% 0.2037 0.3617 0.1860 0.2487

tobit-PN 5% (� = 0.35) 0.2963 0.0000 0.5150 0.1887

tobit-PN 25% 0.3440 0.0000 0.4767 0.1793

tobit-PN 50% 0.4310 0.0010 0.4133 0.1547

tobit-PN 75% 0.5660 0.0030 0.3030 0.1280

tobit-PN 5% (� = 2.8) 0.3597 0.1257 0.2817 0.2330

tobit-PN 25% 0.4123 0.1140 0.2453 0.2283

tobit-PN 50% 0.5233 0.1070 0.1737 0.1960

tobit-PN 75% 0.6340 0.1007 0.1233 0.1420

tobit-PN 5% (� = 10) 0.0077 0.3173 0.4347 0.2403

tobit-PN 25% 0.0603 0.2867 0.3977 0.2553

tobit-PN 50% 0.0983 0.2723 0.3653 0.2640

tobit-PN 75% 0.3210 0.2583 0.1883 0.2323

tobit-TN 5% (� = 6.5) 0.0033 0.0000 0.1137 0.8830

tobit-TN 25% 0.0153 0.0027 0.1457 0.8363

tobit-TN 50% 0.0627 0.0013 0.1963 0.7397

tobit-TN 75% 0.2070 0.0007 0.2600 0.5323

tobit-TN 5% (� = 2) 0.3073 0.0003 0.2717 0.4207

tobit-TN 25% 0.3783 0.0000 0.2643 0.3573

tobit-TN 50% 0.4707 0.0007 0.2393 0.2893

tobit-TN 75% 0.5957 0.0057 0.2073 0.1913

tobit-TN 5% (� = 0.5) 0.3333 0.1273 0.1720 0.3673

tobit-TN 25% 0.4053 0.1273 0.1460 0.3213

tobit-TN 50% 0.4957 0.1110 0.1237 0.2697

tobit-TN 75% 0.6537 0.1183 0.0787 0.1493

tobit-TN 5% (� = 0.15) 0.0037 0.1537 0.1577 0.6850

tobit-TN 25% 0.0050 0.1690 0.1887 0.6373

tobit-TN 50% 0.0243 0.1717 0.2080 0.5960

tobit-TN 75% 0.1083 0.2517 0.1777 0.4623

an asymmetric tobit model (e.g. the tobit-TN model), that is,

H0 : � = 1 versus H1 : � 6= 1,

using the likelihood ratio statistic:

⇤ =
Ltobit-N(✓)

Ltobit-TN(✓)
.

This leads to the observed value: �2 log (⇤) = 50.5177, which is greater than the 5% critical
value of the Chi-square distribution with one degree of freedom, given by �2

1;0.95 = 3.8415.
Therefore, we can conclude that the tobit-TN model fits the American food consumption
data set (tomato consumption) better than the standard tobit model (that is, the tobit-N
model).
Table 12 presents the parameter estimates for the tobit-N and tobit-TN models, as well

as for the other asymmetric alternatives, such as the tobit-SN and tobit-PN models. Notice
that all the information criteria choose the tobit-TN model as the best one.
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Table 7. The proportion of times each tobit model is selected as the best one according to the CAIC

criterion.
Fitted model

True

model
tobit-N tobit-SN tobit-PN tobit-TN

tobit-N 5% 0.9897 0.0017 0.0063 0.0023

tobit-N 25% 0.9900 0.0013 0.0037 0.0050

tobit-N 50% 0.9873 0.0020 0.0057 0.0050

tobit-N 75% 0.9787 0.0050 0.0087 0.0077

tobit-SN 5% (� = �2.2) 0.0220 0.5363 0.2640 0.1777

tobit-SN 25% 0.0670 0.4707 0.2997 0.1627

tobit-SN 50% 0.2410 0.3657 0.2390 0.1543

tobit-SN 75% 0.6440 0.1720 0.1020 0.0820

tobit-SN 5% (� = �1.2) 0.7730 0.0703 0.0833 0.0733

tobit-SN 25% 0.8320 0.0507 0.0633 0.0540

tobit-SN 50% 0.9110 0.0287 0.0313 0.0290

tobit-SN 75% 0.9373 0.0177 0.0200 0.0250

tobit-SN 5% (� = 1.2) 0.7913 0.0487 0.0840 0.0760

tobit-SN 25% 0.8450 0.0377 0.0563 0.0610

tobit-SN 50% 0.8960 0.0280 0.0340 0.0420

tobit-SN 75% 0.9457 0.0220 0.0107 0.0217

tobit-SN 5% (� = 2.2) 0.0373 0.4980 0.3020 0.1627

tobit-SN 25% 0.0667 0.4823 0.2793 0.1717

tobit-SN 50% 0.2513 0.3603 0.2193 0.1690

tobit-SN 75% 0.6440 0.1723 0.0793 0.1043

tobit-PN 5% (� = 0.35) 0.7610 0.0000 0.1753 0.0637

tobit-PN 25% 0.8137 0.0000 0.1330 0.0533

tobit-PN 50% 0.8637 0.0003 0.0983 0.0377

tobit-PN 75% 0.9437 0.0010 0.0430 0.0123

tobit-PN 5% (� = 2.8) 0.7900 0.0453 0.0907 0.0740

tobit-PN 25% 0.8363 0.0380 0.0677 0.0580

tobit-PN 50% 0.8940 0.0333 0.0367 0.0360

tobit-PN 75% 0.9440 0.0203 0.0147 0.0210

tobit-PN 5% (� = 10) 0.0947 0.2923 0.3963 0.2167

tobit-PN 25% 0.3253 0.2150 0.2793 0.1803

tobit-PN 50% 0.4680 0.1657 0.2073 0.1590

tobit-PN 75% 0.7557 0.0950 0.0627 0.0867

tobit-TN 5% (� = 6.5) 0.0570 0.0000 0.1033 0.8397

tobit-TN 25% 0.1447 0.0027 0.1180 0.7347

tobit-TN 50% 0.3437 0.0013 0.1237 0.5313

tobit-TN 75% 0.6633 0.0003 0.0950 0.2413

tobit-TN 5% (� = 2) 0.7707 0.0000 0.0977 0.1317

tobit-TN 25% 0.8223 0.0000 0.0757 0.1020

tobit-TN 50% 0.8717 0.0000 0.0593 0.0690

tobit-TN 75% 0.9400 0.0007 0.0310 0.0283

tobit-TN 5% (� = 0.5) 0.7747 0.0567 0.0530 0.1157

tobit-TN 25% 0.8467 0.0467 0.0307 0.0760

tobit-TN 50% 0.8917 0.0330 0.0277 0.0477

tobit-TN 75% 0.9503 0.0270 0.0070 0.0157

tobit-TN 5% (� = 0.15) 0.0503 0.1487 0.1463 0.6547

tobit-TN 25% 0.0860 0.1570 0.1680 0.5890

tobit-TN 50% 0.2110 0.1473 0.1557 0.4860

tobit-TN 75% 0.4707 0.1560 0.0993 0.2740

In Figure 4, we show a scatter plot of Ê [Y o

i | xi] (calculated numerically using adaptive

quadrature implemented by the integrate function in R) versus xi�̂, for i = 1, 2, . . . , 304.
Besides the fact that Ê [Y o

i | xi] 6= xi�̂, there seems to be a slightly quadratic relationship
between these two quantities.

5.3 Residual and influence diagnostic analysis

Next, we perform a residual analysis to detect atypical observations and/or model mis-
specification. We can generate envelopes as suggested by Atkinson (1981), based on the
generalized Cox-Snell (GCS) residuals, which for the case of tilted-normal distribution are

defined as rGCS

i = � log
⇣
1�  ̂(yi; µ̂i, �̂, �̂)

⌘
, i = 1, . . . , n, where  ̂ denotes the CDF (2)

fitted to the data. The results (half-normal plots with simulated envelopes) are shown in
Figure 5, from which we can see that the tobit-TN model fits better the American food
consumption data set.
In order to identify influential observations, we can generate graphs of the generalized

Cook distance (Cook, 1977, 1986), where a high value of this measure indicates that the
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Table 8. The proportion of times each tobit model is selected as the best one according to the BIC criterion.

Fitted model

True

model
tobit-N tobit-SN tobit-PN tobit-TN

tobit-N 5% 0.9857 0.0020 0.0090 0.0033

tobit-N 25% 0.9827 0.0017 0.0080 0.0077

tobit-N 50% 0.9807 0.0023 0.0093 0.0077

tobit-N 75% 0.9703 0.0057 0.0120 0.0120

tobit-SN 5% (� = �2.2) 0.0120 0.5380 0.2697 0.1803

tobit-SN 25% 0.0460 0.4760 0.3110 0.1670

tobit-SN 50% 0.1800 0.3850 0.2680 0.1670

tobit-SN 75% 0.5503 0.2033 0.1380 0.1083

tobit-SN 5% (� = �1.2) 0.7137 0.0830 0.1097 0.0937

tobit-SN 25% 0.7873 0.0637 0.0820 0.0670

tobit-SN 50% 0.8737 0.0343 0.0477 0.0443

tobit-SN 75% 0.9067 0.0247 0.0317 0.0370

tobit-SN 5% (� = 1.2) 0.7330 0.0613 0.1060 0.0997

tobit-SN 25% 0.8017 0.0487 0.0750 0.0747

tobit-SN 50% 0.8623 0.0370 0.0457 0.0550

tobit-SN 75% 0.9270 0.0310 0.0147 0.0273

tobit-SN 5% (� = 2.2) 0.0250 0.5037 0.3057 0.1657

tobit-SN 25% 0.0470 0.4937 0.2840 0.1753

tobit-SN 50% 0.2010 0.3850 0.2330 0.1810

tobit-SN 75% 0.5657 0.2083 0.0987 0.1273

tobit-PN 5% (� = 0.35) 0.6983 0.0000 0.2197 0.0820

tobit-PN 25% 0.7567 0.0000 0.1760 0.0673

tobit-PN 50% 0.8130 0.0003 0.1373 0.0493

tobit-PN 75% 0.9107 0.0010 0.0660 0.0223

tobit-PN 5% (� = 2.8) 0.7363 0.0577 0.1117 0.0943

tobit-PN 25% 0.7937 0.0453 0.0850 0.0760

tobit-PN 50% 0.8547 0.0437 0.0527 0.0490

tobit-PN 75% 0.9147 0.0330 0.0227 0.0297

tobit-PN 5% (� = 10) 0.0657 0.3030 0.4070 0.2243

tobit-PN 25% 0.2693 0.2340 0.3020 0.1947

tobit-PN 50% 0.3963 0.1863 0.2377 0.1797

tobit-PN 75% 0.6933 0.1153 0.0810 0.1103

tobit-TN 5% (� = 6.5) 0.0417 0.0000 0.1053 0.8530

tobit-TN 25% 0.1083 0.0027 0.1240 0.7650

tobit-TN 50% 0.2810 0.0013 0.1377 0.5800

tobit-TN 75% 0.5893 0.0003 0.1200 0.2903

tobit-TN 5% (� = 2) 0.7033 0.0000 0.1223 0.1743

tobit-TN 25% 0.7773 0.0000 0.0973 0.1253

tobit-TN 50% 0.8260 0.0000 0.0777 0.0963

tobit-TN 75% 0.9147 0.0007 0.0407 0.0440

tobit-TN 5% (� = 0.5) 0.7193 0.0670 0.0670 0.1467

tobit-TN 25% 0.7950 0.0567 0.0457 0.1027

tobit-TN 50% 0.8497 0.0443 0.0350 0.0710

tobit-TN 75% 0.9313 0.0340 0.0100 0.0247

tobit-TN 5% (� = 0.15) 0.0350 0.1513 0.1497 0.6640

tobit-TN 25% 0.0627 0.1597 0.1743 0.6033

tobit-TN 50% 0.1647 0.1553 0.1673 0.5127

tobit-TN 75% 0.4023 0.1803 0.1110 0.3063

Quantity (400 grams)
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Figure 2. Distribution of the tomato consumption. The vertical line at zero on x axis represents individuals that

did not consume tomatoes during the survey period.
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Table 9. The proportion of times each tobit model is selected as the best one according to the HQIC

criterion.
Fitted model

True

model
tobit-N tobit-SN tobit-PN tobit-TN

tobit-N 5% 0.9300 0.0047 0.0327 0.0327

tobit-N 25% 0.9330 0.0070 0.0337 0.0263

tobit-N 50% 0.9260 0.0053 0.0380 0.0307

tobit-N 75% 0.9037 0.0140 0.0433 0.0390

tobit-SN 5% (� = �2.2) 0.0033 0.5390 0.2743 0.1833

tobit-SN 25% 0.0117 0.4813 0.3313 0.1757

tobit-SN 50% 0.0653 0.4167 0.3250 0.1930

tobit-SN 75% 0.3270 0.2653 0.2460 0.1617

tobit-SN 5% (� = �1.2) 0.4983 0.1393 0.1913 0.1710

tobit-SN 25% 0.5780 0.1143 0.1730 0.1347

tobit-SN 50% 0.7083 0.0653 0.1263 0.1000

tobit-SN 75% 0.7707 0.0520 0.0893 0.0880

tobit-SN 5% (� = 1.2) 0.5360 0.1010 0.1877 0.1753

tobit-SN 25% 0.6053 0.0833 0.1557 0.1557

tobit-SN 50% 0.6940 0.0680 0.1147 0.1233

tobit-SN 75% 0.8113 0.0643 0.0510 0.0733

tobit-SN 5% (� = 2.2) 0.0053 0.5110 0.3110 0.1727

tobit-SN 25% 0.0143 0.5080 0.2933 0.1843

tobit-SN 50% 0.0820 0.4347 0.2687 0.2147

tobit-SN 75% 0.3580 0.3020 0.1463 0.1937

tobit-PN 5% (� = 0.35) 0.4790 0.0000 0.3800 0.1410

tobit-PN 25% 0.5470 0.0000 0.3297 0.1233

tobit-PN 50% 0.6297 0.0010 0.2707 0.0987

tobit-PN 75% 0.7597 0.0023 0.1723 0.0657

tobit-PN 5% (� = 2.8) 0.5430 0.0960 0.1943 0.1667

tobit-PN 25% 0.6030 0.0817 0.1657 0.1497

tobit-PN 50% 0.7023 0.0790 0.1057 0.1130

tobit-PN 75% 0.8033 0.0663 0.0593 0.0710

tobit-PN 5% (� = 10) 0.0193 0.3153 0.4290 0.2363

tobit-PN 25% 0.1337 0.2703 0.3667 0.2293

tobit-PN 50% 0.2130 0.2457 0.3123 0.2290

tobit-PN 75% 0.4873 0.1940 0.1417 0.1770

tobit-TN 5% (� = 6.5) 0.0097 0.0000 0.1120 0.8783

tobit-TN 25% 0.0387 0.0027 0.1400 0.8187

tobit-TN 50% 0.1307 0.0013 0.1770 0.6910

tobit-TN 75% 0.3650 0.0007 0.2043 0.4300

tobit-TN 5% (� = 2) 0.4937 0.0000 0.2083 0.2980

tobit-TN 25% 0.5740 0.0000 0.1870 0.2390

tobit-TN 50% 0.6540 0.0000 0.1583 0.1877

tobit-TN 75% 0.7703 0.0027 0.1127 0.1143

tobit-TN 5% (� = 0.5) 0.5143 0.1037 0.1197 0.2623

tobit-TN 25% 0.6013 0.0977 0.0900 0.2110

tobit-TN 50% 0.6953 0.0793 0.0710 0.1543

tobit-TN 75% 0.8103 0.0773 0.0330 0.0793

tobit-TN 5% (� = 0.15) 0.0073 0.1533 0.1573 0.6820

tobit-TN 25% 0.0177 0.1663 0.1863 0.6297

tobit-TN 50% 0.0637 0.1673 0.1970 0.5720

tobit-TN 75% 0.0637 0.1673 0.1970 0.5720

Table 10. Variable definitions and sample statistics (n = 304).

Variable Definition Mean
Standard

Deviation

Dependent variable: amount consumed

Tomato (in 400 grams) Quantity of tomatoes consumed 0.1153 0.1598

Among the consuming (n = 212; 69.74%) 0.1653 0.1684

Continuous explanatory variable

Income Household income as the proportion of 2.3730 0.8489

poverty threshold

Binary explanatory variables (yes = 1; no = 0)

Age 20-30 Age is 20-30 0.1480

Age 31-40 Age is 31-40 0.1776

Age 41-50 Age is 41-50 0.1974

Age 51-60 Age is 51-60 0.1743

Age > 60 Age > 60 (reference) 0.3026

Northeast Resides in the Northeastern states 0.1579

Midwest Resides in the Midwestern states 0.2336

West Resides in the Western states 0.2204

South Resides in the Southern states (reference) 0.3882

Source: Compiled from the CSFII, USDA, 1994-1996.
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Figure 3. Usual boxplot (left panel) and adjusted boxplot (right panel) for the tomato consumption data.

Table 11. Descriptive statistics for GCS residuals of the tobit-N model.

n Mean
Standard
deviation Skewness Kurtosis

304 1.0970 1.3159 4.4515 26.8052
212 1.3603 1.4983 3.8351 20.0321

Table 12. Parameter estimates (standard errors in parenthesis) for tobit-N, tobit-SN, tobit-PN and tobit-

TN models.

Fitted model
Parameter tobit-N tobit-SN tobit-PN tobit-TN

�0 (Intercept)
-0.0025
(0.0446)

-0.1541
(0.0378)

-0.9440
(0.1849)

0.5662
(0.0852)

�11 (Age 20-30)
-0.0419
(0.0397)

-0.0164
(0.0328)

-0.0228
(0.0323)

-0.0222
(0.0284)

�12 (Age 31-40)
-0.0744
(0.0371)

-0.0439
(0.0317)

-0.0503
(0.0306)

-0.0503
(0.0274)

�13 (Age 41-50)
-0.0142
(0.0353)

0.0053
(0.0277)

-0.0032
(0.0283)

-0.0081
(0.0254)

�14 (Age 51-60)
-0.0152
(0.0369)

0.0094
(0.0293)

0.0017
(0.0296)

-0.0029
(0.0264)

�21 (Northeast)
0.0845
(0.0368)

0.0511
(0.0281)

0.0516
(0.0296)

0.0344
(0.0268)

�22 (Midwest)
0.0499
(0.0326)

0.0240
(0.0259)

0.0261
(0.0262)

0.0173
(0.0234)

�23 (West)
0.0253
(0.0328)

0.0166
(0.0269)

0.0191
(0.0267)

0.0160
(0.0235)

�3 (Income)
0.0292
(0.0147)

0.0151
(0.0120)

0.0171
(0.0118)

0.0133
(0.0103)

�
0.2024
(0.0104)

0.2675
(0.0147)

0.3930
(0.0354)

0.2325
(0.0185)

� -
4.3851
(2.1513)

99.9963
(75.3681)

0.0114
(0.0059)

Log-likelihood -37.3939 -22.7356 -20.2673 -12.1351
AIC 94.7879 67.4711 62.5347 46.2702
AICc 95.6920 68.5433 63.6068 47.3424
CAIC 141.9582 119.3584 114.4220 98.1576
BIC 131.9582 108.3584 103.4220 87.1576
HQIC 109.6569 83.8270 78.8905 62.6261
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Ê[
Yo
|x
]

Figure 4. Scatter plot of Ê
⇥
Y o
i | xi

⇤
versus xi�̂, i = 1, 2, . . . , 304, for tobit-TN model.
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Figure 5. Half-normal plots with simulated envelopes for the GCS residuals.

corresponding observation has a high impact on the ML estimates of the parameters. We
can use 1.0 as the cut-o↵ value, as employed by some authors, like Imon (2005). From
Figure 6, we note that, under the tobit-N model fitting, the observations 187 and 237
are influential on the ML estimates. However, with the tobit-SN, tobit-PN and tobit-TN
models fitted, the scenario has changed: no observation is considered influential on the
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Figure 6. Generalized Cook distance. The influential observations are numbered.

parameter estimates, showing that these models are more robust.

6. Conclusions and Further Research

This paper discussed an asymmetric alternative for the standard tobit model (Tobin, 1958).
It was based on the tilted-normal distribution (Maiti and Dey, 2012). The standard tobit
model is a special case of the proposed model, which can also be seen as an alternative for
the tobit-SN model (Hutton and Stanghellini, 2011) and tobit-PN model (Mart́ınez-Flórez
et al., 2013). Parameter estimates were obtained by using the ML method, which was
also used for deriving large sample properties for the estimators. All the simulations and
statistical analyses were performed using the programming language R version 3.3.1 (R
Core Team, 2016). The computational code is available from the authors upon request.
Simulation studies indicated good parameter recovery with the estimation approach de-
veloped, and appropriateness of the chosen model selection criteria. Since the standard
tobit model is a special case of the tobit-TN model, the likelihood ratio statistic can be
used for testing the standard tobit model null hypothesis. Application to an American
food consumption data set (tomato consumption) indicated that the tobit-TN model can
be an useful alternative to the standard tobit model, as well as to some of its asymmet-
ric versions (tobit-SN and tobit-PN models). However, although the tobit-TN model was
valid, that is, it has shown an adequate fitting to the data set at hand, we could also
have considered a mixture of normal or tilted-normal distributions, for instance, as well as
skewed heavy-tailed distributions for the error term, since the tomato consumption data
seemed to have a long right tail. More study in this direction is desired.
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Future work may also include to consider the use of other flexible distributions with
better inferential properties and higher flexibility (e.g. the Families 1 to 4 considered in
Jones, 2015) in the tobit framework. Other possible extension of the tobit model consid-
ers that the error term follows the centered skew-normal Birnbaum-Saunders distribution
proposed by Chaves et al. (2019). Despite of being straightforward, our proposed ML es-
timation approach performs well, as demonstrated in the simulation results shown in Sec-
tion 4. However, an interesting alternative to the direct maximization of the log-likelihood
function, a procedure that sometimes can be quite cumbersome, is to use the Expectation-
Maximization (EM) algorithm (Dempster et al., 1977) or some other extensions like the
Monte Carlo EM (MCEM) (Wei and Tanner, 1990), Expectation Conditional Maximiza-
tion (ECM) (Meng and Rubin, 1993), ECM Either (ECME) (Liu and Rubin, 1994) or the
Stochastic Approximation of EM (SAEM) algorithm (Delyon et al., 1999). As stated in
Mattos et al. (2018), the EM algorithm is a very popular iterative optimization strategy
in models with non-observed or incomplete data, and has many attractive features such
as numerical stability, simplicity of implementation and quite reasonable memory require-
ments. Thus, the EM algorithm provides an interesting setting for the ML estimation of
tobit models, including for instance the estimation or prediction of the censored obser-
vations. Arellano-Valle et al. (2012), Garay et al. (2016, 2017) and Mattos et al. (2018)
developed e�cient EM-type algorithms for the ML estimation of their proposed exten-
sions of the standard tobit model (Tobin, 1958). The derivation of an EM-type approach
for our proposed tobit-TN model, e.g., by using some general mathematical properties of
the Marshall-Olkin family of distributions shown in Cordeiro et al. (2014), will be the sub-
ject to our future work. We also intend to develop a Bayesian framework for the tobit-TN
model, as similarly as in the works of Garay et al. (2015) and Massuia et al. (2017).

Appendix: Score functions

In this appendix, we show the score functions of the log-likelihood function (6). These
quantities are obtained as follows:

U(�) =
@` (✓)

@�
=

1

�

nX

i=1

di [zi + 2(1� �)ki�(zi)]x
>
i �

1

�

nX

i=1

(1�di) [w0i � (1� �)k0i�(z0i)]x
>
i ,

U(�) =
@` (✓)

@�
= � 1

�

nX

i=1

di
⇥
1� z2i � 2(1� �)ki�(zi)zi

⇤
� 1

�

nX

i=1

(1�di)z0i [w0i � (1� �)k0i�(z0i)]

and

U(�) =
@` (✓)

@�
=

1

�

nX

i=1

di � 2
nX

i=1

diki [1� �(zi)]�
nX

i=1

(1� di)k0i [1� �(z0i)] ,

where z0i = �x>
i �/�, zi =

�
yi � x>

i �
�
/�, k0i = [1� (1� �) {1� �(z0i)}]�1, ki =

[1� (1� �) {1� �(zi)}]�1 and w0i = �(z0i)/�(z0i).
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Abstract

In this paper, we provide su�cient conditions ensuring that a Â–mixing property holds
for the sequence of empirical cumulative distribution functions associated with a conju-
gate process. Numerical examples are also provided to illustrate our results.
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1. Introduction

Time series models where the dynamics is driven by a latent, unobservable state variable are
ubiquitous in the literature – to name a few examples, we mention the arch and garch

models (Engle, 1982; Bollerslev, 1986), the class of hidden Markov models (Baum and Petrie,
1966) and, more recently, the gas model of Creal et al. (2012). Such models have found
widespread use in quantitative finance, economics and other applied sciences, and it is then
natural to consider extensions to a framework where the underlying state is infinite dimen-
sional – especially when one takes into account the increasing availability of high dimensional
data in the last 20 years. Contributions in that direction have been proposed, among others,
by Hörmann et al. (2013) and Aue et al. (2017) who introduce functional versions of the
arch and garch models, respectively. In fact, stochastic di�erential equations, Bayesian
nonparametrics (Ghosal and Van der Vaart, 2017; Quintana, 2010) and many other proba-
bilistic models can be interpreted as pertaining to the class of (infinite dimensional) latent
variable models. Exploring such connections is beyond the scope of the present paper..

Also in the setting of an infinite dimensional state variable, Horta and Ziegelmann (2018)
introduce the concept of a conjugate process, where the latent state is indeed the (random)
conditional distribution of the observable continuous-time process. Consistency results are
available, and as is common in the framework of Functional Time Series, they rely on
imposing a strong mixing condition on the model. However, in this setting some additional
di�culties arise because the mixing property is imposed on a functional of observable data,
whereas the dynamics is specified in terms of the latent, infinite dimensional state variable.
This means that it can be cumbersome to derive the required mixing condition directly from
higher level model assumptions (see the discussion in Remark 1). In this paper, we provide
su�cient conditions which ensure that a Â-mixing property is inherited by the functional
of the data whenever the underlying state process is itself Â-mixing.
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The remainder of the paper is organized as follows. In Section 2, we present the theoretical
background, following Horta and Ziegelmann (2018). In Section 3, we state and prove our
main results. Section 4 illustrates the theory through a computational example. Section 5
provides some concluding remarks.

2. Theoretical background

In Horta and Ziegelmann (2018) a conjugate process is defined to be a pair (›, X), where
X := (X· : · Ø 0) is a real valued, continuous time stochastic process, and › := (›t : t =
0, 1, . . . ) is a strictly stationary sequence of M1(R)-valued (here M1(R) denotes the set of
Borel probability measures on R) random elements, for which the following condition holds:

P(X· œ B | ›0, ›1, . . . ) = ›t(B), · œ [t, t + 1), (1)

for each t = 0, 1, . . . and each Borel set B in the real line. From the statistical viewpoint, the
sequence › is to be understood as a latent (i.e. unobservable) process, and thus all inference
must be carried using information attainable from the continuous time, observable process
X alone.

A crucial objective in this context is estimation of the operator R
µ : L

2(µ) æ L
2(µ) defined

by

R
µ
f(x) :=

⁄
Rµ(x, y)f(y) µ(dy), x œ R

where the kernel Rµ is given by

Rµ(x, y) :=
⁄

Cov(F0(x), F1(z)) Cov(F0(y), F1(z)) µ(dz), x, y œ R,

and where µ is a fixed, arbitrary probability measure on R equivalent to Lebesgue measure.
In the above, Ft(x) := ›t(≠Œ, x], x œ R, is the (random) cumulative distribution function
corresponding to ›t. One of the key results in Horta and Ziegelmann (2018) is Theorem 2.1
below, which provides su�cient conditions under which R

µ can be
Ô

n-consistently esti-
mated. These conditions involve an a priori Â-mixing assumption on the data generating
process, and therefore it is of crucial importance to provide tractable conditions which in
turn ensure the required Â-mixing property. Our Theorem 3.1 below provides one such
su�cient condition.

Before stating the theorem, we shall shortly introduce the estimator ‚Rµ which is (as
one should expect) a sample analogue of R

µ. Consider, for each t = 1, . . . , n, a sample
of observations {Xi,t : i = 1, . . . , qt} of size qt from (X· : · œ [t, t + 1)). Typically one has
Xi,t = Xt+(i≠1)/qt

. Also let ‚Ft denote the empirical cumulative distribution function associ-
ated with the sample X1,t, . . . , Xqt,t,

‚Ft(x) := 1
qt

qtÿ

i=1
I[Xi,t Æ x], x œ R.

Notice that both Ft and ‚Ft are random elements with values in the Hilbert space L
2(µ),

and thus we find ourselves in a framework similar to Horta and Ziegelmann (2016).
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In this setting, ‚Rµ is defined to be the operator acting on L
2(µ) with kernel

‚Rµ(x, y) :=
⁄

‚C1(x, z) ‚C1(y, z)µ(dz), x, y œ R,

where ‚C1 is the sample lag-1 covariance function

‚C1(x, y) := 1
n ≠ 1

n≠1ÿ

t=1

1
‚Ft(x) ≠ F̄0(x)

2
◊

1
‚Ft+1(y) ≠ F̄0(y)

2
, x, y œ R,

with F̄0 := (1/n)
q

n

t=1
‚Ft.

Last but not least, let X
(t) denote the stochastic process (Xt+· : · œ [0, 1)), so that

X
(0)

, X
(1)

, . . . , X
(t)

, . . . is a sequence of R[0,1)-valued random elements. We say that a con-
jugate process (›, X) is cyclic independent if, conditional on ›, we have that

!
X

(t) : t =
0, 1, . . .

"
is an independent sequence. This means that, for each n and each (n + 1)-tuple

C0, . . . , Cn of measurable subsets of R[0,1), it holds that

P(X(0) œ C0, . . . , X
(n) œ Cn | ›) =

nŸ

t=0
P(X(t) œ Ct | ›).

We are now ready to state the consistency theorem.

Theorem 2.1 (Horta and Ziegelmann, 2018) Let (›, X) be a cyclic–independent conjugate
process, and let µ be a probability measure on R equivalent to Lebesgue measure. Assume
that

! ‚Ft : t = 1, 2, . . .
"

is a Â–mixing sequence, with the mixing coe�cients �(k) satisfying
qŒ

k=1 k �1/2(k) < Œ. Then, it holds that

(i) Î ‚Rµ ≠ R
µÎHS = OP

1
n

≠1/2
2
;

(ii) supjœN |‚◊j ≠ ◊j | = OP

1
n

≠1/2
2
.

If moreover the nonzero eigenvalues of R
µ are all distinct, then

(iii) Î ‚Âj ≠ ÂjÎL2(µ) = OP

!
n

≠1/2"
, for each j such that ◊j > 0.

In the above, Î · ÎHS denotes the Hilbert-Schmidt norm of an (suitable) operator acting
on L

2(µ), (◊j : j œ N) ((‚◊j : j œ N)) denotes the non-increasing sequence of eigenvalues of
R

µ ( ‚Rµ), with repetitions if any and, for j œ N, Âj ( ‚Âj) denotes the unique eigenfunction
associated with ◊j (‚◊j). Notice that there is some ambiguity in defining things in this manner;
to ensure that everything is well defined, we adopt the convention that the sequence (◊j)
contains zeros if and only if R

µ is of finite rank. Thus if the range of R
µ is infinite dimensional

and 0 is one of its eigenvalues, it will not show up in the sequence (◊j). On the other hand,
‚Rµ is always of finite rank.

3. Main Result

In what follows it will be convenient to assume that the latent process is indexed for t œ Z
and that the continuous time, observable process X is indexed for · œ R. That is, we
update our definitions so that › := (›t : t œ Z) and X := (X· : · œ R). Recall that a
strictly stationary sequence (Zt : t œ Z) of random elements taking values in a measurable
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space Z is said to be Â-mixing if the Â-mixing coe�cient �Z defined, for k œ N, by

�Z(k) := sup
----1 ≠ P(A fl B)

P(A)P(B)

---- (2)

is such that �Z(k) æ 0 as k æ Œ, where the supremum in (2) ranges over all A œ ‡(Zt : t Æ
0) and all B œ ‡(Zt : t Ø k) for which P(A)P(B) > 0; see Doukhan (1994) and references
therein for a thorough treatment of the topic, and also Bradley (2005) for basic properties
of mixing conditions.

The Â–mixing condition in Theorem 2.1 imposes restrictions on the sequence of empirical
cumulative distribution functions

! ‚Ft

"
and thus constrains (Ft) and (X· ) jointly. One could

argue that it is more natural to impose a Â–mixing condition on the latent process (›t)
instead, the issue being that it may be the case that a mixing property of the latter sequence
is not inherited by ( ‚Ft). If a condition slightly stronger than cyclic–independence is imposed,
however, then inheritance does hold. This is our main result.

Theorem 3.1 Let (›, X) be a cyclic–independent conjugate process, and let µ be a prob-
ability measure on R equivalent to Lebesgue measure. Assume › is Â–mixing with mixing
coe�cient sequence �›. If, for each t, the conditional distribution of X

(t) given › depends
only on ›t, in the sense that the equality

P
#
X

(t) œ C
-- ›

$
= P

#
X

(t) œ C
-- ›t

$
(3)

holds for each measurable subset C of R[0,1) and each t, then
!
X

(t)" is Â–mixing with mixing
coe�cient sequence �X Æ �›.

Corollary 3.2 In the conditions of Theorem 3.1, if
qŒ

k=1 k�›(k)1/2
< Œ, then the Â–

mixing assumption of Theorem 2.1 holds.

Remark 1 Theorem 3.1 and Corollary 3.2 are important as they provide the applied statis-
tician a framework for introducing models in which the Â-mixing condition of Theorem 2.1
is satisfied, ensuring the possibility of adequate estimation procedures and statistical anal-
yses. A particular setup in which knowledge of Â-mixing models for multivariate time series
is su�cient for obtaining a Â-mixing sequence of random measures (›t) is the scenario in
which the latter sequence is in fact driven by a finite dimensional process. This is the case
whenever (›t) satisfies

›t(B) = E›0(B) +
dÿ

j=1
Ztj⁄j(B), t œ Z, B œ Borel(R),

where d is a positive integer, the Zt,j are scalar random variables and the ⁄j are signed
measures of finite total variation. Indeed, in this setting the dynamic features of (›t) are
entirely captured by the multivariate time series Zt = (Zt1, . . . , Ztj), and it is not di�cult to
see that if the mixing coe�cient sequence �Z(1), �Z(2), . . . of (Zt) satisfies the summability
condition of Theorem 2.1, then so does �›.

Proof [Proof of Theorem 3.1] For k œ N, let T1 and T2 be finite, nonempty subsets of
{0, ≠1, ≠2, . . . } and {k, k +1, k +2, . . . } respectively, and set T0 := T1 fiT2. Let {Ct, t œ T0}
be a collection of measurable subsets of R[0,1). By definition, ‡(X(t) : t Æ 0) coincides
with the ‡-field generated by the class of sets of the form

u
tœT1 [X(t) œ Ct] over all finite,

nonempty T1 µ {0, ≠1, ≠2, . . . } and all collections {Ct : t œ T1} of measurable subsets of
R[0,1), and similarly for ‡(X(t) : t Ø k).
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Notice that by equation (3) and the Doob–Dynkin Lemma (see Kallenberg, 1997, Lemma
1.13) we have P

Ë
X

(t) œ Ct | ›

È
= gt ¶ ›t, for some measurable function gt : M1(R) æ R. This

fact, together with the cyclic–independence assumption, ensures that

P

Y
]

[
‹

tœTj

Ë
X

(t) œ Ct

È
Z
^

\ = E

Y
]

[P

Y
]

[
‹

tœTj

Ë
X

(t) œ Ct

È --- ›

Z
^

\

Z
^

\ = E

Y
]

[
Ÿ

tœTj

gt ¶ ›t

Z
^

\,

j = 0, 1, 2 (a similar computation yields strict stationarity of the process (X(t) : t œ Z)).
Thus, the quantity

------
1 ≠

P
Óu

tœT0

Ë
X

(t) œ Ct

ÈÔ

P
)u

tœT1

#
X(t) œ Ct

$*
P

)u
tœT2

#
X(t) œ Ct

$*

------
(4)

is seen to be equal to
-----1 ≠

E
)r

tœT0 gt ¶ ›t

*

E
)r

tœT1 gt ¶ ›t

*
E

)r
tœT2 gt ¶ ›t

*
-----. (5)

Substituting each gt in (5) by an arbitrary measurable, bounded and positive g
Õ
t
: M1(R) æ

R, and taking the supremum over all collections {g
Õ
t

: t œ T0} of such g
Õ
t
, and over all T0 =

T1 fi T2 as above, gives an upper bound to (4). It is easily seen that this supremum yields
precisely �›(k). This establishes that �X(k) Æ �›(k) and completes the proof. (By definition
�›(k) is obtained by taking the supremum over all collections of g

Õ
t

which are indicator
functions of measurable subsets of M1(R).) ⌅

Proof [Proof of Corollary 3.2] By definition (or using the Doob–Dynkin Lemma) we have
that ‚Ft is of the form ‚Ft = gt ¶ X

(t) for some measurable gt : R[0,1) æ L
2(µ). Since P( ‚Ft œ

B) = P(X(t) œ g
≠1
t (B)), it follows that the supremum in the LHS over all measurable subsets

B of L
2(µ) is bounded above by supP(X(t) œ C), with C ranging over all measurable subsets

of R[0,1). An easy adaptation of this argument shows that the mixing coe�cient sequence
�‚F is bounded above by �X . ⌅

4. Examples

We refer the reader to Horta and Ziegelmann (2018) for an interesting application of the
theory of conjugate processes to the problem of financial risk forecasting. Below we provide
a simple example to illustrate the theory.

As discussed in Horta and Ziegelmann (2018), the case where (›t) is an independent
sequence is of no interest, since in this case R

µ is trivially the zero operator. Consider
then an independent identically distributed sequence (Ët : t œ Z), where Ët is uniformly
distributed on [0, 1], and let ÷t be the random probability measure defined by (abusing a
little on notation) ÷t(0) = Ët and ÷t(1) = 1≠Ët. Setting ›t := (÷t +÷t≠1)/2, we clearly obtain
a Â-mixing sequence which satisfies the summability condition of Theorem 2.1. Indeed, (›t)
is 1-dependent. A straightforward computation shows that Cov(F0(x), F1(y)) = 1/48 for
x, y œ [0, 1) and is identically zero otherwise, and therefore Rµ(x, y) is a positive constant
for x, y œ [0, 1) which only depends on the chosen measure µ.

Now, aside from the assumption that relation (1) holds, the nature of the process (X· :
· œ R) is rather arbitrary. Below we simulate the case where, conditional on ›, the process
(Xt+· : · œ [0, 1)) is a continuous time Markov chain on the state space {0, 1} with
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stationary distribution (›t(0), ›t(1)). There is a free parameter in the construction, which
is the mean holding time 1/q0 of state 0. We set q0 = 10. Thus, conditional on ›t = ⁄t,
the process (Xt+· : · œ [0, 1)) is a Markov chain with initial distribution (⁄t(0), ⁄t(1)) and
generator

Q =
3

≠q0 q0
rt ≠rt

4

where rt := q0⁄t(0)/⁄t(1).
The conjugate process (›, X) described above can be informally summarized as follows. At

each day, the world finds itself in a (unobservable) state which is characterized by a number
lying in [0, 1]. Within each day, given the state of the world, a system can find itself in two
distinct (observable) regimes (say, regime 0̄ and regime 1̄). This system switches between 0̄
and 1̄ according to a stationary, continuous time Markov chain, where the state of the world
in that day represents the probability of the system being on regime 0̄ at any given point in
time within that day. Figure 1 displays a simulated sample path for the first 4 days of the
process just described.

0 1 2 3 4

0̄

1̄

⇠t(0̄) = 0.78

0̄

1̄

⇠t(0̄) = 0.62

0̄

1̄

⇠t(0̄) = 0.42

0̄

1̄

⇠t(0̄) = 0.45

Figure 1. A simulated sample path. Even days are colored in red; odd days in blue.

We also illustrate the consistency result via a Monte Carlo simulation study. For each
t = 1, . . . , n, we sample the process (Xt+· : · œ [0, 1)) once per cycle (that is, we take
qt = 1 and X1,t = Xt) and compute the corresponding value of ‚C1(0, 0). Figure 2 displays the
boxplot of the estimated values of ‚C1(0, 0) across 10000 replications of the above procedure,
with the sample size varying in {100, 1000, 10000}. The blue line indicates the true parameter
value C1(0, 0) = 1/48.

n = 100 n = 1000 n = 10000

-0
.0
5

0.
00

0.
05

0.
10

Figure 2. Boxplots of ‚C1(0, 0) values across replications.
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5. Concluding remarks

This paper investigated conditions under which a certain Â-mixing condition is inherited by
the empirical cumulative distribution functions associated with a conjugate process (Horta
and Ziegelmann, 2018). Our theoretical results, presented in Theorem 3.1 and Corollary 3.2,
ensured that whenever the underlying state sequence possesses the required Â-mixing prop-
erty, so does the corresponding sequence of empirical cumulative distribution functions. The
results are of relevance in settings where the dynamics is governed by an infinite dimensional
latent process, as they allow the applied statistician to propose conjugate process models
whose parameters can be consistently estimated – thus ensuring the possibility of adequate
statistical analyses.
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Abstract

In this study, we consider the design and performance of control charts using the neo-
teric ranked set sampling (NRSS) in monitoring industrial processes. NRSS is a recently
proposed sampling design, based on the traditional ranked set sampling (RSS). NRSS
di↵ers from RSS by constituting, originally, a single set of k2 sample units, instead of k
sets of size k, where k is the final sample size. We evaluate NRSS control charts by av-
erage, median and standard deviation of run lengths, based on Monte Carlo simulation
results. NRSS control charts perform the best, compared to RSS and some of its exten-
sions, in most simulated scenarios. The impact of imperfect ranking and non normality
are also evaluated. An application to concrete strength data serves as an illustration of
the proposed method.

Keywords: Generalized normal distribution · Imperfect ranking · Perfect ranking
· Run length · Skew-normal distribution
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1. Introduction

Nowadays, technological resources are widely available for the real-time monitoring of
many industrial processes. Even so, it must be recognized that sampling still plays a
fundamental role in statistical quality control. Factors such as high costs, time of inspection
and destructive tests may limit the evaluation of a large number of items. In this context,
e�cient sampling designs, providing more accurate results with smaller sample sizes, are
highly useful. Ranked set sampling (RSS) and its extensions have been shown as e�cient
alternatives to more conventional methodologies (such as simple random sampling - SRS),
when ranking sample units, according to their possible values, is substantially cheaper or
easier than e↵ectively measuring them. In the area of statistical quality control, RSS and
its extensions can be applied, for example, to develop statistical quality control charts.
Originally proposed in 1924 by Walter A. Shewhart, statistical quality control charts (or

⇤Corresponding author. Email: Email: taconeli@ufpr.br

ISSN: 0718-7912 (print)/ISSN 0718-7920 (online)
c� Chilean Statistical Society – Sociedad Chilena de Estad́ıstica
http://www.soche.cl/chjs



132 Parreira et al.

simply control charts) constitute a relevant tool for visualizing industrial processes and
identifying assignable causes of variation (Shewhart, 1924; Montgomery, 2009). A process
is said to be under statistical control when no special or assignable causes are present.
Several alternatives to the original control charts were proposed, providing greater speed
in detecting out-of-control situations. These alternatives include: the use of additional or
alternative decision rules (Koutras et al., 2007); adaptive sampling schemes (Costa and
De Magalhaes, 2007; Santore et al., 2019); nonparametric control charts (Qiu, 2018) or
even the use of alternative sampling designs to the usual SRS. In this study, we consider
a variety of RSS-based designs for constructing control charts.
Proposed by McIntyre (1952), the RSS is an e↵ective sampling design when the variable

of interest is expensive or di�cult to measure, but it is possible ranking sample units e�-
ciently according to some accessible and cheap criterion (Chen et al., 2003). The ranking
process can be performed based, for example, on an expert’s judgment or using some con-
comitant variable. In the first case (personal judgment), the sample units may be ordered
based on visual inspection by using photos or videos, among others. In the other case, the
sample units are ordered according their possible values for the variable of interest, but
based only on values assessed for some correlated and accessible concomitant variable. In
both cases, if the ranking criterion is not susceptible to errors, we have the perfect ranking
scenario. Errors in the ranking process, however, frequently happen. In this situation, we
say that the ranking process is imperfect.
RSS becomes more e�cient than SRS as long as a more accurate and accessible ordering

criterion is available. Several studies have shown the superiority of RSS over SRS for
estimation of di↵erent population parameters (see Chen, 2007; Al-Omari and Bouza, 2014;
Consulin et al., 2018). Additionally, a large number of sampling designs derived from the
original RSS were proposed, such as median ranked set sampling (MRSS) by Muttlak
(1997), extreme ranked set sampling (ERSS) by Samawi et al. (1996), and double ranked
set sampling (DRSS) by Al-Saleh and AlKadiri (2000), among others.
RSS and its related sampling designs have been studied in the context of statistical

quality control. Muttlak and Al-Sabah (2003) considered RSS and two of its modifications,
ERSS and MRSS, in the design of Shewhart control charts. The authors have shown,
based on an extensive simulation study, that RSS-based control charts dominate their SRS
counterpart, requiring, on average, fewer samples to detect a change in the process mean.
Additionally, MRSS have showed the best performance among the three sampling designs
based on ranked sets. Improved control charts for DRSS schemes were also considered
in the design of quality control charts. This class of sampling designs is characterized by
the initial selection and ranking of k3 (instead of k2) sample units to draw a sample of
size k after two ranking cycles. DRSS control charts outperform those based on a single
ordering cycle. Recently, Mahdizadeh and Zamanzade (2019) presented a an economic
variation of double RSS which reduces the number of training sample units to almost half.
Furthermore, memory-based control charts using RSS, as cumulative sum or exponentially
weighted moving average chart, were developed and discussed in Abid et al. (2017) and
Haq et al. (2015), among others. Al-Omari and Bouza (2014) present a bibliographic review
of RSS and control charts based on their related designs.
Zamanzade and Al-Omari (2016) recently proposed neoteric ranked set sampling

(NRSS), another sampling design originated from RSS. Technically, its fundamental dif-
ference to RSS is the constitution and ordering of a single set of k2 sample units, instead
of k sets of size k like in RSS, MRSS and ERSS. After the ordering process, k units are
chosen to compose the final sample, selected according to their specific ranks. The e↵ect
of creating a large initial set is the reduction of sample units variance, once the dispersion
of order statistics decreases as the sample size increases. This reduction overcomes the
covariances induced by sample units selected from the same ranked set. In this way, it was
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found, for di↵erent sample sizes, correlation levels between the variable of interest and an
auxiliary variable and probability distributions that NRSS overcomes RSS and SRS for
estimating population mean and variance. As additional studies regarding NRSS and its
higher e�ciency over RSS and other RSS-based designs we recommend Koyuncu (2018)
and Taconeli and Cabral (2019).
NRSS was firstly considered for control charts by Koyuncu and Karagöz (2018) to mon-

itor the mean of bivariate asymmetric distributions. The authors studied the type I error
using di↵erent RSS designs under perfect ranking (that is, when there are no errors in
the ranking process). They considered the Type I Marshall-Olkin bivariate Weibull and
bivariate lognormal distributions. They verified that the NRSS and RSS designs have type
I error closest to 0.0027, an usual type I error adopted for Shewhart control charts. More-
over, Nawaz and Han (2019) have compared NRSS, RSS, MRSS, and ERSS in the design of
homogeneously weighted moving average control charts, registering that NRSS turns out
to present the best performance among the considered RSS-based schemes in monitoring
the process mean under bivariate normal distribution.
In this paper, we analyze the power of Shewhart-type control charts for monitoring the

process mean based on NRSS. The remainder of this article is organized as follows. In
Section 2, we briefly describe the RSS-based designs. The Shewhart-type control chart
based on NRSS is presented in Section 3. Section 4 covers a simulation study conducted
to evaluate the performance of NRSS control charts. A case study is in Section 5, while
our concluding remarks are provided in Section 6.

2. Neoteric ranked set sampling and other sampling designs based on
ranked sets

In this section, we briefly describe the sampling designs considered in this study. Initially,
the original RSS design can be described as presented in Algorithm 1.

Algorithm 1 RSS scheme

1: Selection of k2 units of the population using SRS, allocating them, randomly, in k sets
of size k;

2: Ranking the sample units in each set according to the possible values of the variable
of interest, using the pre-established ordering criterion;

3: Selection, for the final sample, of the ith judged unit in the ith set, for i = 1, . . . , k.
4: Steps 1 to 3 can be replicated n times (n cycles) producing a sample of size nk.

We denote the RSS sample by Y[i]j , for i = 1, . . . , k; j = 1, l . . . , n, where Y[i]j represents
the observation ranked in the ith position in the jth cycle. In this case, the sample units are
independent, but not identically distributed random variables, as a result of the ordering
process. Furthermore, in the perfect ranking scenario Y[i]· becomes to the ith order statistic
from a SRS of size n, which is usually denoted by Y(i)·. In this work, however, we only use
Y[i]· for both perfect and imperfect ranking scenarios. When the results are specific to just
one of the ranking scenarios, it will be emphasized in the text.
The usual estimator of the population mean using RSS is given by

ȲRSS =
1

nk

nX

j=1

kX

i=1

Y[i]j ,
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with variance

Var(ȲRSS) =
�2

nk
� 1

nk2

nX

j=1

kX

i=1

(µ[i] � µ)2,

where µ and �2 are the population mean and variance and µ[i] = E[Y[i]j ].
The MRSS scheme is detailed in Algorithm 2.

Algorithm 2 MRSS scheme

1: Selection of k2 units of the population using SRS, allocating them, randomly, into k
sets of size k;

2: Ranking the sample units in each set according to the possible values of the variable
of interest, using the pre-established ordering criterion;

3: For odd k, selection, for the final sample, of the (k + 1)/2th judged unit in the each
set. For even k, we must select the units judged in position k/2 in half of the sets and
those judged in position (k + 2)/2 in the remaining sets;

4: Steps 1 to 3 can be replicated n times (n cycles) producing a sample of size nk.

Next, we present the steps to drawn an ERSS sample in Algorithm 3.

Algorithm 3 ERSS scheme

1: Selection of k2 units of the population using SRS, allocating them, randomly, into k
sets of size k;

2: Ranking the sample units in each set according to the possible values of the variable
of interest, using the pre-established ordering criterion;

3: For even k, selection, we must select, for the final sample, the units judged as the
minimum in half of the sets and those judged as the maximum in the others. However,
if k is odd we must select the units judged as the minimum in (k � 1)/2 sets; those
judged as the maximum in other (k � 1)/2 sets, and the unit judges as the median
(position (k + 1)/2) in the final set;

4: Steps 1 to 3 can be replicated n times (n cycles) producing a sample of size nk.

Additionally, Zamanzade and Mahdizadeh (2019) proposed the RSS with extreme ranks,
which is a more general sampling design including ERSS as a special case. Finally, NRSS
scheme (Zamanzade and Al-Omari, 2016) consists of the steps described in Algorithm 4.

Algorithm 4 NRSS scheme

1: Selection of k2 units of the population using SRS;
2: Ranking the k2 sample units based on the pre-established ordering criterion;
3: Selection of the [(i� 1)k + l]-th sample unit for the final sample, for i = 1, . . . , k. If k

is odd, then l = (k + 1)/2; if k is even, then l = (k + 2)/2 when i is odd and l = k/2
when i is even;

4: Again, steps 1-3 can be repeated n times, setting up n cycles and producing a final
sample of size nk.

As previously stated, in NRSS the k2 original sample units must compose (and must be
ordered in) a single set, which induces dependence between the observations (di↵erently
from the RSS design). The variances of these variables, however, are reduced due to the
greater set size, which justifies its higher e�ciency. For the sake of illustration, to select a
NRSS sample of size k = 3, we must select the sample units ranked in positions 2, 5 and
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8 from a original ordered sample of size k2 = 9; for a sample of size k = 4, we must select
those ranked in positions 3, 6, 11 and 14 from a ordered sample of size k2 = 16; and for
a sample of size k = 5, the sample units ranked in positions 3, 8, 13, 18 and 23 must be
selected from a ordered sample of size k2 = 25. These are the sample sizes considered in
this study. It is possible to observe that the positions of the selected sample units are, in
general, regularly spaced.
The NRSS sample is denoted by {Y[(i�1)k+l]j , i = 1, . . . , k, j = 1, . . . , n}, in which

Y[(i�1)k+l]j refers to the unit ranked in position [(i � 1)k + l] (of an initial sample of
size k2), in the jth cycle. Under perfect ranking, particularly, Y[(i�1)k+l]j corresponds to
the ((i� 1)k + l)th order statistics from a SRS sample of size k2.
According to Zamanzade and Al-Omari (2016), the NRSS sample mean is an unbiased

estimator for the population mean for symmetric distributions, which can be written by:

ȲNRSS =
1

nk

nX

j=1

kX

i=1

Y[(i�1)k+l]j , (1)

and its variance is given by:

Var(ȲNRSS) =
1

nk2

kX

i=1

Var(Y[(i�1)k+l]) +
2

nk2

kX

1i<i0k

Cov(Y[(i�1)k+l], Y[(i0�1)k+l]). (2)

3. Statistical quality control charts using NRSS

In this section, the Shewhart-type control chart based on NRSS is presented. Control
charts for the process mean based on simple random samples of size k are defined by a
central line (CL) and a pair of control limits (LCL and UCL) given by

LCL = µ0 �A
q

Var(ȲSRS) = µ0 �A
�0p
k
,

CL = µ0,

UCL = µ0 +A
q

Var(ȲSRS) = µ0 +A
�0p
k
,

where µ0 and �0 are the in-control process mean and standard deviation, ȲSRS the mean
of a simple random sample of k units and A the amplitude parameter of the control chart.
An observed sample mean beyond the control limits is an indicator of an out-of-control
process. It is usual to consider A = 3, which, under normal distribution, is associated to
a probability of a false alarm (a point outside the control limits for an in-control process)
of approximately 0.0027.
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We consider control charts for the process mean using NRSS, based on the structure

LCL = µ0 �A
q

Var(ȲNRSS),

CL = µ0,

UCL = µ0 +A
q

Var(ȲNRSS),

(3)

where ȲNRSS and Var(ȲNRSS) are defined in (1) and (2), respectively.
Our proposal constitutes an extension of the conventional SRS control charts, in such a

way that the samples are periodically selected using NRSS and the control limits are based
on (3). Alternatively, extensions of control charts were previously proposed for some other
designs based on RSS. The performance of these control charts are used here as reference
to NRSS control charts results.
In our study, to set the values for NRSS control limits, as described in (3), it was firstly

necessary to get the values for Var(ȲNRSS), for a process under statistical control, for each
simulated scenario. Under perfect ranking, Y[(i�1)k+l] is equivalent to the (i� 1)k+ l order
statistic from a SRS sample of size k2, for i = 1, . . . , k. Thus, in this case we calculated
Var(ȲNRSS) as presented in (2), by using the properties of order statistics from the normal
distribution, presented, for example, in Balakrishnan and Rao (1998).
Under imperfect ranking, due to the ranking errors, the sampling units no longer match

to order statistics. In this case, we obtained the values for Var(ȲNRSS) by means of a
preliminary simulation study. So we simulated B = 106 NRSS samples from a bivariate
normal distribution for di↵erent combinations of k and ⇢ (the correlation between the
variable of interest and an auxiliary variable). Bivariate normal distribution is very usual
in several industrial applications (Montgomery, 2009). Also, it is largely considered to
evaluate the performance of control charts for RSS-based designs. Then, Var(Y[(i�1)k+l])
and Cov(Y[(i�1)k+l], Y[(i0�1)k+l]) are estimated, respectively, by

Var(Y[(i�1)k+l]) =

PB
h=1

�
Y[(i�1)k+l],h � Ȳ[(i�1)k+l]

�2

B � 1
, i = 1, . . . , k, (4)

where

Ȳ[(i�1)k+l] =

PB
h=1 Y[(i�1)k+l],h

B
,

and

Cov(Y[(i�1)k+l], Y[(i0�1)k+l]) =
1

B � 1

BX

h=1

�
Y[(i�1)k+l],h � Ȳ[(i�1)k+l]

�

⇥
�
Y[(i0�1)k+l],h � Ȳ[(i0�1)k+l]

�
, (5)

for 1  i < i0  k. Then, we replace (4) and (5) in (2) to obtain the variances, and we
used them to set the NRSS control limits under imperfect ranking.
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In practice, the true process parameters are rarely (if ever) known. When they are
unknown, it is usual to perform the statistical process control in two distinct stages: phase
I and phase II (Chakraborti et al., 2008). Phase I consists in selecting a number of samples
when the process operates in-control. Their sample units should then be used for estimating
the process parameters and calculating the control limits. It is usually recommended the
selection of 20-25 samples in phase I, aiming to accurately define the control limits; see
Montgomery (2009). Once the control limits were calculated, in phase II the obtained
control chart must be used to monitor the process, based on new samples selected over
time.
When the process parameters are unknown, we propose the estimation of µ0 and

Var(ȲNRSS) based on the results of m independent samples of size k selected from the
process in the absence of assignable causes of variation (in-control process), according to

¯̄YNRSS =
1

m

mX

p=1

ȲNRSSp

and

dVar
�
ȲNRSS

�
=

1

k2

kX

i=1

dVar
�
Y[(i�1)k+l]

�
+

2

k2

X

i<i0

dCov
�
Y[(i�1)k+l], Y[(i0�1)k+l]

�
, (6)

where

dVar
�
Y[(i�1)k+l]

�
=

1

m� 1

mX

p=1

�
Y[(i�1)k+l]p � Ȳ[(i�1)k+l]

�2
,

where Ȳ[(i�1)k+l] = (
Pm

p=1 Y[(i�1)k+l]p)/m and

dCov(Y[(i�1)k+l], Y[(i0�1)k+l]) =
1

m� 1

mX

p=1

[(Y[(i�1)k+l]p � Ȳ[(i�1)k+l])

⇥(Y[(i0�1)k+l]p � Ȳ[(i0�1)k+l])], 1  i < i0  k.

Thus, in practice the NRSS control charts for the process mean with estimated control
limits are defined by substituting, in (3), µ0 by ¯̄YNRSS and Var(ȲNRSS) by dVar

�
ȲNRSS

�

LCL = ¯̄YNRSS �A
q

dVar
�
ȲNRSS

�
,

CL = ¯̄YNRSS,

UCL = ¯̄YNRSS +A
q

dVar
�
ȲNRSS

�
.

In order to investigate the bias of (6) in estimating (2), an additional simulation study was
carried out, considering k = 3, 4, 5. For each value of k, we simulated 5⇥ 104 replications
of m samples, using NRSS, from a normal standard distribution. For m, values between
5 and 25 were set. At each step, the m simulated samples were considered to estimate
Var(ȲNRSS). We found that the bias of this estimator is negligible (a relative bias lower
than 0.001 was verified for all sample sizes for m � 20).
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4. Monte Carlo evaluation of NRSS-based control charts

In this section we present the run length properties for NRSS-based control charts, and
for other RSS-based designs, obtained through a Monte Carlo simulation study. First, we
evaluate their performance when the process follows the normal distribution. Thereafter,
we analyze how NRSS-based control charts, and its competitors, were a↵ected by di↵erent
departures from normal distribution, considering models with di↵erent levels of skewness
and kurtosis. For this purpose, we developed computational routines using R language. All
simulations were performed using R software (R Core Team, 2019). The packages MASS
(Venables and Ripley, 2002), sn (Azzalini, 2019), and normalp (Mineo, 2018) were used
to generate samples from normal and non-normal distributions.
To evaluate the performance of NRSS control charts under normal distribution, we

simulated samples from a bivariate normal distribution, according to

✓
X

Y

◆
⇠ N

✓✓
0

µY

◆
,

✓
1 ⇢
⇢ 1

◆◆
.

where Y corresponds to the variable of interest and X was the concomitant variable. We
assume µY = µ0 = 0 as the in-control process mean. The e�ciency in ranking the sample
units into each set was specified thorough ⇢, such that higher levels of imperfect ranking
was introduced by decreasing ⇢. For the out-of-control scenarios, we consider

µY = µ0 +
��0p
k
,

such that � determines the shift in the process mean:

� = |µY � µ0|
p
k

�0
, (7)

and � = 0 implies to an in-control process.
As parameters settings for the simulation study we had k = 3, 4 and 5; � =

0, 0.1, 0.2, 0.3, 0.4, 0.8, 1.2, 1.6, 2, 2.4 and 3.2 and ⇢ = 0, 0.25, 0.50, 0.75, 0.9 and 1. To eval-
uate the performance of control charts we consider the average run length (ARL), defined
as the average number of points in a control chart until one exceeds the control limits.
Particularly, if we have an in-control process, ARL0 is the reciprocal of the false alarm
error rate; for an out-of-control process, ARL1 is inversely proportional to the detection
probability, representing the average number of samples until the out-of-control state is
detected. For each combination of k, and � we simulated 106 independent NRSS samples
under perfect ranking and 107 under imperfect ranking, for each considered correlation
level (⇢ value). At this stage, we have to increase the number of simulations, due to some
numerical instability in estimating the run length properties. Based on results provided
by a previous convergence study (results were not showed), we noticed some additional
instability when considering imperfect ranking. This study pointed out that the adopted
simulation sizes were satisfactory to achieve satisfactory convergence. The ARL values
were calculated as the inverse of the proportion of points (sample means) beyond the con-
trol limits. In addition, the simulation results were also summarized by means of standard
deviation of the run length (SDRL) and median run length (MRL), since the run length
distribution is quite skewed.
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The parameters for the simulation study were chosen in such a way to allow the com-
parison of the ARL values with those presented in other publications, referring to control
charts for other sampling designs based on RSS. Moreover, it becomes evident that the
considered scenarios (198 in total) comprises a great variety of processes. The sample size
was limited to k = 5 given the context for application of sampling designs based on RSS
(restrictions related to draw big samples, initial selection and ranking of k2 - or even k3

or more - sample units, among others). Moreover, the amplitude parameter (A) for the
control limits were set, under perfect ranking, so that ARL0 = 370.51. This is the ARL0

corresponding to SRS control charts when we set A = 3. In this way, we could fairly com-
pare the ARL1 values for NRSS control charts with those provided by the other sampling
designs. The DRSS designs control charts, particularly, produce low values for ARL0 and,
consequently, high false alarms rates when A = 3.
Table 1 presents the simulated run length results for RSS-based control charts. Besides

NRSS, results obtained by SRS, RSS, ERSS and MRSS are also presented. In this first
part of the analysis, we consider perfect ranking (⇢ = 1), allowing to assess the maximum
power provided by each design. Some conclusions drawn from Table 1 are the following:

• The e�ciency of NRSS control charts for detecting shifts in process mean increases, as
expected, for higher values of � and k. As an illustration, for k = 3 and � = 0.40 we
have ARL = 120.60 compared to ARL = 6.41 for � = 1.20, while for k = 5 and � = 0.40
we have ARL = 102.60 for k = 3 against ARL = 60.14 for k = 5;

• The NRSS control charts perform better than SRS control charts in all simulated scenar-
ios. For example, for k = 3 and � = 0.80 we have ARL = 21.25 for NRSS control charts
compared to ARL = 71.55 for SRS, while for k = 5 and � = 1.60 we have ARL = 1.46
for NRSS against ARL = 12.38 for SRS;

• The NRSS control charts dominates RSS and ERSS designs in all the simulated scenar-
ios. For example, when compared to RSS, for k = 3 and � = 0.80 we have ARL = 21.25
for NRSS control charts against ARL = 35.43 for RSS, while for k = 5 and � = 1.60 we
have ARL = 1.46 for NRSS against ARL = 2.83 for RSS;

• The NRSS control charts overcome the MRSS competitor in all simulated scenarios.
This is remarkable, once MRSS is well known by its higher e�ciency in estimating the
mean, compared to RSS, for symmetric distributions. Additionally, MRSS performs best
under both single and DRSS strategies for control charts for the process mean (Mehmood
et al., 2013). When k = 3 and � = 0.80 it was verified ARL = 21.25 for NRSS control
charts compared to ARL = 29.52 for MRSS, while when k = 5 and � = 1.60 we have
ARL = 1.46 for NRSS against ARL = 2.04 for MRSS.

In order to summarize the performance of the di↵erent control charts designs, Figure 1
presents the geometric means of the ratios of ARL values for SRS control charts relative
to the ones obtained by each of the other sampling designs, for each sample size. The ARL
values for SRS control charts were, on average, 2.39 times larger than the corresponding
NRSS when k = 3; 3 times for k = 4 and 3.59 times for k = 5. The best performance of
NRSS control charts over the RSS, ERSS and MRSS counterparts becomes evident. For
MRSS, for example, we have, on average, ARL 1.22 times higher than NRSS for k = 3;
1.25 times for k = 4 and 1.28 times for k = 5.
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Figure 1. Average relative e�ciency from control charts of designs based on RSS compared to SRS under perfect
ranking. ARL from RSS, MRSS and ERSS were taken from Al-Omari and Haq (2012).

Table 2 presents the simulation results under imperfect ranking by setting A = 3 (3-
sigma limits). This is a traditional choice for Shewhart control charts. The ARL values for
⇢ = 0 are identical to the corresponding ones from SRS, once NRSS and SRS are equivalent
if the ordering is done completely at random. Based on these results, it is possible to assess
the impact of ranking errors in the performance of control charts. Some conclusions from
Table 2 are highlighted next:

• Control charts for all RSS based designs lose performance when the correlation between
the variables decreases. For example, for NRSS control charts, k = 3 and � = 0.8,
ARL = 21.34 when ⇢ = 1, ARL = 31.23 when ⇢ = 0.90; 44.02 when rho ⇢ = 0.75 and
59.55 when ⇢ = 0.50;

• The ARL values for NRSS control charts are smaller compared to the ones provided by
SRS in almost all simulated scenarios with � 6= 0. NRSS only loses in a few scenarios
described by low shifts in process mean and low values for ⇢;

• The ARL0 values from NRSS control charts are around 370.4, as intended. The individual
ARL0 values range from 365.62 when k = 3 and ⇢ = 0.75, to 372.04, when k = 5 and ⇢ =
1.

Figure 2 shows the geometric means of the ratios of ARL values for SRS control charts
relative to the ones obtained by each of the RSS based designs. These results are presented
for each sample size and considering the di↵erent correlation levels between the auxiliary
and the variable of interest. We can notice that NRSS control charts are, in general, more
e�cient than all other considered sampling designs. Moreover, the superiority of NRSS
control charts becomes higher when the correlation between the variables increases. For
⇢ = 0.9 and ⇢ = 1, we have, on average, higher e�ciency for the NRSS control charts
with k = 4 than for the other sampling designs taking k = 5, which can reflect in resource
savings and lower operational e↵ort.
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Figure 2. Average relative e�ciency from control charts of designs based on RSS compared to SRS under imperfect
ranking. ARL from RSS, MRSS and ERSS were taken from Al-Omari and Haq (2012). For k = 3 RSS and ERSS
provides the same sampling design.

In order to evaluate the e↵ect of non normality on the performance of NRSS control
charts, a new simulation study was conducted. Two probability distributions are consid-
ered at this point: the skew normal and the generalized normal distributions (Azzalini,
1985; Nadarajah, 2005). Through these models, we were able to evaluate the impact of
di↵erent levels of skewness and kurtosis on the run length results. The skew normal and
the generalized normal models are briefly described in the following paragraphs.
The probability density function of a random variable with skew normal distribution is

given by

f(y; ✏,!,↵) =
2

!
�

✓
y � ✏

!

◆
�

✓
↵

✓
y � ✏

!

◆◆
,

where y 2 (�1,1) and ✏ 2 (�1,1), ! > 0 and ↵ 2 (�1,1) are location, scale and
shape parameters, respectively. Additionally, � and � represent the probability density
function and the cumulative distribution function of the standard normal distribution.
The skew normal distribution becomes more asymmetric as |↵| increases. When ↵ > 0,
the distribution is right skewed; left skewed if ↵ < 0 and for ↵ = 0 we have the normal
distribution.
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A random variable has generalized normal distribution if its probability density function
is given by

f(y;µ,�,↵) =
1

2 ↵1/↵ �(1 + 1/↵) �
e�

|y�µ|↵

↵�↵ ,

where y 2 (�1,1) and µ 2 (�1,1), � > 0 and ↵ > 0 are location, scale and shape
parameters, respectively. The generalized normal distribution is symmetric around µ and
becomes the normal distribution when ↵ = 2. In addition, for ↵ < 2 it produces leptokurtic
(fatter tails) distributions, and platykutics (thinner tails) distributions when ↵ > 2. As
particular cases of the generalized normal distribution we have, for example, the Laplace
(↵ = 1) and uniform (↵ ! 1) distributions.
We consider four di↵erent parameter combinations for each one of the two distributions.

For the skew normal model, an increasing sequence of values for ↵ was defined (↵ =
1, 2, 3 and 5), providing distributions with di↵erent levels of skewness. Additionally, we
set ! = 1 and, for ✏, we have assigned appropriate values such that the process mean was
equal to zero. For the generalized normal model, four di↵erent values for ↵ were selected,
producing two distributions with heavy tails (for ↵ = 1 and 1.5) and two with light tails
(for ↵ = 3 and 4). Furthermore, for the other model parameters we set µ = 0 and � = 1.
In all cases, the process mean was set at zero since the objective here is to evaluate the
robustness of the control charts in maintaining the average (and median) run length for an
in-control process (ARL0 = 370.4). Also, for the sake of brevity we are only considering,
at this point, the perfect ranking scenario.
For each one of the eight distributions obtained by combining the two distributions and

four specific parameter settings, we have simulated 107 samples of sizes k = 3, 4, and 5.
Five di↵erent sampling designs are considered: NRSS, RSS, MRSS, ERSS and SRS. 3-
sigma control limits were properly calculated as described in (3), for the NRSS control
charts, and based on the expressions presented in Muttlak and Al-Sabah (2003), for the
others. Based on the simulated results, we calculated the corresponding values for ARL,
MRL and SDRL, as we can verify in Table 3.
Note in Table 3 that, although all considered sample designs have their respective ARL0s

a↵ected by the distribution skewness, NRSS and MRSS provided, in general, the closest
values to the nominal ARL0 = 370.4 for the skew normal distribution. This indicates
that these sampling designs are more conservative than their competitors. Table 3 points
higher influence in ARL and MRL for the generalized normal if compared with the skew
normal distribution in the considered simulated scenarios. This is particularly evident for
� = 1 (Laplace distribution). However, we can also see that the NRSS control charts still
dominates all its competitors, producing, in general, ARL0 values closer to 370.4. Our
results are in agreement with those found by Koyuncu and Karagöz (2018), who verified
that NRSS control charts present lower type I error when applied to two asymmetric
distributions: Type I Marshall-Olkin bivariate Weibull and bivariate lognormal.
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5. An application to real data

In order to illustrate the application of the NRSS control charts, we used a data set with
1030 observations about the concrete strength to compression (MPa) and the amount of
cement (kg) used in the production of concrete blocks (Yeh, 1998). This data set is available
in the R package AppliedPredictiveModeling (Kuhn and Johnson, 2018). Although this
data was not recorded as a case of a quality control process, it serves us, under some
assumptions, as a reference population, from which samples were drawn and control charts
were constructed. We assumed the concrete strength as the variable of interest and the
amount of cement as an auxiliary variable, such that the sample units may be ordered with
errors, producing an imperfect ranking scenario. Also, we consider an additional scenario
based on perfect ranking. In this case, the sample units were ordered directly from the
concrete strength values, and the ranking process did not present any error. Moreover, we
assumed the concrete blocks strength distribution in this sample as the natural variability
of an industrial process. A square root transformation of the concrete strength was used
in order to obtain a better approximation to normal distribution.
In this application, we consider three sampling designs: SRS, RSS and NRSS; two sample

sizes: k = 3 and k = 5, and processes in two di↵erent scenarios: in-control (� = 0) and
out-of-control, considering � = 1.2, as described in (7). Under each sampling design and for
each sample size, we selected, with replacement, 25 samples from the original data. These
samples are considered for estimating the control limits with A = 3, which corresponds
to a probability of a type I error of ↵ = 0.0027 (phase 1). Afterwards, 75 new samples
were selected for monitoring the process mean (phase 2). For � = 0, these 75 samples were
selected with replacement from the original data; for � = 1.2, we added to the transformed
strength values a normal random variable with mean 1.2�0/

p
k and standard deviation

equals to 0.17 (corresponding to 11.74% of the standard deviation of the transformed
concrete strength). This standard deviation value is small enough to characterize the lack
of control, predominantly, due to the shift in the process mean, instead of its dispersion
(variance).
Figure 3 presents (on the left) the histogram for the distribution of concrete strength,

with the estimated normal distribution and kernel density curves. The dispersion plot, on
the right, indicates moderate positive linear relationship between the variables. The linear
correlation coe�cient is ⇢ = 0.49, which points to a moderately favourable scenario for
RSS based designs.
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Figure 3. Histogram and scatter plot for concrete strength.
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Following, Figures 4 and 5 present the SRS, RSS and NRSS control charts for the process
mean considering k = 3. The RSS and NRSS control charts were obtained under perfect
and imperfect ranking, as previously described. In Figure 4 we have the charts when � = 0
(in-control process). In all cases, it is possible to notice points randomly distributed around
the central line, without any point outside the control limits. This behaviour characterizes
an in-control process, as expected. In addition, Figure 5 presents the control charts for
� = 1.2 (out-of-control process). It is possible to observe that the NRSS control chart
showed the highest number of points exceeding the control limits (11 points under perfect
ranking and 7 under imperfect ranking), followed by RSS (with 9 and 5 points exceeding
the control limits, respectively) and SRS control charts (only 2 points outside the limits).
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Figure 4. Control charts for concrete strength considering k = 3 and an in-control process (� = 0). Perfect ranking
is denoted as PR, and imperfect ranking as IR.
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Figure 5. Control charts for concrete strength considering k = 3 and an out-of-control process (� = 1.2). Perfect
ranking is denoted as PR, and imperfect ranking as IR.

Figures 6 and 7 present the control charts for k = 5, under the same three sampling
designs (and five scenarios, when considering perfect and imperfect ranking), simulated,
respectively, with � = 0 and � = 1.2. It is possible to notice again that NRSS control
charts present satisfactory performance, showing randomness and without any point out-
side the control limits for an in-control process, and also presenting a large number of
points exceeding the control limits in the out-of-control scenario (28 under perfect and 9
under imperfect ranking) than RSS (14 and 6 points, respectively) and SRS (with only 3
points outside the limits).
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Figure 6. Control charts for concrete strength considering k = 5 and an in-control process (� = 0). Perfect ranking
is denoted as PR, and imperfect ranking as IR.

6. Concluding remarks

In this paper, we considered control charts for the mean of a normal distributed pro-
cess based on NRSS design. These charts were compared to their SRS and RSS based
counterparts by means of a simulation study. Under perfect ranking, NRSS control charts
overcome all their competitors, providing smaller ARL values for out-of-control process
in all simulated scenarios. In addition, the NRSS control charts showed to be competitive
when compared to those based on DRSS designs. However, such sampling designs require
the initial selection of k3 sample units for, after two ordering cycles, selecting a final sample
of k units. For example, the ARL for NRSS control charts were smaller in all simulated
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Figure 7. Control charts for concrete strength considering k = 5 and an out-of-control process (� = 1.2). Perfect
ranking is denoted as PR, and imperfect ranking as IR.

scenarios when compared to those provided by extreme double ranked set sampling and
double extreme ranked set sampling, and surpassed by those provided by double quartile
ranked set sampling and quartile double ranked set sampling when k = 5 (Abujiya and
Muttlak, 2004; Al-Omari and Haq, 2012). Moreover, this superiority is also verified against
DRSS control charts for all considered sample sizes. In addition, when considering the dou-
ble median ranked set sampling and median double ranked set sampling control charts,
as can be seen in Abujiya and Muttlak (2004), these designs dominate NRSS, providing
lower ARL values. However, it should be considered that double ranked set designs could
be expensive, and sometimes infeasible, due to a high operational e↵ort.
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Under imperfect ranking, we have shown that the e�ciency of NRSS control charts
becomes smaller as the correlation between the variables decreases. This is a common
fact to other designs based on RSS. Even so, the simulated ARL values for NRSS control
charts are predominantly smaller (for out-of-control processes) than the corresponding
ones reached by SRS. Additionally, it was possible to verify the superiority of the NRSS
control charts with the ones provided by RSS, MRSS and ERSS in most of the simulated
scenarios. Also, NRSS was the most robust method for non-normally distributed processes.
In an illustration with real data regarding concrete strength, the SRS, RSS and NRSS

control charts presented points randomly distributed around the central line, without
any points outside the control limits, when we simulated from a process under statistical
control. However, for the out-of-control scenarios, the NRSS control charts performed
better when compared to the RSS and the usual control charts based on SRS.
Therefore, based on these results, we recommend NRSS control charts for monitoring

the process mean as an e�cient alternative to SRS and to other RSS based designs. Under
the operational point of view, the ranking of k2 samples units in a single set (instead of
ranking k sets of k units, as it occurs in RSS, MRSS and ERSS designs) may, eventually,
become a complicating issue, if the ordering criterion is based, for example, on a visual
judgment. However, this will usually not make great di↵erence if the ordering criterion
is based, for example, on an auxiliary variable. Finally, the impact of ties in the ranking
process should be investigated; see Frey (2012) and Zamanzade and Wang (2018) for some
alternatives to overcome the problem of ties in RSS.
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Abstract

Options pricing models, which consider asset-objects following a geometric Brownian
motion, such as derivations from the traditional Black-Scholes model, assume the volatil-
ity of asset-objects to be constant over time. In addition, the normal distribution is the
basement of the joint distribution for the case of bivariate options. In this work, we
consider GARCH-in-mean models with asymmetric variance specifications to model the
volatility of the assets-objects under the risk-neutral dynamics. Moreover, the copula
functions model the joint distribution, with the objective of capturing non-linear, lin-
ear and tails associations between the assets. We provide a methodology to describe
a more realistic pricing option. To illustrate the methodology, we use stocks from two
Brazilian companies. Confronting the results obtained with the classic model, which is
an extension of the Black-Scholes model, we note that considering constant volatility
over time underpricing the options, especially in-the-money options. Overall, the con-
tributions of the proposed methodology are as follows. Using the best copula makes the
model more suitable. Extension to marginal models, which consider asymmetry, makes
joint modeling more flexible and realistic. Due to the adequate marginal and joint fit-
ting, in addition to the values obtained with the classical consolidated model, there are
arguments to believe that the di↵erences obtained between the best models, through
the copulas and the extension of the conventional method, are improvements in the
calculation of the fair value. The empirical relevance of such alternatives is apparent
given the evidence of non-joint-normality in financial emerging markets. In essence, the
entire approach may be generalized to any number of time-series of option pricing.

Keywords: Black-Scholes model · Copulas · GARCH models · Pricing.
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1. Introduction

Multivariate options are excellent tools to manage a portfolio’s risk. The first works that
had as objective the pricing of options in the univariate case were Black and Scholes (1973)
and Merton (1973). Through these works, other authors have used the same theory, that
is, asset-objects follow a Brownian geometric motion and have proposed bi and multivari-
ate models, such as Stulz (1982), Margrabe (1978), Johnson (1987), Nelsen (2006) and
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Shimko (1994). However, models derived from Brownian geometric motion methods have
the assumptions that the volatilities of the assets are constant over time.
To carry out the pricing with more realistic assumptions, researchers have developed

other models. For instance, we use the generalized autoregressive conditional heteroskedas-
ticity (GARCH) family of models, because of its ability to incorporate the stylized facts
about asset return dynamics. This kind of modeling is popular in economics and finance
(Almeida e Hotta, 2014). Furthermore, with Black-Scholes (BS) model assumptions, any
contingent claim can be perfectly replicated by its underlying asset and a riskless bond,
so the price of a contingent claim is merely the cost of the replicating portfolio. However,
using GARCH-type models, it is generally not possible to construct a perfect replicating
portfolio, as the volatility of asset returns is permitted to vary over time. It is necessary to
define a risk-neutral measure to use the GARCH-type models to consider a general market
equilibrium (Liu, Li and Ng, 2015).
The model of Duan (1995) derived a measure of risk-neutral through the standard

GARCH model, which the author showed the potential of it concerning the Black-Scholes
approach. However, one of the main limitations of the standard GARCH model is the
inability to incorporate the e↵ect of asymmetry caused by unplanned returns (Nelsen,
1991). Introduced by Black (1976), this e↵ect implies that volatility tends to grow more
when there is an unanticipated drop in returns (that is, bad news) than when there is an
unanticipated increase of the same magnitude in returns (that is, good news). This e↵ect,
also known as a leverage e↵ect, has been included in the GARCH-type models, such as the
exponential GARCH (EGARCH), the non-linear asymmetric GARCH (NGARCH) and
the Glosten, Jagannathan, and Runkle GARCH (GJR-GARCH) models. It can be used
to price options by deriving their risk-neutral measure.
Furthermore, to understand the price behavior of a multivariate option, it is necessary to

use tools that accommodate the co-movements between its underlying processes. A primary
tool that is widely used by the methods derived from the traditional Black-Scholes model
is the multivariate normal distribution modeling. However, the use of such an approach
implies in linear associations as a measure of dependence between the assets. However,
empirical evidence presents that a real association between financial series is much more
complex (Lopes and Pessanha, 2018).
Therefore, this paper aims to price bivariate options by overcoming two of the above

constraints of the classical approach, where asset-objects are modeled marginally by deriv-
ing their risk-neutral considering the GARCH, EGARCH, NGARCH and GJR-GARCH
models, with copula functions modeling the joint distribution models, with the objective
of capturing linear, non-linear and tails dependence. The entire methodology described
here may be extended to any multivariate case.
An innovative feature of the present work is the comparison among methodologies, where

we consider marginal processes that capture the e↵ect of asymmetry, usually present in
financial series. A second point is the performance of a simulation study of the pricing
models with the purpose of verifying the good fit of the models used in the literature. It is
highlighted as a third point the comparison of the methodology exposed to the standard
method, extended from the Black-Scholes model to the bivariate case. The implementa-
tion of such methods in the Brazilian stock market, which is characterized as a volatile
and unstable market concerning developed markets. Then, compared with the previous
papers, the approach in the present paper makes the dynamic pricing more reasonable and
tractable. The paper organization follows. Section 2 presents the conceptual framework
and the models. In Section 3, we provide the bivariate model methodology and the infer-
ence procedures. In Section 4, the results of the proposed method under an artificial and
real data sets are illustrated. Finally, Section 5 ends the paper with concluding remarks.
Some technical details about di↵erent copulas are presented in the appendix.
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2. Conceptual Framework and Model Specification

In this section, we present option pricing, the GARCH-in-mean specification and risk-
neutral with GARCH-in-mean process.

2.1 Option pricing

A European option call on the maximum of two risky assets (call-on-max) is defined based
on the maximum price between two assets. The payo↵ function of this option is given by

g(S(T )) = max[max(S1(T ), S2(T ))�K, 0],

where Si is the price of the ith asset, for i = 1, 2, at the maturity date T and K is the
strike price or exercise price.
To introduce heteroscedasticity, we use the fundamental theorem of asset pricing (Del-

baen and Schachermayer, 1994). This theorem states that once the stock prices S1(T )
and S2(T ) are free from arbitrage and present in a complete market (Hull, 1992), there
is a measure of probability such that the discounted price of the payo↵ function,
e�r(T�t)

g(S1(T ), S2(T )), is a martingale under and is equivalent to the real world
probability measure . Therefore, we define the following definition to perform the pricing.

Definition 1. Let S1 and S2 be two stocks traded in a complete and free arbitrary
market. In addition, be t the present date, T the maturity date and r the fixed risk-
free rate yield. Then, the option price considering the payo↵ function g(S1, S2) =
max[max(S1(T ), S2(T ))�K, 0] is given by

v(t, S1, S2) = e�r(T�t)E [max[max(S1(T ), S2(T ))�K, 0]|Ft]

= e�r(T�t)
Z 1

0

Z 1

0
max[max(S1(T ), S2(T ))�K, 0]fS1,S2

(x1, x2)dx1dx2,

where fS1,S2
is the joint density function of two measures under neutral risk probability

, which in this work is modeled by copula functions, and Ft is a filtering containing all
information about the assets up to time t.

Now, we express the joint density function using the marginal densities fS1
(x1) and

fS2
(x2) by means of copula functions expressed as

fS1,S2
= c (FS1

, FS2
)fS1

(x1)fS2
(x2),

where c = @
2
C (x1, x2)/@x1@x2 and C is a copula function.

Copulas are useful tools for constructing joint distributions (Sharifonnasabi, Alamatsaz
and Kazemi, 2018). That is, copula is a multidimensional distribution function in which
the marginal distributions are uniform in [0, 1]. A bivariate copula is a function C : I2 �!
I 2 [0, 1] that satisfies the following conditions: C(x1, 0) = C(0, x1) = 0 and C(x1, 1) =
C(1, x1) = x1, x1 2 I and the 2-increasing condition C(u2, v2)�C(u1, v2)�C(u2, v1) +
C(u1, v1) � 0, for all u1, u2, v1 and v2 2 [0, 1] such u1  u2 and v1  v2.
One of the most famous theorems in copula theory is the Sklar theorem. According to

Sklar’s theorem (Sklar, 1959), any bivariate cumulative distribution HS1,S2
can be repre-

sented as a function of the marginal distributions FS1
and FS2

. In addition, whether the
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marginal distributions are continuous, the copula exists, is unique and given by

HS1,S2
(x1, x2) = C(FS1

(x1), FS2
(x2)),

where C(u, v) = P (U  u, V  v), U = FS1
(x1) and V = FS2

(x2).
In the case of continuous and di↵erentiable marginal distributions, the joint density

function of the copula is expressed as

f(x1, x2) = fS1
(x1)fS2

(x2)c(FS1
(x1), FS2

(x2)),

where fS1
(x1) and fS2

(x2) are the densities for the distribution function FS1
(x1) and

FS2
(x2), respectively, and

c(u, v) =
@
2
C(u, v)

@uv

is the density of copula. For further details about copulas, see Nelsen (2006) and Sanfins
and Valle (2012). In this work, we consider the normal, Student-t, Gumbel, Frank and Joe
copulas. An appendix at the end of this paper provides details about these copula functions.
Therefore, to construct a joint process of risk-neutral for the bivariate distribution of the
option, the marginal processes are derived first.

2.2 GARCH-in-mean specification under

Instead of deriving the bivariate risk-neutral distribution directly, each marginal process is
proposed to transform separately. Duan (1995) defined an option pricing model considering
that the variance of the asset-object is not constant over time. To implement non-constant
volatility over the maturity time of the option, we use in this work the generalized au-
toregressive conditional heteroskedastic (GARCH) models. Bollerslev (1986) introduced
the GARCH model by modifying the ARCH model presented by Engle (1982). The use
of GARCH models in pricing leads to the correction of some biases in the model of Black
and Scholes (1973), including return skewness and leptokurtic behavior.
GARCH-in-mean refers to the inclusion of an extra term mt in the conditional mean

of the model introduced by Bollerslev (1986). An intuitive idea to use these models in
derivative pricing is that conditional variance is not constant over time and hence the
conditional mean of market returns is a linear function of conditional variance. Another
definite reason to work with the GARCH-in-mean models is that these models explain the
presence of conditional left skewness observed in stock returns.
Consider a discrete time economy with a risk-free asset. We define a complete filtered

probability space (⌦, , t, ) to model uncertainty, where is the historical (physical)
measure and = t, for t = 0, 1, . . . , T , is a filtration, or a family of increasing �-
field information sets, representing the resolution of uncertainty based on the information
generated by the market prices up to and including time t. We assume the general GARCH-
M(p, q) model for the return yt = log(St/St�1) given by

yt = mt +
p

ht✏t, ht = ↵0 +
pX

i=1

↵iht�i�(✏t�i) +
qX

i=1

�iht�i, (1)

where St is the stock price at time t and ✏t is a sequence of independent and identically
distributed random variables with normal distribution; the conditional mean return mt is
assumed to be an Ft-predictable process. In many studies, mt is assumed to be a function
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of the conditional variance ht of the return and a risk premium quantifier at time t; the
function � describes the impact of random shock of return ✏t on the conditional variance
ht and ↵0 > 0,↵i and �i � 0.
The conditional mean and variance of yt are mt = E[yt|Ft�1] and ht = Var[yt|Ft�1]. The

e↵ect of past innovations ✏t�1 under the conditional variance ht have di↵erent impacts
depending on the function �(✏t�1), and consequently we have di↵erent extensions of the
GARCH model. For example, considering p = q = 1, when �(✏t�1) = ✏

2
t�1, the sign of

✏t�1 there is no e↵ect over ht, and we have the traditional GARCH proposed by Boller-
slev (1986). Thus, the innovations have a symmetric e↵ect on the conditional variance,
expressed by

ht = ↵0 + ↵1ht�1✏
2
t�1 + �1ht�1. (2)

Following Liu, Li and Ng (2015), Duan (1995) and Chiou and Tsay (2008), mt = r +
�
p
ht � k✏t(

p
ht), where k✏t(

p
ht) is the cumulate generating function of the innovation

✏t e � is the premium risk parameter. When ✏t follows a normal distribution, we have
k✏t(

p
ht) = ht/2. Because standard GARCH models given by equation (1) respond in

the same way to positive and adverse events, such models cannot correctly capture the
leverage e↵ect. Other forms of the GARCH model, such as EGARCH, NGARCH, and
GJR-GARCH, include the asymmetry e↵ect, can thus be used in option pricing and are
used in the present work. Nelsen (1991) proposed the exponential GARCH (EGARCH)
model. The author assumes that the dynamic of the logarithm of the conditional variance
of EGARCH(1,1) is expressed as

log(ht) = ↵0 + ↵1(|✏t�1|+ �1✏t�1) + �1 log(ht�1), (3)

where ↵0, ↵1, �1 and �1 are constant parameters and ✏ forms a sequence of independent
standard normal random variables representing random shocks. The EGARCH model does
not require such parameter restrictions since the conditional variance is expressed as the
exponential of a function. Including the random shock term in absolute value and with
a parameter �1, the author made volatility a function of both magnitude and sign of the
shock.
Engle (1982) introduced the non-linear asymmetric GARCH (NGARCH), which takes

into account the leverage e↵ect. In their model, the dynamic of the conditional variance
of NGARCH(1,1) is given by

ht = ↵0 + ↵1ht�1(✏t�1 � �1)
2 + �1ht�1, (4)

where ↵0 > 0, ↵1 � 0, �1 � 0 and �1 is a non-negative parameter that captures the
negative correlation between return and volatility innovations. Since the parameter ↵1 is
typically non-negative, a positive �1 means that negative random shocks increase volatility
more than positive random shockes of similar magnitude. Hence, the NGARCH allows for
the levarage through its paramater �1.
Another model that takes into account the asymmetry e↵ect of news on volatility is the

GJR-GARCH introduced by Glosten, Jagannathan and Runkle (1993). According to this
model, the conditional variance dynamic of GJR-GARCH(1,1) is defined as

ht = ↵0 + ↵1ht�1✏
2
t�1 + �1ht�1 + �1ht�1max(0,�✏t�1)

2
, (5)

where ↵0 > 0, ↵1 � 0, �1 � 0 and �1 � 0 are constant parameters. This model allows
for the leverage e↵ect by adding the extra term �1ht�1max(0,�✏t�1)2 when ✏t is negative
since �1 is typically non-negative.
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All the models presented above are in the physical measure ( measure). Now, we discuss
their representations in the risk-neutral measure ( measure), a prerequisite for pricing
options under heteroscedasticity.

2.3 Risk-neutral with GARCH-in-mean process

The concept of risk-neutral valuation relationship (RNVR) has a fundamental role in the
process of pricing options. This principle has as the base an asset, which is priced according
to the discount of the expected value of a payo↵ function under a martingale measure, that
is, that the economic agents are risk-neutral.
To apply this pricing methodology, we assume that a measure of martingale exists in

a discrete economy time, with interest rate and a probability space (⌦, , t, ), where
is a measure of physical probability and t is a filtering at time t.

Definition 2. A measure of probability is equivalent to a measure of probability if:

(1) ⇡ , that is, for all event X, (X) = 0 and (X) = 0.

(2) The discounted price process St is a martingale under , that is, E [St|Ft�1] =
St�1.

Proposition. Assuming continuously compounded returns, the martingale condition for
the discounted stock price can be replaced by

E [eyt |Ft�1] = er.

Proof. From second condition in Definition 2, we have

E [St|Ft�1] = St�1 , E [e�rT
St|Ft�1] = er(t�1)

St�1 , E


St

St�1
|Ft�1

�
= er

, E [eyt|FT�1 ] = er.

Brennan and Schwartz (1979) represented a starting point by providing conditions which
ensure the existence of the risk-neutral measure. Duan (1995) proposes an extension of
RNVR, referred to as locally risk-neutral valuation relationship (LRNVR) by assuming a
conditional Gaussian distribution for the log-returns with unchanged volatility after the
change of measure.

Definition 3. A no arbitrage measure equivalent to is said to satisfy the local
risk-neutral valuation relationship (LRNVR) if the following conditions are satisfied:

(1) yt|Ft�1 ⇠ N(mt, ht) under , where ✏t ⇠ N(0, 1).

(2) E [St/St�1|Ft�1] = er.

(3) Var [log(St/St�1)|Ft�1] = Var [log(St/St�1)|Ft�1].

In the previous definition, the conditional variance under the two measures is required
to be equal. This requirement is necessary to estimate the conditional variance under
and use the framework to obtain the option pricing under . This property and the fact of
the risk-free rate can replace the conditional mean, yield a well-specified model that does
not locally depend on preferences. Duan (1995) proved this latter fact. Here we reduce
all preference consideration to the unit risk premium �. Since is absolutely continuous
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for , the almost certain relationship under also holds true under . Duan (1995) and
Duan et al. (2006) showed that under the risk-neutral measure given by LRNVR, the
asset return dynamic becomes

yt = r � 1

2
ht +

p
ht✏̃t, ✏̃t ⇠ N(0, 1).

In addition:
GARCH(1,1): ht = ↵0 + ↵1ht�1(✏̃t�1 � �1)2 + �1ht�1.

EGARCH(1,1): ht = ↵0 + ↵1[|✏̃t�1 � �1|+ �1(✏̃t�1 � �1)] + �1 log(ht�1).
NGARCH(1,1): ht = ↵0 + ↵1ht�1(✏̃t�1 � �1 � �1)2 + �1ht�1.

GJR-GARCH(1,1): ht = ↵0 + ht�1[�1 + ↵1(✏̃t�1 � �1)2 + �1max(0,�✏̃t�1 + �1)2].
Under LRNVR, the form of mt just a↵ects the volatility dynamics while the risk-
neutralized conditional mean return remains the same, that is, r� ht/2. Now, we have all
the variance specification in the risk-neutral measure. According to the equations above,
the final asset price is derived from Corollary 1.

Corollary 1. When the locally risk-neutral valuation relationship holds, the terminal
price for the ith asset, for i = 1, 2, can be expressed as

Si,T = Si,t e
(T�t)r � 1

2

TX

s=t+1

hi,s +
TX

s=t+1

p
hi,s✏̃i,s].

Therefore, under the locally risk-neutral probability measure , the option with exercise
price K at maturity T has the value

v(t, S1, S2) = e�r(T�t)E [max[max(S1(T ), S2(T ))�K, 0]].

Due to the complexity of the GARCH process, analytical solution for the GARCH-in-
mean Copula option-pricing model, in general, is not available. Therefore, we work with
numerical methods to price the option described in the next section.

3. Methodology and Inference

In this section, we present here the procedure to obtain the price of a bivariate option using
the asymmetric variance process by GARCH-in-mean under risk-neutral, copulas theory
and Monte Carlo simulations. Chiou and Tsay (2008) and Zhang and Guegan (2008) have
inspired this approach.

3.1 Generality

Given y1 and y2, two vectors containing the log-returns for the two stocks, we consider the
following steps:

(1) For each yi, with i = 1, 2, use quasi-maximum likelihood method described in
Subsection 3.2 to estimates the parameters ↵0, ↵1, �1 and � in equation (2) and
↵0, ↵1, �1, � and � for each marginals given in equations (3), (4) and (5). Thus,
the problem is to maximize the function

l(✓, ht) = �n

2

"
log(2⇡) +

1

n

nX

t=1


log(ht) +

(yit �mit)2

ht

�#
,
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with respect to the parameters, where mit is the mean of GARCH-in-mean given
by r + �

p
ht � 1/2ht and r is the fixed risk-free rate yield and ht corresponds to

each variance specification proposed in Subsection 2.2.
(2) Use the estimated parameters to calculate ht for each specification and ✏t in equa-

tion (1) with mt = r + �
p
ht � 1/2ht for each stock.

(3) Therefore, the proposed technique is that the objective copula and the risk-neutral
copula are assumed to be the same. To fit the copulas, we transform the data
into uniformly distributed random variables. Thus we transform the ✏i, for i = 1, 2,
obtained in Step 2 for each stock into uniformly distributed variables, by ui = �(✏i),
where � is the standard normal cumulative distribution function.

(4) Fit a copula to pairs [u1, u2] using maximum likelihood, that is, estimate the copula
parameters ✓c

✓c = argmax
✓c

nX

t=1

log[c((u1,t, u2,t); ✓c)],

where ✓c are the parameters for the specific copula function C and c is the density
function for the given copula in the appendix.

(5) Now, using the Monte Carlo simulation, we obtain the option price. In the first
step generate a sample {u⇤1,t, u⇤2,t}Tt=1 from a uniform marginal distribution from
one specific copula using the algorithm proposed by Nelsen (2006). Here T is the
time to maturity for the option.

(6) For each time step, transform the generated margins to standard normal margins,
in the risk-neutral measure, by ✏̃i,t = ��1(u⇤i,t), for i = 1, 2.

(7) Working with ✏̃i,t to calculate the conditional variances under risk-neutral and the
parameters estimated in step 1. The two future stock prices at time T are

Si,T = Si,t e
(T�t)r � 1

2

TX

s=t+1

hi,s +
TX

s=t+1

p
hi,s✏̃i,s].

(8) Now, repeat Steps 5 to 7 for N runs. Thus, we obtain the Monte Carlo option price
as

v(t, S1, S2) =
e�r(T�t)

N

NX

i=1

max[max(S1,i(T ), S2,i(T ))�K, 0].

3.2 Quasi-maximum likelihood estimation

The assumption of conditional normality is not always appropriate in financial data. How-
ever, Weiss (1986) and Bollerslev and Wooldridge (1992) showed that even when nor-
mality is inappropriately assumed, maximizing the normalized log-likelihood results in
quasi-maximum likelihood (QML) estimates that are consistent and asymptotically nor-
mally distributed. In addition, the authors claim that the conditional mean and variance
functions of the GARCH models are correctly specified.
In particular, a robust covariance matrix conditional non-normality for the parameter

estimates is consistently estimated by A(✓̂)�1
B(✓̂)A(✓̂)�1, where A(✓̂) and B(✓̂) are the

Hessian Matrix and the outer product of the gradients, respectively, calculated for ✓.
The SEs, computed from the square roots of the diagonal elements, are sometimes called
Bollerslev-Wooldridge SE; for more details, see Bollerslev and Wooldridge (1992).
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3.3 Model selection

We notice that for each time series we have four specification for variance processes, that is,
GARCH(1,1), EGARCH(1,1), NGARCH(1,1) and GJR-GARCH(1,1). Choosing an ade-
quate model is the essence of data analysis, which ultimately returns with good forecasting
results.
In this paper, for model selection, we use five di↵erent criteria. The first one is the Akaike

information criterion (AIC) (Akaike, 1973) given by AIC = �2 log(`) + 2k, where ` is the
maximized value of the likelihood function and k is the number of free parameters in the
model. The second one is the Bayesian information criterion (BIC) developed by Schwarz
(1978) and given by BIC = �2 log(`) + k log(n), where n is the number of observations.
The third one is the Hannan-Quinn information criterion (HQIC) proposed by Hannan
and Quinn (1979) and given by HQIC = �2 log(`) + 2k log(log(n)). The fourth one is the
Akaike information corrected criterion (AICc), developed by Hurvich and Tsai (1989) and
given by AICc = �2 log(`)+2kn/(n�k�1), whereas the fifth one is the consistent Akaike
information criterion (CAIC) given by �2 log(`) + k log(n) + 1.
Following Genest, Remillard and Beaudoin (2009), we use the goodness-of-fit test, which

is based on a comparison of the distance between the estimated and empirical copula
by using the Cramer Von Mises test to compare the copula models. The goodness-of-fit
statistic is defined as

Sn =

Z

[0,1]d
n(u)

2dCn(U),

where Cn(U) = 1/n
Pn

i=1 (Ui1  u1;Ui2  u2) is known as the empirical copula; Uj =
(U1j , . . . , Uij) are the pseudo-observations; u = (u1, u2) 2 [0, 1]2; n =

p
n(Cn � C✓n)

is the empirical process that assess the distance between the empirical copula and the
estimation C✓n and n is the number of observations. Note that testing the null hypothesis
that data are fitted by C✓n can be conducted with this statistic.
We chose this procedure because it can deal with non-linearity, asymmetry, serial depen-

dence and also the well-known heavy-tails of financial assets (Righi and Ceretta, 2011).
Furthermore, we make the comparison of the adjusted copula with the empirical copula
by the diagonal method Sungur and Yang (1996). In addition, the AIC, AICc, CAIC, BIC
and HQICare also used to support decision making in choosing the model.

4. Data Analyses

In this section, we illustrate the proposed methodology under two data sets. We used the
software R for implementing the entire methods exposed here. The codes are available
from the authors. The first one is artificial data, where we know the parameter values,
and then we can verify if the methodology is reliable. The second data set is the Brazilian
stock market data.

4.1 Artificial data

We consider here 1000 replications of two correlated time-series for each sample size
(n = 250, 500, 1000) generated from same parameter structure with the Frank (✓ = 8)
and marginals as follows:
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GARCH(1,1):

h1,t = 0.02 + 0.15ht�1(✏̃t�1 � 0.12)2 + 0.8ht�1,

h2,t = 0.03 + 0.2ht�1(✏̃t�1 � 0.08)2 + 0.7ht�1,

EGARCH(1,1):

h1,t = �0.3057 + 0.1223[|✏̃t�1 � 0.12|+ (�0.5057)(✏̃t�1 � 0.12)] + 0.98ln(ht�1),

h2,t = �0.3057 + 0.1223[|✏̃t�1 � 0.12|+ (�0.5057)(✏̃t�1 � 0.12)] + 0.98ln(ht�1),

NGARCH(1,1):

h1,t = 0.012 + 0.15ht�1(✏̃t�1 � 0.5� 0.12)2 + 0.8ht�1,

h2,t = 0.03 + 0.2ht�1(✏̃t�1 � 0.2� 0.08)2 + 0.7ht�1,

GJR-GARCH(1,1):

h1,t = 0.00961 + ht�1[0.93 + 0.024(✏̃t�1 � 0.065)2 + 0.059max(0,�✏̃t�1 + 0.065)2],

h2,t = 0.00961 + ht�1[0.93 + 0.024(✏̃t�1 � 0.065)2 + 0.059max(0,�✏̃t�1 + 0.065)2].

For each configuration, we calculate the average of the QML estimates, as well as the cor-
responding robust standard error (SE) , the size of confidence intervals 95% (CI), coverage
probability (CP), bias and mean squared error (MSE) of the QML estimators. Tables 1, 2, 3
and 4 report the simulation results for GARCH, NGARCH, EGARCH, and GJR-GARCH,
respectively. We observe that the averages of the quasi-maximum likelihood estimates are
close to the true values as the sample size increases, as well as decreasing the standard
deviations in all the models. We also note low bias and MSEs as the sample size increases.
Concerning the size of the confidence interval, we noticed they are getting smaller as the
sample size increases. In addition, the empirical coverages are closer to the nominal ones
for all four models. With this results, we noticed that all the models have good asymptotic
properties.
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Table 1. Parameter estimation of both artificial time-series for each GARCH process.

Parameter ↵0,1 ↵1,1 �1 �1 ↵0,2 ↵1,2 �2 �2 ✓

Real Value 0.02 0.15 0.8 0.12 0.03 0.2 0.7 0.08 8
n = 250 Mean 0.0355 0.1479 0.7511 0.1192 0.0429 0.2020 0.6442 0.0834 7.9349

SE 0.1695 0.4596 0.9783 0.1798 0.0337 0.0927 0.1983 0.0786 0.5777
CI size 0.1213 0.2297 0.5095 0.2345 0.1347 0.2784 0.6594 0.1919 2.4122
CP 0.9880 0.9490 0.9560 0.9760 0.9480 0.9289 0.9480 0.9750 0.9229
Bias -0.0155 0.0021 0.0489 0.0009 -0.0129 -0.0020 0.0558 -0.0034 0.0652
MSE 0.0002 0.0000 0.0024 0.0000 0.0002 0.0000 0.0031 0.0000 0.0042

n = 500 Mean 0.0255 0.1492 0.7830 0.1198 0.0347 0.1998 0.6806 0.0825 7.9836
SE 0.0126 0.0403 0.0615 0.0479 0.0156 0.0562 0.0917 0.0523 0.4092

CI size 0.0493 0.1462 0.2403 0.1838 0.0541 0.1992 0.3349 0.1572 1.6726
CP 0.9720 0.9500 0.9570 0.9470 0.9470 0.9269 0.9289 0.9720 0.9399
Bias -0.0055 0.0008 0.0170 0.0003 -0.0047 0.0002 0.0194 -0.0025 0.0164
MSE 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0004 0.0000 0.0003

n = 1000 Mean 0.0223 0.1500 0.7931 0.1181 0.0323 0.2004 0.6908 0.0780 8.0054
SE 0.0089 0.0314 0.0437 0.0403 0.0112 0.0413 0.0659 0.0401 0.2896

CI size 0.0282 0.0990 0.1442 0.1251 0.0360 0.1308 0.1885 0.1111 1.2808
CP 0.9600 0.9580 0.9570 0.9530 0.9439 0.9550 0.9550 0.9600 0.9469
Bias -0.0023 0.0000 0.0069 0.0019 -0.0023 -0.0004 0.0092 0.0020 -0.0054
MSE 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

Table 2. Parameter estimation of both artificial time-series for each NGARCH process.

Parameter ↵0,1 ↵1,1 �1 �1 �1 ↵0,2 ↵1,2 �2 �2 �2 ✓

Real value 0.012 0.15 0.8 0.12 0.5 0.03 0.2 0.7 0.08 0.2 8
n = 250 Mean 0.0266 0.1431 0.7656 0.1162 0.5517 0.0416 0.1962 0.6503 0.0798 0.3461 7.9343

SE 0.1107 0.7069 0.7901 0.5111 6.3509 0.0444 0.1538 0.2345 0.1130 1.1610 0.5773
CI size 0.0923 0.2061 0.3251 0.2349 0.9699 0.1046 0.2832 0.5296 0.1851 0.9900 2.5200
CP 0.9860 0.9580 0.9620 0.9820 0.9730 0.9620 0.9429 0.9499 0.9870 0.9960 0.9289
Bias -0.0146 0.0069 0.0344 0.0038 -0.0517 -0.0116 0.0038 0.0497 0.0002 -0.0461 0.0657
MSE 0.0002 0.0000 0.0012 0.0000 0.0027 0.0001 0.0000 0.0025 0.0000 0.0021 0.0043

n = 500 Mean 0.0162 0.1435 0.7894 0.1178 0.5345 0.0348 0.1972 0.6796 0.0811 0.3250 7.9601
SE 0.0277 0.0744 0.1240 0.0964 0.4538 0.0149 0.0510 0.0778 0.0542 0.1790 0.4083

CI size 0.0296 0.1412 0.1665 0.1859 0.8008 0.0553 0.2005 0.2963 0.1601 0.9699 1.7088
CP 0.9860 0.9399 0.9520 0.9730 0.9620 0.9540 0.9299 0.9520 0.9740 0.9640 0.9269
Bias -0.0042 0.0065 0.0106 0.0022 -0.0345 -0.0048 0.0028 0.0204 -0.0011 -0.0250 0.0399
MSE 0.0000 0.0000 0.0001 0.0000 0.0012 0.0000 0.0000 0.0004 0.0000 0.0006 0.0016

n = 1000 Mean 0.0142 0.1479 0.7934 0.1174 0.5167 0.0323 0.1973 0.6921 0.0789 0.3135 7.9780
SE 0.0132 0.0425 0.0577 0.0535 0.1983 0.0121 0.0406 0.0625 0.0404 0.1285 0.2890

CI size 0.0167 0.0971 0.1066 0.1322 0.4957 0.0336 0.1274 0.1810 0.1291 0.6677 1.1894
CP 0.9520 0.9469 0.9600 0.9640 0.9590 0.9580 0.9479 0.9540 0.9640 0.9590 0.9479
Bias -0.0022 0.0021 0.0066 0.0026 -0.0167 -0.0023 0.0027 0.0079 0.0011 -0.0135 0.0220
MSE 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0001 0.0000 0.0002 0.0005

Table 3. Parameter estimation of both artificial time-series for each EGARCH process.

Parameter ↵0,1 ↵1,1 �1 �1 �1 ↵0,2 ↵1,2 �2 �2 �2 ✓

Real Value -0.3067 0.1223 0.98 0.12 -0.5057 -0.3067 0.1223 0.98 0.12 -0.5057 8
n = 250 Mean -0.2852 0.0876 0.9793 0.1204 -0.5080 -0.2874 0.0891 0.9793 0.1204 -0.5065 7.9388

SE 0.8405 1.1478 0.0244 0.2555 0.3996 0.6754 0.7820 0.0242 0.2362 0.2318 0.5781
CI size 0.3182 0.2010 0.0180 0.2353 0.1900 0.3250 0.2215 0.0176 0.2367 0.1876 2.5276
CP 0.9139 0.8759 0.8829 0.9570 0.9249 0.9149 0.8679 0.8749 0.9640 0.9269 0.9139
Bias -0.0205 0.0347 0.0007 -0.0004 0.0023 -0.0183 0.0332 0.0007 -0.0004 0.0008 0.0612
MSE 0.0004 0.0012 0.0000 0.0000 0.0000 0.0003 0.0011 0.0000 0.0000 0.0000 0.0037

n = 500 Mean -0.2960 0.1070 0.9798 0.1205 -0.5060 -0.2968 0.1082 0.9798 0.1198 -0.5067 7.9560
SE 0.0649 0.0374 0.0035 0.0515 0.0408 0.0607 0.0493 0.0026 0.0571 0.0437 0.4085

CI size 0.1790 0.1478 0.0081 0.1756 0.1239 0.1818 0.1592 0.0084 0.1707 0.1248 1.6859
CP 0.9069 0.9118 0.9009 0.9289 0.9139 0.9179 0.9278 0.9309 0.9379 0.9199 0.9339
Bias -0.0097 0.0153 0.0002 -0.0005 0.0003 -0.0089 0.0141 0.0002 0.0002 0.0010 0.0440
MSE 0.0001 0.0002 0.0000 0.0000 0.0000 0.0001 0.0002 0.0000 0.0000 0.0000 0.0019

n = 1000 Mean -0.3033 0.1171 0.9799 0.1212 -0.5061 -0.3039 0.1176 0.9799 0.1210 -0.5054 7.9865
SE 0.0391 0.0226 0.0020 0.0362 0.0242 0.0456 0.0233 0.0026 0.0457 0.0448 0.2892

CI size 0.1116 0.0842 0.0047 0.1231 0.0733 0.1098 0.0838 0.0048 0.1286 0.0707 1.2940
CP 0.9459 0.9409 0.9591 0.9429 0.9599 0.9449 0.9689 0.9339 0.9419 0.9489 0.9579
Bias -0.0024 0.0052 0.0001 -0.0012 0.0004 -0.0018 0.0047 0.0001 -0.0010 -0.0003 0.0135
MSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002
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Table 4. Parameter estimation of both artificial time-series for each GJR-GARCH process.

Parameter ↵0,1 ↵1,1 �1 �1 �1 ↵0,2 ↵1,2 �2 �2 �2 ✓

Real Value 0.00961 0.024 0.93 0.065 0.059 0.00961 0.024 0.93 0.065 0.059 8
n = 250 Mean 0.0582 0.0306 0.8326 0.0741 0.0548 0.0524 0.0334 0.8346 0.0725 0.0563 7.9335

SE 3.1908 1.2611 7.8901 1.5276 1.5033 6.3504 7.0343 1.9827 6.7417 7.2567 0.5774
CI size 0.4059 0.0949 0.9637 0.1953 0.1697 0.3703 0.1123 0.9627 0.1965 0.1697 2.5486
CP 0.9970 0.9970 0.9880 0.9800 0.9990 0.9870 0.9990 0.9790 0.9840 0.9990 0.9199
Bias -0.0486 -0.0066 0.0974 -0.0091 0.0042 -0.0428 -0.0094 0.0954 -0.0075 0.0027 0.0665
MSE 0.0024 0.0000 0.0095 0.0001 0.0000 0.0018 0.0001 0.0091 0.0001 0.0000 0.0044

n = 500 Mean 0.0219 0.0260 0.9045 0.0672 0.0572 0.0224 0.0262 0.9047 0.0682 0.0563 7.9695
SE 0.2226 0.2865 0.7740 0.2871 0.2983 0.4872 0.4015 1.3715 0.4177 0.4554 0.4087

CI size 0.0753 0.0611 0.2013 0.1516 0.1141 0.0845 0.0634 0.2057 0.1496 0.1141 1.7545
CP 0.9790 0.9760 0.9610 0.9730 0.9680 0.9730 0.9670 0.9720 0.9790 0.9440 0.9239
Bias -0.0122 -0.0020 0.0255 -0.0022 0.0018 -0.0128 -0.0022 0.0253 -0.0032 0.0027 0.0305
MSE 0.0001 0.0000 0.0007 0.0000 0.0000 0.0002 0.0000 0.0006 0.0000 0.0000 0.0009

n = 1000 Mean 0.0134 0.0251 0.9225 0.0651 0.0564 0.0137 0.0252 0.9211 0.0661 0.0577 7.9674
SE 0.0160 0.0537 0.0640 0.0981 0.0590 0.0198 0.0521 0.0759 0.0901 0.0618 0.2888

CI size 0.0299 0.0466 0.0818 0.1209 0.0902 0.0325 0.0476 0.0988 0.1188 0.0875 1.2196
CP 0.9560 0.9590 0.9410 0.9570 0.9420 0.9510 0.9561 0.9440 0.9520 0.9492 0.9499
Bias -0.0037 -0.0011 0.0075 -0.0001 0.0026 -0.0041 -0.0012 0.0089 -0.0011 0.0013 0.0326
MSE 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0011

4.2 Real data

In principle, price data are not available, since the call-on-max option is typically traded
over-the-counter. For this reason, we cannot test the valuation models empirically. How-
ever, comparing models with di↵erent assumptions can be implemented, as in Zhang and
Guegan (2008), Liu, Li and Ng (2015) and Chiou and Tsay (2008). In this section, we
carry on the illustration of the proposed methodology on a real data set concerning the
two stock prices of Brazilian companies. With the objective of analyzing two companies
that could have a high correlation, we choose the companies Bradespar (BRAP4) and
Vale S.A. (VALE3) with the aim of investigating two companies that could have a high
correlation. The Brazilian company Bradespar admits the shareholdings that the bank
Bradesco had in non-financial companies, among them: VCB, Vale, Scopus, and Globo.
Thus, Bradespar’s stocks price would be directly related to the stocks of Vale S.A., where
the company holds the latter’s stock control at 17.4 %. The analyzed period is from
07/01/2015 to 07/17/2018, containing 753 observations.
Figure 1 shows the high positive association between the two series, evidencing the

requirement subject is financial options using these stocks, given its high correlation. Table
5 reports the similarity between the returns series, both concerning the minimum, mean,
median, maximum, standard deviation (SD) and kurtosis, but the VALE3 series has a
slightly more pronounced positive asymmetry than the BRAP4 series. As evidenced in
section 2, asymmetry is present in financial series, a feature that symmetric GARCH
processes have no potential to discriminate between positive and negative asymmetry.

Table 5. Descriptive statistics of returns.

Serie Minimum Mean Median Maximum SD Kurtosis Skewness
BRAP4 -0.134 0.000 0.000 0.153 0.027 0.050 5.150
VALE3 -0.156 0.000 0.000 0.137 0.026 0.047 5.702

Before presenting the estimated coe�cients of time series models, we focus on the anal-
ysis of the best model according to the selection criteria. Given the flexibility of the use of
models based on copula functions, we select for each marginal the best model according to
the selection criteria defined in Section 3.2. According to Table 6, all criteria corroborate
that the model GARCH best fit the BRAP4 series, evidencing that there is no asymmetry
present in this series, while, the best model for the VALE3 series is the EGARCH (evi-
dencing the asymmetry). This result is in agreement with the statement in Table 5, where
the VALE3 stock had an asymmetric coe�cient more pronounced than BRAP4.
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Figure 1. Original Series and Returns.

Table 6. Selection criteria for marginals.

BRAP4 GARCH NGARCH EGARCH GJR-GARCH
AIC -3071.3128 -3069.3172 -3070.1057 -3069.3678
AICc -3071.2591 -3069.2367 -3070.0252 -3069.2872
CAIC -3048.8271 -3041.2102 -3041.9987 -3041.2607
BIC -3052.8271 -3046.2102 -3046.9987 -3046.2607
HQIC -3064.1903 -3060.4142 -3061.2027 -3060.4647
VALE3 GARCH NGARCH EGARCH GJR-GARCH
AIC -3151.2693 -3150.0533 -3153.7289 -3151.7989
AICc -3151.2156 -3149.9728 -3153.6484 -3151.7183
CAIC -3123.6918 -3121.9463 -3128.7836 -3125.6219
BIC -3128.6918 -3126.9463 -3132.7836 -3130.6219
HQIC -3144.1468 -3141.1503 -3144.8258 -3142.8958

Table 7 reports the coe�cients estimated via QML estimates and their respective robust
standard errors. According to this result, we noticed that the best model for the BRAP4
series was the GARCH model, where it does not have an asymmetry parameter. We view
in this model the high persistence, that is, ↵1 + �1 very close to one, suggesting that the
volatility can be persistent (strong temporal dependence), which opens options of models
to analyze series with this feature. The best model for the VALE3 series was the EGARCH,
where it presented a parameter of positive asymmetry, that is, a positive shock decreases
its volatility.
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Table 7. Estimated coe�cients and corresponding robust standard errors for marginals.

BRAP4 GARCH NGARCH EGARCH GJR-GARCH

↵̂0
6.9191e-06
(4.8306e-06)

6.8024e-06
(4.7823e-06)

-0.1399
(0.0455)

7.0316e-06
(4.9614e-06)

↵̂1
0.0479
(0.0125)

0.0477
(0.0127)

0.1005
(0.0248)

0.0507
(0.0175)

�̂
0.9454
(0.0138)

0.9457
(0.0140)

0.9914
(0.0050)

0.9446
(0.0144)

�̂
0.0568
(0.0358)

0.0560
(0.0365)

0.0560
(0.0359)

0.0576
(0.0364)

�̂ -
0.0121
(0.1628)

-0.0618
(0.0235)

4.2924e-03
(0.0180)

VALE3 GARCH NGARCH EGARCH GJR-GARCH

↵̂0
3.7157e-06
(2.9974e-06)

3.0711e-06
(2.9524e-06)

-0.1081
(0.0386)

2.5848e-06
(2.9020e-06)

↵̂1
0.0434
(0.0116)

0.0428
(0.0111)

0.0969
(0.0221)

0.0555
(0.0152)

�̂
0.9519
(0.0121)

0.9522
(0.0117)

0.9957
(0.0004)

0.9554
(0.0113)

�̂
0.0579
(0.0357)

0.0671
(0.0365)

0.0762
(0.0387)

0.0679
(0.0363)

�̂ -
0.1771
(0.1854)

0.1433
(0.1438)

0.0278
(0.0171)

We consider the Kolmogorov-Smirnov, Jarque-Bera, Shapiro-Wilk, and Anderson-
Darling tests to verify the assumption of normality of the residuals for the fitted models.
Table 8 reports their p-values. All tests did not reject the null hypothesis at 5% that
residuals follow a standard normal distribution. In addition, to verify that the increments
are independent, Table 8 also reports the result of the Ljung-Box test, where, for all fitted
models we do not reject the null hypothesis at 5 % that the residuals are independent.

Table 8. Tests of Normality and Independent Increments for residuals.

BRAP4 GARCH NGARCH EGARCH GJR-GARCH
Kolmogorov-Smirnov 0.9315 0.9403 0.9514 0.9343

Jarque-Bera 0.1159 0.1142 0.2351 0.1225
Shapiro-Wilk 0.2571 0.2572 0.3802 0.2633

Anderson-Darling 0.6680 0.6725 0.6572 0.6652
Ljung-Box 0.4940 0.4938 0.4988 0.4944
VALE3 GARCH NGARCH EGARCH GJR-GARCH

Kolmogorov-Smirnov 0.8737 0.8752 0.8761 0.8733
Jarque-Bera 0.2059 0.1680 0.2548 0.1433
Shapiro-Wilk 0.1752 0.1895 0.2644 0.1718

Anderson-Darling 0.2288 0.2627 0.3426 0.2697
Ljung-Box 0.1927 0.2079 0.2145 0.2152

Figure 2 shows the QQ-plots for the two best models for the series, that is, on the left
panel is the GARCH for the BRAP4 series and on the right panel the EGARCH for the
VALE3 series, corroborating with the tests in the Table 8, evidencing the non-rejection of
the normality of the residuals.
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Figure 2. QQ-plots of residuals - GARCH BRAP4 (left panel ) and EGARCH VALE3 (right panel).

Figure 3 illustrates the individual behavior of each set of residual fitted through the
histograms and the joint behavior through the scatterplot in the center of the figure.
As expected, the series has a highly positive association behavior, which is evidenced in
the adjustment of the copulas given in Table 9, where the normal and Student-t copulas
obtained high and positive values of their parameters (-1  ✓  1).

Figure 3. Scatterplot and histograms of residuals - GARCH BRAP4 and EGARCH VALE3.

Table 9. Estimated coe�cients and corresponding standard errors (in parentheses) for copulas.

Normal Student-t Gumbel Frank Joe

✓̂
0.9059
(0.0048)

0.9133
(0.0053)

3.4082
(0.1040)

14.0430
(0.4965)

4.0173
(0.1423)

The degree of freedom of the Student-t copula and its respective
standard deviation were 7.63401 and 1.7263.

According to Table 10 and the selection criteria adopted, the best copula for this data set
was the Student-t copula, though the results found for the Student-t copula are very similar
to the one observed for the Frank copula. The empirical copula and the copula adjusted
by the diagonal method, where the excellent fit of the two copulas is noted, corroborate
this result. The result of the Cramer Von Mises test are 0.0025, 0.0023, 0.0042, 0.0018 and
0.01122, for normal, Student-t, Gumbel, Frank and Joe copulas, respectively. As noted in
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Figure 4, the result shows that Frank copula yields the smallest distance between fitted
and empirical copula. We note that there is a minimal di↵erence between the Frank and
Student-t copulas. Therefore, these two copulas are considered in this work as the best
fittings.

Table 10. Selection model of copulas.

Normal Student-t Gumbel Frank Joe
AIC -1290.6171 -1334.1487 -1231.5615 -1310.8730 -970.63696
AICc -1290.6117 -1334.1327 -1231.5562 -1310.8676 -970.63162
CAIC -1285.9957 -1324.9059 -1226.9401 -1306.2516 -966.01556
BIC -1288.8365 -1330.5875 -1229.7809 -1309.0924 -968.85635
HQIC -1284.9957 -1322.9059 -1225.9401 -1305.2516 -965.01556

Figure 4. Comparing the empirical copula and the true copula on the diagonal.

Given the good fitting of the marginals obtained via time series models and the good joint
fitting via copulas, we now calculate and analyze the option prices considering the call-on-
max payo↵ function. To perform the comparison process, as a benchmark, we compare the
results through the methodology proposed with the classical method, which is a Black-
Scholes extension for the bivariate case (Haug, 2007), where this model considers the
volatility constant over time and the linear dependence structure from the bivariate normal
distribution.
The entire study was performed with 100 000 Monte Carlo simulations, 7 % interest

rate and maturity time of one year. According to Table 9, as expected, the same behavior
is observed for all models, that is, as the strike variable increases it is likely that, in a
call option, the price of the option becomes cheaper. We note that the classical model
obtained the lowest values for all strike values. Gesk and Roll (1984), Black (1975) and
MacBeth and Merville (1980) corroborate this result for the univariate case, where the
authors showed that the models that consider constant volatility over time underpricing
the options, especially in-the-money (ITM) options. That is, a call option’s strike price is
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below the market price in the univariate case. In this work we define ITM options when
the strike price is less than the minimum between the two assets. Moreover, in Table 11,
we can see that the Student-t and Frank copulas have the closest results to each other.
The similarity in the excellent fit of the data can explain this result. We noticed the values
obtained through normal copula obtained high results. The inability of the normal copula
to capture observations in the tails of the distribution, a recurring fact in finances, can
explain this result. The copula Joe obtained higher values mainly when the strike was
smaller than 40, approaching the model of the normal copula. The Gumbel copula was
the one that received the lowest values between the models. Figure 5 shows the behavior
of the option price (z-axis) varying the maturity from 1 to 12 months (y-axis, in days)
and strike (R$ 40.00 to R$ 60.00). We note that the higher the maturity the values di↵er
little between strike prices, which does not happen when the option has a short maturity,
where we indicate that setting at 50 maturity days there is a relatively significant di↵erence
varying the price of the strike. For example, Table 12 presents the prices for considering
maturity = one month, six months and one year and strike = 20, 40 and 60.
Another fundamental aspect in the management of options risks is to know the levels

of dependence between stocks. Therefore, Figure 6 presents the price behavior of the call-
on-max option for the Student-t copula by varying its degrees of dependence. This result
corroborates with those found by Chiou and Tsay (2008) for the call-on-max option using
the American and Taiwanese indices. An intuitive interpretation is: the values of this
option tend to be smaller when the underlying assets move in the same direction as when
in opposite directions.

Table 11. Prices of a call-on-max option under various strikes values (R$).

Strike Classic Normal Student-t Gumbel Frank Joe
20 31.1182 32.3619 32.2648 32.2532 32.2711 32.5083
22 29.2693 30.5241 30.4283 30.4148 30.4329 30.6440
24 27.4764 28.7327 28.6402 28.6228 28.6425 28.8293
26 25.7468 26.9951 26.9054 26.8845 26.9045 27.0694
28 24.0867 25.3171 25.2295 25.2061 25.2258 25.3714
30 22.5003 23.7025 23.6169 23.5918 23.6110 23.7401
32 20.9906 22.1572 22.0733 22.0457 22.0646 22.1787
34 19.5594 20.6831 20.6028 20.5704 20.5889 20.6899
36 18.2071 19.2840 19.2055 19.1678 19.1867 19.2758
38 16.9331 17.9601 17.8810 17.8399 17.8602 17.9371
40 15.7360 16.7112 16.6316 16.5866 16.6093 16.6745
42 14.6140 15.5377 15.4571 15.4103 15.4349 15.4901
44 13.5643 14.4379 14.3578 14.3081 14.3346 14.3826
46 12.5842 13.4087 13.3304 13.2795 13.3062 13.3498
48 11.6705 12.4495 12.3723 12.3199 12.3477 12.3877
50 10.8198 11.5571 11.4799 11.4270 11.4576 11.4945
52 10.0288 10.7290 10.6522 10.5987 10.6321 10.6678
54 9.2941 9.9621 9.8872 9.8339 9.8675 9.9020
56 8.6122 9.2533 9.1807 9.1278 9.1613 9.1933
58 7.9798 8.6001 8.5283 8.4762 8.5101 8.5392
60 7.3937 7.9981 7.9271 7.8762 7.9117 7.9372

Table 12. Prices (R$) of a call-on-max option varying some Maturity time and Strike (R$).

Maturity\Strike R$ 20.00 R$ 40.00 R$ 60.00
One Month 30.9671 10.9067 0.5537
Six Months 30.9190 13.6608 4.1864
One Year 30.7311 15.6953 7.0992
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Figure 5. Price (R$) behavior of the call-on-max option ranging from Maturity to Strike.

Figure 6. Behavior of the call-on-max option price by varying the copula parameter.

In addition, Figure 6 further shows that in-the-money options have the most substantial
di↵erences between dependency levels than out-the-money options (that is, when the strike
is higher than the maximum between the two assets). Therefore, it was empirically verified
the importance of a good joint fit of the stocks, and above all, the calculation of the
correlation between the assets. Moreover, by employing the copulas functions, it is possible
to capture linear, non-linear and caudal associations. Recalling, the traditional models
derived from a Brownian geometric movement consider bivariate normal to price call-
on-max options for two assets, and consequently, the linear correlation coe�cient as the
measure of association.
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5. Concluding Remarks

In this paper, we propose an analysis and comparison among pricing models that consider
the volatility of underlying assets and in the presence of dependence between copula frame-
work. The model is an adequate methodology to realize a more realistic pricing option. To
consider the modeling of asymmetry present in financial series, we examined three models
that are extensions of the GARCH model under the neutral risk measure , a pre-requisite
to price options (NGARCH, EGARCH, and GJR-GARCH). Therefore, through the flexi-
bility of the copula functions, we chose which marginal processes fit best with each stock
and thus proceeded in the joint fitted.
Two databases illustrate the application of the methodology. The first one was an ar-

tificial database with the objective of carrying out a simulation study and the second a
database of two Brazilian companies. The simulation study showed that all models pre-
sented good asymptotic properties. In addition, in the real time-series of two Brazilian
stock companies, the model o↵ered a proper fitting and the results obtained were con-
fronted with the classic model, which is an extension of the Black-Scholes model.
The contributions of the proposed method in the present paper are as follows: (i) using

the best copula makes the model more suitable; (ii) extension to marginal models that
consider asymmetry makes joint modeling more flexible and realistic; (iii) a comparison
of methodologies highlights the role of risk management; (iv) due to the good marginal
and joint fitted, in addition to the values obtained in relation to the classical consolidated
model, there are arguments to believe that the di↵erences obtained between the best mod-
els, through the copulas and the extension of the conventional method, are improvements
in the calculation of the fair value; and (v) the empirical relevance of such alternatives is
apparent given the evidence of non-joint-normality in financial emerging markets.
Finally, we highlight some points for future work. The first one of them, even with

extensions to asymmetric models, we often have financial series with heavy tails, which
should derive a risk-neutral measure Q for these models, such as considering the non-
normality of the residuals. The second point is the adoption of other copula functions,
such as power variance function family copulas. The third, we can consider another skew
distribution for the errors, such as Arrellano-Valle et al. (2010), Minozzo et al. (2012) and
Marcos et al. (2012).

Appendix

The normal copula

The normal copula or commonly known as Gaussian copula receives this name because it
comes from the normal density function for d � 2. A normal bivariate copula is expressed
by

C(u, v) =

Z x1

�1

Z x2

�1

1

2⇡
p

1� ⇢2
e
�
t
2
1 � 2⇢t1t2 + t

2
2

2(1� ⇢2) dt21dt
2
2,

where x1 = ��1(u), x2 = ��1(v), for �1  ⇢  1. This type of copula has no dependence
on the tails of the distributions and is symmetric.
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The Student-t copula

The Student-t copula coincides with the bivariate Student-t distribution function, where
its form is defined as

C(u, v) =

Z x1

�1

Z x2

�1

1

2⇡
p

1� ⇢2

✓
1 +

t
2
1 � 2⇢t1t2
⌫(1� ⇢2)

◆�(⌫+2)/2

dt1dt2,

where ⌫ represents the degrees of freedom of Student-t distribution. As in the case of
normal copula, the Student-t marginal copula coincides with the Student-t standard, being
x1 = t

�1
⌫ (u) e x2 = t

�1
⌫ (v). This type of copula does not have independence in the tails,

which favors its use in extreme events, such as, for example, unplanned oscillations in the
stock market. However, given the symmetry of the function, the degree of dependence on
the upper tail is equal to the lower tail.

The Gumbel copula

The Gumbel copula is characterized by the dependence only on the upper tail and is
represented as

C(u, v) = e�[(� log(u))✓+(� log(v))✓]1/✓
,

where ✓ 2 [1,1]. When ✓ ! 1, dependence is perfectly positive and independent when
✓ = 1.

The Frank Copula

The form of a Frank copula is expressed through

C(u, v) = �1

✓
log

✓
1 +

[e�✓u � 1][e�✓v � 1]

e�✓ � 1

◆

where ✓ 6= 0. When ✓ ! 1, we have perfect positive dependence and we have the case
of independence when we ✓ ! 0. This copula has the same dependence on both function
tails, such as elliptic copulas.

The Joe copula

The Joe copula is given by

C(u, v) = 1�
⇣
[1� u]✓ + [1� v]✓ � [1� u]✓[1� v]✓

⌘1/✓
,

where 1  ✓  1. When ✓ = 1, we have the case of independence and the case of perfect
positive dependence when ✓ ! 1.
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Abstract

In this paper, the almost complete consistency and the asymptotic normality of the es-
timator of the regression operator in the case of a censored response given a functional
explanatory variable are investigated under some mild conditions. The latter is con-
structed from the minimization of the mean squared relative error. The novelty of this
work compared to the works found in the literature is that the response variable is cen-
sored. A simulation study is carried out to compare the finite sample performance based
on mean square error between the classical regression and the relative error regression.
Moreover, a real data study is used to illustrate our methodology.

Keywords: Censoring · Functional data analysis · Nonparametric statistics · Relative
error regression.
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1. Introduction

Functional data analysis is a section of statistics that studies the observation of infinite
dimension. More precisely, the observations that are not real or vector variables but random
curves. This kind of data appears in many practical situations, and it has been the subject
of many works. The first authors who discussed this type of data are Ramsay and Silverman
(2005) for the parametric models and monograph of Ferraty and Vieu (2006) for the
nonparametric estimation. Recently, many topics concerning the analysis of functional data
have been developed and the most recent advances in this field have been collected in the
book of Ould-Said et al. (2015). The particularity of the nonparametric estimation consists
in estimating an infinite number of parameters whose function is unknown, elements of
a certain functional class, such as the density function or the regression function. The
latter is one of many methods to predict the link between the response variable Y and
the explanatory variable X, assuming the existence of a function r(X) which expresses
the relationship between these two variables. The literature concerning this field is widely
developed. We refer to Ferraty and Vieu (2004) for more details, where is established the
strong consistency of the regression function when the response is scalar given a functional
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explanatory variable. Usually, to estimate the nonparametric regression model, the authors
used the least squares error as a criterion for constructing the predictors (see some details
in Louzada et al. (2018)). This method is very sensitive to outliers, and therefore, the
presence of large outliers can lead to inappropriate results. For this, the authors developed
methods that study robustness of the nonparametric functional regression; see also Attouch
et al. (2009) and Gheriballah et al. (2013).
The relative squared error criterion is more convenient as a measure of performance

than the previous criterion, since the notion of relative regression is more recent than the
others, although the results are still limited. Jones et al. (2008) studied the asymptotic
properties of a consistent estimator of this model by using the kernel method. We refer
to Mechab and Laksaci (2016) for recent advances, who studied nonparametric relative
regression for associated variables. In a functional framework, the paper of Demongeot et
al. (2016) brought an extra to the research by studying the almost complete convergence
and asymptotic normality of the proposed estimator.
In this paper, we investigate the asymptotic properties of the relative error regression

by the kernel method and under censoring data. The literature of this kind of incom-
plete functional data is quite restricted. We refer to Kohler et al. (2002) and Horrigue
and Ould-Said (2011, 2014) for the nonparametric regression quantile estimation under
random censorship. Other works have been conducted on this subject for functional data
case. We cite for example the work of Khardani et al. (2010). Moreover, our framework
was considered by Altendji et al. (2018) for the estimation of the functional relative er-
ror regression under random left truncation, where they established the almost complete
convergence with rates, as well as the asymptotic normality of the kernel estimator of the
functional relative error regression for truncated data. In a more general field, we can see,
for example, Hsing and Eubank (2015) and Aneiros et al. (2017). In the present work, we
investigate the almost complete convergence and asymptotic normality of our proposed
estimator in case of censored functional data.
The organization of this paper is as follows. In Section 2, we construct an estimator of

the relative error regression for a censored response. The necessary conditions and main
results are presented in Section 3. In Section 4, a numerical study and a real example
show the performances of the proposed methodology for finite samples. Also, we establish
a confidence interval as an application for the asymptotic normality result. In Section 5,
we provide some concluding remarks. The proofs of our results are given in the appendix.

2. Description of the Model and Estimator

2.1 Estimator of the the relative error regression

Let Zi = (Xi, Yi)i=1,...,n be a F ⇥ R valued measurable strictly stationary process. A
common nonparametric modeling of the link between the response variables Y and the
explanatory variable X is to suppose that

Y = m(X) + ", (1)

where " is a random error variable and m is a regression operator usually estimated by
minimizing the expected squared loss function given by

E[(Y �m(X))2|X].

In some situations, this loss function which is considered as a measure of prediction, may
not be suitable. Among these situations, the presence of outliers can lead to inappropriate
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results since all variables have an equal weight. For this, we overcame this limitation by
proposing to estimate the functionm with respect to the minimization of the mean squared
relative error defined as

E

"✓
Y �m(X)

Y

◆2 ���X
#
, Y > 0. (2)

Obviously, this loss function is a more meaningful measure of prediction performance in the
presence of outliers since the range of predicted values is large. Furthermore, the solution
of (2) can be expressed by the ratio of first two conditional inverse moments of Y given
X. The best predictor of Y given X (as studied in Park and Stefanski (1998)) is given by

r(x) =
E[Y �1|X = x]

E[Y �2|X = x]
.

We estimate the regression operator r under our relative loss as

er(x) =
Pn

i=1
Y

�1

i K(h�1
d(x�Xi))Pn

i=1
Y

�2

i K(h�1d(x�Xi))
, (3)

where K is a kernel and h = hn is a sequence of positive real numbers.

2.2 Estimator of the relative error regression under a random censorship

Let (Xi, Yi)i=1,...,n be a F ⇥ R valued measurable strictly stationary process, where F
is a semi-metric abstract space, denote by d, a semi-metric associated with the space
F . We observe the lifetimes Yn as a sequence of independent and identically distributed
random variable (with common unknown absolutely continuous distribution function F

with density f).
In censoring case, due to possible withdrawals of items from the study, we observe the

censored lifetimes C instead observing the lifetimes Y . Supposing that (Ci) is a sequence
of independent and identically distributed censoring random variable (r.v.) with common
unknown continuous distribution function G. We remark the pairs (Ti, �i) where

Ti = Yi ^ Ci, �i = I{YiCi}, 1  i  n,

where IA denotes the indicator of no censoring.
We consider a pseudo estimator of the regression operator r under the censorship and

the relative loss given by

er(x) =
Pn

i=1
�iḠ

�1(Ti)T
�1

i K(h�1
d(x�Xi))Pn

i=1
�iḠ

�1(Ti)T
�2

i K(h�1d(x�Xi))
=
eg1(x)
eg2(x)

(4)

where Ḡ(u) = 1�G(u) and for l = 1, 2,

egl(x) =
1

nE(K1(x))

nX

i=1

�iḠ
�1(Ti)T

�l
i Ki(x),

where Ki(x) = K(h�1
d(x�Xi)). Since G is unknown in practice, one can estimate it using
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the Kaplan and Meier (1958) estimator defined as

Ḡn(t) =

8
><

>:

nY

i=1

✓
1�

1� �(i)

n� i+ 1

◆I{T(i)t}

, if t < T(n),

0, otherwise;

where T(1) < · · · < T(n) are the order statistics of (Ti)1in and �(i) is concomitant with
T(i). Thus, an estimator of r is given by

brn(x) =
Pn

i=1
�iḠ

�1
n (Ti)T

�1

i K(h�1
d(x�Xi))Pn

i=1
�iḠ

�1
n (Ti)T

�2

i K(h�1d(x�Xi))
=
bg1,n(x)
bg2,n(x)

, (5)

where

bgl,n(x) =
1

nE(K1(x))

nX

i=1

�iḠ
�1

n (Ti)T
�l
i Ki(x), l = 1, 2.

Let ⌧F = sup{y, F̄ (y) > 0} and ⌧G = sup{y, Ḡ(y) > 0} be a upper endpoints of F̄ and Ḡ,
respectively. We assume that ⌧F < 1, Ḡ(⌧F ) > 0, which implies that ⌧F  ⌧G) and that
(Cn)n�1 and (Xn, Yn)n�1 are independent.

3. Assumptions and Main Results

3.1 Consistency: almost complete convergence

We fixe a point x in F and Nx denotes a fixed neighborhood of this point. We will denote
by C and C

0
some strictly positive constants, gl(x) = E[Y �l|X = x] for l = 1, 2 and we

have B(x, h) = {x0 2 F|d(x0
, x) < h} a ball of center x and a radius h. In what follows,

we will need the following assumptions:

(H1) For all h > 0, P(X 2 B(x, h)) =: �x(h) > 0 and lim
h!0

�x(h) = 0.

(H2) For all (x1, x2) 2 N
2
x and l = 1, 2, we have

|gl(x1)� gl(x2)|  Cd
kl(x1, x2) for kl > 0.

(H3) The kernel K is a measurable function that is supported by (0, 1) and satisfies:

0 < C  K  C
0
< 1.

(H4) The bandwidth satisfies:

lim
n!+1

h = 0 and lim
n!+1

log(n)

n�x(h)
= 0.

(H5) The inverse moments of the response variable verify:

E[Y �m|X = x] < C < 1, 8m � 2.
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Remark 1 The hypothesis (H1) defines the concentration properties of the probability
measures of the explanatory variable X, which is provided by means of a function �x.
This property allows to propose an alternative to the curse of dimensionality problem.
(H2) is a regularity condition to facilitate the calculation of the bias part of our estimator.
(H3)-(H5) are technical assumptions to ensure the convergence of our results.

Theorem 3.1 Assume that conditions (H1)-(H5) hold true, we get

|brn(x)� r(x)| = O(hk1) +O(hk2) +O

 s
log(n)

n�x(h)

!
. (6)

Lemma 3.2 Under assumptions (H1)-(H4), we obtain, for l = 1, 2,

|E [egl(x)]� gl(x)| = O(hkl). (7)

Lemma 3.3 Under conditions (H1) and (H3)-(H5), we have, for l = 1, 2,

|egl(x)� E [egl(x)]| = O

 s
log(n)

n�x(h)

!
. (8)

Lemma 3.4 Assume hypotheses (H1)-(H5) hold, we have, for l = 1, 2,

|bgl,n(x)� egl(x)| = Oa.s

 r
log(log(n))

n

!
. (9)

Corollary 3.5 Under assumptions of Theorem 3.1,we get

|bg2,n(x)| ���!
n!1

g2(x).

3.2 Asymptotic normality

Here, we establish the asymptotic normality of the estimator brn(x). To do that, we consider
the following assumptions:

(C1) The hypothesis (H1) holds and there exists a function �x such that, for all s 2 [0, 1], we

have �x(sr)/�x(r) = �x(s) + o(1) and
R
1

0
(Kj)

0
(s)�x(s)ds < 1, for j � 1.

(C2) The functions  l(u) = E[gl(X)� gl(x)|d(x,X) = u] are derivable at 0, for l = 1, 2.
(C3) The hypothesis (H3) holds and the kernel K is a di↵erentiable function on ]0, 1[ and its

first derivative function K
0
satisfies that C < K

0
< C

0
.

(C4) The small ball probability satisfies:

n�x(h) ! 1.

(C5) The inverse moments gm(u) = E[|Ḡ�1(Y )Y �m||X = u] of the censored response variable
are continuous in a neighborhood of x, for m = 1, 2, 3, 4.

Remark 2 The condition (C1) is realized by several small ball probability functions, there
exist many examples, we quote the following (which can be found in Ferraty et al. (2007)):

(i) For some � > 0, �x(h) = Cxh
� with �x(u) = u

� ,
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(ii) for some � > 0 and p > 0, �x(h) = Cxh
� exp(�C/h

p), with �x(u) = �1(u), where �1 is
the Dirac function,

(iii) �x(h) = Cx/| log(h)|, with �x(u) = I[0,1](u), where IA is an indicator function of a set
A.

Theorem 3.6 Suppose that conditions (C1)-(C5) hold true, for all x 2 F , we have, as
n ! 1,

✓
n�x(h)

�2(x)

◆ 1
2

(brn(x)� r(x))
D�! N(0, 1),

where
D�! means the convergence in distribution and

�
2(x) =

M2

M2
1

�
g2(x) + r

2(x)g4(x)� 2r(x)g3(x)
�
,

with M0 = K(1)�
R
1

0
(sK(s))

0
�x(s)ds and Mj = K

j(1)�
R
1

0
(Kj)

0
(s)�x(s)ds, for j = 1, 2.

Proof of Theorem 3.6. From the decomposition 10, we get the decomposition

brn(x)� r(x) =
1

bg2,n(x)g2(x)
[(eg1(x)� E [eg1(x)]) g2(x) + (E [eg2(x)]� eg2(x)) g1(x)

+ (bg1,n(x)� eg1(x)) g2(x) + (eg2(x)� bg2,n(x)) g1(x)

+ (E [eg1(x)]� g1(x)) g2(x) + (g2(x)� E [eg2(x)]) g1(x)] .

Then, Theorem 3.6 is a consequence of the following lemmas.

Lemma 3.7 Under the same conditions of Theorem 3.6, we have

✓
n�x(h)

g2
2
(x)�2(x)

◆ 1
2

([eg1(x)� E [eg1(x)]] g2(x) + [E [eg2(x)]� eg2(x)] g1(x))
D�! N(0, 1).

Lemma 3.8 Under hypotheses of Theorem 3.6, we get bg2,n(x) ! g2(x), in probability, and

✓
n�x(h)

g2
2
(x)�2(x)

◆ 1
2

[(bg1,n(x)� eg1(x)) g2(x) + (eg2(x)� bg2,n(x)) g1(x)] ! 0,

in probability.

Lemma 3.9 Under hypotheses of Theorem 3.6, we obtain

✓
n�x(h)

g2
2
(x)�2(x)

◆ 1
2


1

g2(x)
(E [eg1(x)]� g1(x)) g2(x) + (g2(x)� E [eg2(x)]) g1(x)

�
! 0,

in probability.
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4. Numerical Studies

4.1 Simulation study on the finite samples

To compare the finite-sample performance of the proposed estimator of r(x) = E[Y |X = x]
to the classical regression, we conducted a small simulation study. We consider a functional
regression model defined as

Yi = m(Xi) + ",

where the random variable " is normally distributed as N(0, 1) and

m(x) = 4 exp

✓
1

1 +
R ⇡
0
|x(t)|2dt

◆
.

The functional variable X is chosen as a real-valued function with support [0,⇡], we gen-
erate n = 100 functional data (see Figure 1) by Xi(t) = sin(Wi(t)), for all t 2 [0,⇡] and
i = 1, . . . , n, where the random variables Wi are independent and identically distributed
and follow the normal distribution N(0, 1). The curves are discretized on the same grid
which is composed of 100 equidistant values in [0,⇡].

Figure 1. Curves Xi

Our purpose is to compare the mean square error (MSE) of the estimator of relative error
regression (RER) with the censored data set and with the classical regression estimator
(CR) respectively which are defined as

brn(x) =
Pn

i=1
�iḠ

�1
n (Ti)T

�1

i K(h�1
d(x�Xi))Pn

i=1
�iḠ

�1
n (Ti)T

�2

i K(h�1d(x�Xi))

and

br(x) =
Pn

i=1
�iḠ

�1
n (Ti)TiK(h�1

d(x�Xi))Pn
i=1

�iḠ
�1
n (Ti)K(h�1d(x�Xi))

.
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We choose the quadratic kernel given by

K(u) =
3

4
(1� u

2)I[�1,1](u)

and the bandwidth h is automatically selected by the procedure of the cross validation.
We give the formula of the MSEs of the both estimators as

MSE(RER) =
1

n

nX

i=1

(Yi � brn,i(Xi))
2

and

MSE(CR) =
1

n

nX

i=1

(Yi � bri(Xi))
2
,

where brn,i (bri) is the leave-one-out version of brn (br) computed by removing the ith data
from the initial sample.

Table 1. Values of the MSE according to the number of introduced artificial outliers (first line).

Outliers 5 10 20 30 40 50
CR 0.5254138 70.67035 658.129 3702.399 5923.839 14809.60
RER 0.1219565 0.1256098 0.1261814 0.1261834 0.1261834 0.1261834

Note from Table 1 that the MSE values for both kernel methods increase considerably
relative to the presence of the outliers, while these errors remain very small in the case of
the relative error estimator. In conclusion, the relative error regression performs better than
the classical regression, that is, the classical regression is more sensitive to the presence of
outliers than the relative error regression.

4.2 Real data application

We apply the theoretical results obtained in the previous section to real data. More specif-
ically, we examine the performance of the relative regression estimator in the presence of
outliers than the classical kernel method. For this purpose application, we consider the
spectroscopic dataset, are available from http://www.models.kvl.dk/NIRsoil. The data
concern spectra of 108 soil samples measured by near infrared reflectance (NIR), in the
range 400–2500 nanometre (nm) with a 2 nm resolution (Rinnan and Rinnan, 2007). Thus,
the soil samples are obtained during a long-term climate change manipulation experiment
at a subarctic fell heath in Abisko, northern Sweden. Moreover, to determine the chemical
and microbiological properties of soil, soil organic matter (SOM) was measured as loss on
ignition at 550�C and ergosterol concentration was determined through High-Performance
Liquid Chromatography (HPLC), which are taken in the following as two response vari-
ables. The aim is to analyse relationships between the NIR data (X-variables), and the
chemical and microbiological data (Y -variables). For each sample soil, one observes a
spectroscopic curve which corresponds to the reflectance at 1050 wavelengths, and its soil
organic matter and ergosterol content. Hence, Xi(t) is the reflectance of the i

th sample of
soil at wavelength t, where t 2 {400, . . . , 2500}. Let Y1 and Y2 be two response variables
which correspond to soil organic matter and ergosterol concentration, respectively (see
Figures 3 and 4). The functional covariates in Figure 2 shows the 108 NIR reflectance
spectra.

http://www.models.kvl.dk/NIRsoil
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Figure 2. Curves of 108 NIR spectra

Figure 3. The distribution of 108 values of Y1 (SOM)

Figure 4. The distribution of 108 values of Y2 (ergosterol concentration)

Applied to NIR data the MAD-Median method identifies 21 outliers for Y1 and 1 outlier
for Y2. Recall that we are interested to build two models: Y1 = r1(X) + "1 and Y2 =
r2(X) + "2, where r1(x) = E(Y1|X = x) and r2(x) = E(Y2|X = x). Furthermore, the
dataset was randomly split into a learning sample (72 curves) used to build the estimators,
and a testing sample (36 curves) which allows computing the MSE. We note that the result
of our simulation study is evaluated over 100 independent replications and its sensitivity
to grid sizes or to size of test sample and training sample is not very substantial. Because
of the smoothness of the NIR curves, we use the semi-metric based on the second order
derivatives, where the curves are replaced by their B-spline expansion. Here, the best results
in terms of prediction are obtained for a number of interior knots needed for defining the
B-spline basis, equal to 40. Therefore, we chosen the smoothing parameter h via a local
cross-validation method on the number of nearest-neighbors. It can be seen that, in the
presence of outliers, the relative regression estimator performs better than the classical
kernel method. This is confirmed by the MSE obtained respectively in the two cases of
study.
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Figure 5. Box plots of the MSE for Y1

Figure 6. Box plots of the MSE for Y2

4.3 Confidence bands

A usual application of asymptotic normality is to establish confidence intervals for the true
value of the proposed estimator. To determine this band, we need the estimation of the
unknown quantity of the asymptotic variance. In our case, we have

�
2(x) =

M2

M2
1

�
g2(x) + r

2(x)g4(x)� 2r(x)g3(x)
�
,

where M1,M2, r and gl, for l = 1, 2, 3, 4, are unknown in practice and have to be estimated.
Now a plug-in estimate for the asymptotic standard deviation �(x) can be easily obtained

using the estimators cM1,
cM2, brn and bgl,n of M1,M2, r and gl respectively. Precisely, we

estimate g3(x) and g4(x) in the same way as for g1(x) and g2(x).
We estimate empirically the constants M1 and M2, as

cM1 =
1

n�x(h)

nX

i=1

�iḠ
�1

n (Ti)Ki(x)
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and

cM2 =
1

n�x(h)

nX

i=1

�iḠ
�1

n (Ti)K
2

i (x).

Furthermore, we get

b�(x) =
 
cM2

cM2
1

�
bg2,n(x) + br2n(x)bg4,n(x)� 2brn(x)bg3,n(x)

�
! 1

2

.

We have approximate (1� ⇣) confidence bands for r(x) given by

"
brn(x)� t

1� ⇣
2

✓
b�2(x)

n�x(h)

◆ 1
2

, brn(x) + t
1� ⇣

2

✓
b�2(x)

n�x(h)

◆ 1
2

#
,

where t
1� ⇣

2
denotes the 1� ⇣

2
⇥ 100th quantile of the standard normal distribution.

5. Concluding Remarks

This paper illustrated the asymptotic properties of the regression operator estimator based
on the minimization of the mean squared relative error under censoring data. The resulting
relative error regression showed to be consistent and asymptotically distributed normally
under appropriate conditions in case of censored functional data. Our theoretical and
practical studies confirmed that the relative error regression is more e�cient than the
classical regression.

Appendix

Proof of Theorem 3.1. This is based on the following decomposition

|brn(x)� r(x)| = 1

bg2,n(x)
[|bg1,n(x)� eg1(x)|+ |eg1(x)� E [eg1(x)]|+ |E [eg1(x)]� g1(x)|]

+
r(x)

bg2,n(x)
[|eg2(x)� bg2,n(x)|+ |E [eg2(x)]� eg2(x)|+ |g2(x)� E [eg2(x)]|] . (10)

Thus, we prove Theorem 3.1 by the following intermediate results

Proof of Lemma 3.2. We have

|E [egl(x)]� gl(x)| =

�����
1

nE[K1(x)]

nX

i=1

E[�iḠ
�1(Ti)T

�l
i Ki(x)� gl(x)]

����� .
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By using a double conditioning with respect to Yi, we get

E [egl(x)] =
1

nE[K1(x)]

nX

i=1

E[E(�iḠ
�1(Ti)T

�l
i Ki(x)|Xi)]

=
1

E[K1(x)]
E[K(h�1(x�X1))E(�1Ḡ

�1(T1)T
�l
1

|X1)]

=
1

E[K1(x)]
E[K(h�1(x�X1))E(E[�1Ḡ

�1(T1)T
�l
1

|Y1]|X1)]

=
1

E[K1(x)]
E[K(h�1(x�X1))E(Ḡ

�1(Y1)Y
�l
1

E[I{Y1C1}|Y1]|X1)].

Then,

E [egl(x)� gl(x)] =
1

E[K1(x)]
E
h
K(h�1(x�X1))IB(x,h)(X1)

���E(Y �l
1

|X1)� gl(x)
���
i

=
1

E[K1(x)]
E
⇥
K(h�1(x�X1))IB(x,h)(X1)|gl(X1)� gl(x)|

⇤
.

Thus, under conditions (H2), we get

|E [egl(x)� gl(x)] |  Ch
kl

= O(hkl).

Proof of Lemma 3.3. We have for l = 1, 2

egl(x)� E [egl(x)] =
1

nE[K1(x)]

nX

i=1

h
�iḠ

�1(Ti)T
�l
i Ki(x)� E[�iḠ

�1(Ti)T
�l
i Ki(x)]

i
.

Now, we consider

Zi,l =
1

E[K1(x)]

h
�iḠ

�1(Ti)T
�l
i Ki(x)� E[�iḠ

�1(Ti)T
�l
i Ki(x)]

i
.

To prove this lemma, we use the exponential inequality given in the monograph of Ferraty
and Vieu (2006) (Corollary A.8i). We calculate the quantity of E[|Zm

i,l |] similarly as in
Lemma 6.3 of Ferraty and Vieu (2006). By the Newton binomial expansion, we get

E[|Zm
i,l |]  C

mX

j=0

1

(E[K1])j
E
h����1Ḡ�j(T1)T

�jl
1

K
j
1
(x)
���
i

 C max
j=0,...,m

�
�j+1

x (h)

 C�
�m+1

x (h).

Then,

E[|Zm
i,l |] = O(��m+1

x (h)).
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Thus, by applying the mentioned exponential inequality with a
2 = �

�1
x (h), we have, for

all " > 0,

P

 �����

nX

i=1

Zi,l

����� > "n

!
 2 exp

✓
�"

2
n

2a2(1 + ")

◆
.

We establish

" = "0

s
log(n)

n�x(h)
.

Hence,

P

 �����

nX

i=1

Zi,l

����� > "n

!
 2 exp

0

@
�"

2
0

log(n)
n�x(h)

n

2 1

�x(h)
(1 + "0

q
log(n)
n�x(h)

)

1

A

 2 exp

0

@� "
2
0
log(n)

2(1 + "0

q
log(n)
n�x(h)

)

1

A

 2 exp
�
�C"

2

0 log(n)
�

 2n�C"20 .

Therefore, an appropriate choice of "0 and by Proposition A.4. in Ferraty and Vieu (2006),
we deduce that

|egl(x)� E [egl(x)]| = O

 s
log(n)

n�x(h)

!
= o(1).

Proof of Lemma 3.4. We have

|bgl,n(x)� egl(x)| =

�����
1

nE[K1(x)]

nX

i=1

�iḠ
�1

n (Ti)T
�l
i K

✓
x�Xi

h

◆
�

�iḠ
�1(Ti)T

�l
i K

✓
x�Xi

h

◆����

=
1

nE[K1(x)]

nX

i=1

����I{YiCi}Ḡ
�1

n (Yi)Y
�l
i K

✓
x�Xi

h

◆
�

I{YiCi}Ḡ
�1(Yi)Y

�l
i K

✓
x�Xi

h

◆����

 1

nE[K1(x)]

nX

i=1

����Y
�l
i K

✓
x�Xi

h

◆✓
1

Ḡn(Yi)
� 1

Ḡ(Yi)

◆����


supttF |Ḡn(t)� Ḡ(t)|

Ḡn(tF )Ḡ(tF )

1

nE[K1(x)]

nX

i=1

Y
�l
i K

✓
x�Xi

h

◆
.
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By using conditional expectation, we obtain

|bgl,n(x)� egl(x)| 
supttF |Ḡn(t)� Ḡ(t)|

Ḡn(tF )Ḡ(tF )

1

nE[K1(x)]

nX

i=1

E


Y

�l
i K

✓
x�Xi

h

◆
|Xi

�
.

Under conditions (H3), (H5) and by taking into account formula (4.28) in Deheuvels and
Einmahl (2000), we get

|bgl,n(x)� egl(x)| = O

✓
log(log(n))

n

◆
.

Proof of Corollary 3.5. We have

P
⇣
lim
n!1

bg2,n(x) = g2(x)
⌘
= 1.

By taking into account the results of Lemmas 3.2-3.4, we prove the corollary.

Proof of Lemma 3.7. We use the same arguments as in Lemma 7 of Demongeot et al.
(2016) for censored data.
Let

p
n�x(h)

g2
2
(x)�(x)

([eg1(x)� E [eg1(x)]] g2(x) + [E [eg2(x)]� eg2(x)] g1(x)) =
Sn

g2
2
(x)�(x)

,

with Sn =
Pn

i=1
(Li(x)� E[Li(x)]), where

Li(x) =

p
n�x(h)

nE[K1]
�iḠ

�1(Ti)Ki(x)
�
g1(x)T

�2

i � g2(x)T
�1

i

�
.

We apply the Lyapunov central limit theorem on Li(x) for showing the asymptotic nor-
mality of Sn. It su�ces to show, for some � > 0, that

Pn
i=1

E
⇥
|Li(x)� E[Li(x)]|2+�

⇤

(var (
Pn

i=1
Li(x)))

2+�
2

! 0. (11)

Clearly,

Var

 
nX

i=1

Li(x)

!
= n�x(h)Var [ eg2(x)g1(x)� eg1(x)g2(x)]

= n�x(h)
⇥
Var ( eg2(x)) g21(x) + Var ( eg1(x)) g22(x)� 2g1(x)g2(x)Cov( eg1(x), eg2(x))

⇤
.

Thus, for l = 1, 2, we obtain

Var (egl(x)) =
1

(nE[K1])2

nX

i=1

Var
h
�iḠ

�1(Ti)T
�l
i Ki(x)

i

=
1

n(E[K1])2
Var

h
�1Ḡ

�1(T1)T
�l
1

K1(x)
i
.
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By conditioning on the random variable X, using hypotheses (C1) and (C3) and the fact
that

E[K1] = �x(h)

✓
K(1)�

Z
1

0

K
0
(s)�x(s)ds

◆
+ o(�x(h)),

we get

E
h
�1Ḡ

�2(T1)T
�2l
1

K
2

1 (x)
i
= E

h
K

2

1 (x)E
h
Ḡ

�1(Y )Y �2l|X = x

ii

= E
h
Ḡ

�1(Y )Y �2l|X = x

i

⇥
✓
�x(h)

✓
K

2(1)�
Z

1

0

(K2)
0
(s)�x(s)ds

◆
+ o(�x(h))

◆
.

By a double conditioning on the random variable X and under conditions (H3) and (H5),
we obtain

E
h
�1Ḡ

�1(T1)T
�l
1

K1(x)
i
= E

⇥
K1(x)E

⇥
Y

�1

1
|X = x

⇤⇤

 CE[K1]

 C�x(h).

Therefore,

⇣
E
h
�1Ḡ

�1(T1)T
�l
1

K1(x)
i⌘2

= O(�x(h)
2).

Then,

Var
h
�1Ḡ

�1(T1)T
�l
1

K1(x)
i
= E

h
Ḡ

�1(Y )Y �2l|X = x

i

⇥
✓
�x(h)

✓
K

2(1)�
Z

1

0

(K2)
0
(s)�x(s)ds

◆◆
+O(�x(h)

2).

Thus,

Var (egl(x)) =
E
⇥
Ḡ

�1(Y )Y �2l|X = x
⇤ ⇣

K
2(1)�

R
1

0
(K2)

0
(s)�x(s)ds

⌘

n�x(h)
⇣
K(1)�

R
1

0
K

0(s)�x(s)ds
⌘2 (12)

+ o

✓
1

n�x(h)

◆
. (13)

Now, we calculate the corresponding covariance as

Cov( eg1(x), eg2(x)) =
1

n(E[K1])2
Cov

�
�1Ḡ

�1(T1)T
�1

1
K1(x), �1Ḡ

�1(T1)T
�2

1
K1(x)

�

=
1

n(E[K1])2
⇥
E
�
�1Ḡ

�2(T1)T
�3

1
K

2

1 (x)
�

� E
�
�1Ḡ

�1(T1)T
�1

1
K1(x)

�
E
�
�1Ḡ

�1(T1)T
�2

1
K1(x)

�⇤
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where

E
�
�1Ḡ

�2(T1)T
�3

1
K

2

1 (x)
�
= E

⇥
K

2

1E
⇥
Ḡ

�1
Y

�3|X = x
⇤⇤

= E
⇥
Ḡ

�1
Y

�3|X = x
⇤✓

K
2(1)�

Z
1

0

(K2)
0
(s)�x(s)ds

◆
+ o(1).

Hence,

Cov( eg1(x), eg2(x)) =
E
⇥
Ḡ

�1
Y

�3|X = x
⇤ ⇣

K
2(1)�

R
1

0
(K2)

0
(s)�x(s)ds

⌘

n�x(h)
⇣
K(1)�

R
1

0
K

0(s)�x(s)ds
⌘2 + o

✓
1

n�x(h)

◆
.

It follow that

Var

 
nX

i=1

Li(x)

!
= g

2

2(x)� + o(1).

Therefore, it is su�cient to demonstrate that the numerator of (11) converges to 0 to finish
the evidence of this lemma. For that we apply the Cr inequality (see Loeve (1963), p. 155)
showing that

nX

i=1

E
h
|Li(x)� E [Li(x)] |2+�

i
 C

nX

i=1

E
h
|Li(x)|2+�

i
+ C

0
nX

i=1

|E [Li(x)] |2+�
.

Then, under assumptions (H5) and (H3), we get

nX

i=1

E
h
|Li(x)|2+�

i
= n

��
2 (�x(h))

�1� �
2E
h
�
2+�
1

Ḡ
�(2+�)(T1)K

2+�
1

(x)|g1(x)T�2

i � g2(x)T
�1

i |2+�
i

 C(n�x(h))
�1� �

2

⇣
E[K2+�

1
]
⌘
! 0.

For the second term, we obtain

nX

i=1

|E [Li(x)] |2+�  n
��
2 (�x(h))

�1� �
2

��E
⇥
�1Ḡ

�1(T1)K1(x)|g1(x)T�2

i � g2(x)T
�1

i |
⇤��2+�

 Cn
��
2 (�x(h))

1+�
2 ! 0

which finishes the proof.

Proof of Lemma 3.8. For the first term, by taking into account Lemmas 3.2-3.4 and
equation (12), we have

E [ eg2(x)� g2(x)] ! 0

and

Var [ eg2(x)] ! 0.
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Then,

bg2,n(x)� g2(x) ! 0,

in probability. For the second limit, by lemma 3.4 and first limit, we get

Var [bgl,n(x)� egl(x)] ! 0.

Thus, it follow that

✓
n�x(h)

g2
2
(x)�2(x)

◆ 1
2

[(bg1,n(x)� eg1(x)) g2(x) + (eg2(x)� bg2,n(x)) g1(x)] ! 0,

in probability.

Proof of Lemma 3.9. We write


1

g2(x)
(E [eg1(x)]� g1(x)) g2(x) + (g2(x)� E [eg2(x)]) g1(x)

�

=
1

g2(x)
[E [eg1(x)] g2(x)� g1(x)g2(x) + g1(x)g2(x)� E [eg2(x)] g1(x)]

=
1

g2(x)E [eg2(x)]
[E [eg1(x)] g2(x)� E [eg2(x)] g1(x)] E [eg2(x)]

= AnE [eg2(x)] .

For An, we get

An =
E [eg1(x)]
E [eg2(x)]

� g1(x)

g2(x)
,

for which su�ces to evaluate E [eg1(x)] and E [eg2(x)]. By the same arguments used in Lemma
3.2, we obtain

E [eg1(x)] =
1

E [K1]
E
⇥
K1(x)E

⇥
Y

�1

1
|X1

⇤⇤

and

E [eg2(x)] =
1

E [K1]
E
⇥
K1(x)E

⇥
Y

�2

1
|X1

⇤⇤
.

By the same ideas used by Ferraty et al. (2007) for regression operator, we demonstrate
that

E [eg1(x)] = g1(x) + h 
0

1(0)

"
K(1)�

R
1

0
(sK(s))

0
�x(s)ds

K(1)�
R
1

0
(K)0(s)�x(s)ds

#
+ o(h)
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and

E [eg2(x)] = g2(x) + h 
0

2(0)

"
K(1)�

R
1

0
(sK(s))

0
�x(s)ds

K(1)�
R
1

0
(K)0(s)�x(s)ds

#
+ o(h).

Thus,

An =
E [eg1(x)]
E [eg2(x)]

� r(x) = hBn(x) + o(h),

where

Bn =
( 

0

1
(0)� r(x) 

0

2
(0))M0

M1g2(x)
.

For the second term, we have

E [eg2(x)] = g2(x) + h 
0

2(0)

"
K(1)�

R
1

0
(sK(s))

0
�x(s)ds

K(1)�
R
1

0
(K)0(s)�x(s)ds

#
+ o(h).

Then,

E [eg2(x)]� g2(x) = O(h).

Hence, to show that Lemma 3.9 converges to 0 in probability, we have

E

"✓
n�x(h)

g2
2
(x)�2(x)

◆ 1
2

An (|g2(x)� E [eg2(x)]|)
#
= 0

and

Var

"✓
n�x(h)

g2
2
(x)�2(x)

◆ 1
2

An (|g2(x)� E [eg2(x)]|)
#
= O(A2

n) = O(h2) ! 0,

which complete the proof.

References

Altendji, B., Demongeot, J., Laksaci, A., and Rachdi, M., 2018. Functional data analysis:
estimation of the relative error in functional regression under random left truncation
model. Journal of Nonparametric Statistics, 30, 1-19.

Aneiros, G., Bongiorno, E.G., Cao, R., and Vieu, P., 2017. Functional Statistics and Re-
lated Fields. Springer, Cham.

Attouch, M., Laksaci, A., and Ould-Said, E., 2009. Asymptotic distribution of robust
estimator for functional nonparametric models. Communications in Statistics: Theory
and Methods, 38, 1317-1335.

Deheuvels, P. and Einmahl, J.H.J., 2000. Functional limit laws for the increments of
Kaplan-Meier product-limit processes and applications. The Annals of Probability, 28,
1301-1335.



Chilean Journal of Statistics 195

Demongeot, J., Hamie, A., Laksaci, A., and Rachdi, M., 2016. Relative-error prediction
in nonparametric functional statistics: Theory and practice. Journal of Multivariate
Analysis, 146, 261-268.

Ferraty, F., Mas, A., and Vieu, P., 2007. Nonparametric regression on functional data:
Inference and practical aspects. Australian and New Zealand Journal of Statistics, 49,
267-286.

Ferraty, F. and Vieu, P., 2004. Nonparametric models for functional data, with application
in regression times series prediction and curves discrimination. Journal of Nonparametric
Statistics, 16, 111-127.

Ferraty, F. and Vieu, P., 2006. Nonparametric Functional Data Analysis. Theory and
Practice. Springer, New York.

Gheriballah, A., Laksaci, A., and Sekkal, S., 2013. Nonparametric M-regression for func-
tional ergodic data. Statistics and Probability Letters, 83, 902-908.

Horrigue, W. and Ould-Said, E., 2011. Strong uniform consistency of a nonparametric es-
timator of a conditional quantile for censored dependent data and functional regressors.
Random Operators and Stochastic Equations, 19, 131-156.

Horrigue, W. and Ould-Said, E., 2014. Nonparametric regression quantile estimation for
dependent functional data under random censorship: Asymptotic normality. Communi-
cations in Statistics: Theory and Methods, 44, 4307-4332.

Hsing, T. and Eubank, R., 2015. Theoretical foundations of functional data analysis with
an introduction to linear operators. Wiley, Chichester.

Jones, M.C., Park, H., Shin, K-Il., Vines, S.K., and Jeong, S.O., 2008. Relative error
prediction via kernel regression smoothers. Journal of Statistical Planning and Inference,
138, 2887-2898.

Kaplan, E.L. and Meier, P., 1958. Nonparametric estimation from incomplete observations.
Journal of American Statistical Association, 53, 457-481.

Khardani, S., Lemdani, M., and Ould-Said, E., 2010. Some asymptotic properties for a
smooth kernel estimator of the conditional mode under random censorship. Journal of
the Korean Statistical Society, 39, 455-469.
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